Morphosedimentary, Structural and Benthic Characterization of Carbonate Mound Fields on the Upper Continental Slope of the Northern Alboran Sea (Western Mediterranean)
Abstract
:1. Introduction
2. Regional Setting
3. Materials and Methods
4. Results
4.1. Alcántara Mound Field
4.2. Malága Mound Field
4.3. Aceitunas Mound Field
4.4. Subseafloor Features and Seismic Facies of the Mound Fields
5. Discussion
5.1. Potential Main Framework-Building Organisms of the Mounds
5.2. Carbonate Mound Location and Environmental Setting
5.3. Current and Past Sedimentary Environment Affecting the Mound Fields
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Expedition | Mound Field | Sample Code | Core Length (cm) | Water Depth (m) | Latitude N (°) | Longitude W (°) | Description |
---|---|---|---|---|---|---|---|
MONCARAL | Alcántara | VV01 | 241 | 36°21.52′ | 05°01.40′ | Muddy sand with Nucula sulcata and Nassarius ovoideus shells | |
MONCARAL | Alcántara | VV02 | 251 | 36°21.36′ | 05°01.45′ | Muddy sand with Nucula sulcata and Euspira fusca shells | |
MONCARAL | Alcántara | VV03 | 317 | 36°19.83′ | 04°59.86′ | Sandy mud with Abra spp. and Nassarius ovoideus | |
MONCARAL | Alcántara | VV04 | 313 | 36°19.85′ | 04°59.80′ | Muddy sand | |
MONCARAL | Málaga | VV05 | 231 | 36°37.70′ | 04°12.90′ | Bioclastic sandy mud with rhodoliths and Modiolus modiolus shells fragments | |
MONCARAL | Málaga | VV06 | 260 | 36°37.20′ | 04°12.10′ | Bioclastic sandy mud with Neopycnodonte cochlear shells and Caryophyllia spp. fragments | |
MONCARAL | Málaga | VV07/08 | 271 | 36°37.01′ | 04°11.60′ | Sandy mud with Nassarius ovoideus and Aporrhais serresiana shells | |
MONCARAL | Aceitunas | VV09 | 192 | 36°36.50′ | 02°54.50′ | Muddy fine sand with Posidonia oceanica remains | |
MONCARAL | Aceitunas | VV10 | 201 | 36°36.20′ | 02°54.30′ | Bioclastic sand with rhodoliths fragments | |
MONCARAL | Aceitunas | VV11 | 173 | 36°37.00′ | 02°56.20′ | Bioclastic sand with rhodoliths fragments | |
RIGEL | Aceitunas | VV16 | 223 | 36°36.37′ | 2°56.61′ | Bioclastic muddy sand | |
RIGEL | Aceitunas | VV17 | 233 | 36°35.36′ | 2°53.61′ | Bioclastic muddy sand with Caryophyllia spp. fragments | |
RIGEL | Aceitunas | VV18 | 244 | 36°35.14′ | 2°52.79′ | Sandy mud | |
RIGEL | Aceitunas | VV19 | 188 | 36°36.20′ | 2°53.48′ | Sandy mud | |
RIGEL | Aceitunas | VV20 | 196 | 36°36.31′ | 2°54.88′ | Sandy mud | |
RIGEL | Aceitunas | VV21 | 231 | 36°38.52′ | 4°10.16′ | Sandy mud | |
RIGEL | Málaga | VV22 | 238 | 36°37.66′ | 4°11.94′ | Bioclastic sandy mud | |
RIGEL | Málaga | VV23 | 255 | 36°37.59′ | 4°11.17′ | Sandy mud with polychaetes | |
RIGEL | Málaga | VV24 | 232 | 36°37.82′ | 4°12.85′ | Sandy mud | |
RIGEL | Aceitunas | TG16 | 7 | 171 | 36°37.04′ | 2°56.18′ | Bioclastic muddy sand |
RIGEL | Aceitunas | TG17 | 5 | 172 | 36°37.05′ | 2°56.19′ | Bioclastic muddy sand |
RIGEL | Aceitunas | TG18 | 30 | 191 | 36°36.25′ | 2°54.46′ | Bioclastic muddy sand |
RIGEL | Aceitunas | TG19 | 5 | 194 | 36°36.19′ | 2°54.38′ | Bioclastic muddy sand with Caryophyllia spp. fragments |
RIGEL | Aceitunas | TG20 | 26 | 193 | 36°36.38′ | 2°54.78′ | Bioclastic muddy sand with Caryophyllia spp. fragments |
RIGEL | Aceitunas | TG21 | 2 | 233 | 36°35.36′ | 2°53.61′ | Bioclastic sandy mud |
RIGEL | Málaga | TG22 | 38 | 231 | 36°38.52′ | 4°10.16′ | Sandy mud with N. cochlear shells fragments and rhodoliths |
RIGEL | Málaga | TG23 | 260 | 248 | 36°37.34′ | 4°12.12′ | Bioclastic sandy mud |
RIGEL | Málaga | TG24 | 105 | 231 | 36°37.82′ | 4°12.85′ | Bioclastic sandy mud |
References
- Mienis, F.; van Weering, T.; Haas, H.; Stigter, H.; Huvenne, V.; Wheeler, A. Carbonate Mound Development at the SW Rockall Trough Margin Based on High Resolution TOBI and Seismic Recording. Mar. Geol. 2006, 233, 1–19. [Google Scholar] [CrossRef]
- Monty, C.L.V.; Bosence, D.W.J.; Bridges, P.H.; Pratt, B.R. Carbonate Mud-Mounds Their Origin and Evolution. In International Association of Sedimentologists; Special Publication 23; Blackwell Science Ltd.: Oxford, UK, 1995; p. 537. [Google Scholar]
- International Hydrographic Organization. Standardization of undersea feature names. In Guidelines Proposal Form Terminology; English/Spanish Version Edition 4.1.0; Bathymetric Publication No. 6; International Hydrographic Bureau: Monte Carlo, Monaco, 2013. [Google Scholar]
- Henriet, J.P.; Hamoumi, N.; Da Silva, A.C.; Foubert, A.; Lauridsen, B.W.; Rüggeberg, A.; Van Rooij, D. Carbonate Mounds: From Paradox to World Heritage. Mar. Geol. 2014, 352, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Hebbeln, D.; Samankassou, E. Where Did Ancient Carbonate Mounds Grow—In Bathyal Depths or in Shallow Shelf Waters? Earth-Sci. Rev. 2015, 145, 56–65. [Google Scholar] [CrossRef]
- Ercilla, G.; Casas, D.; Alonso, B.; Casalbore, D.; Estrada, F.; Idárraga-García, J.; López-González, N.; Pedrosa, M.; Teixeira, M.; Sánchez-Guillamón, O.; et al. Deep Sea Sedimentation. Ref. Modul. Earth Syst. Environ. Sci. 2021. [CrossRef]
- Hebbeln, D.; Bender, M.; Gaide, S.; Titschack, J.; Vandorpe, T.; Rooij, D.; Wintersteller, P.; Wienberg, C. Thousands of Cold-Water Coral Mounds along the Moroccan Atlantic Continental MargIn Distribution and Morphometry. Mar. Geol. 2019, 411. [Google Scholar] [CrossRef]
- Tamborrino, L.; Wienberg, C.; Titschack, J.; Wintersteller, P.; Mienis, F.; Schröder-Ritzrau, A.; Freiwald, A.; Orejas, C.; Dullo, W.-C.; Haberkern, J.; et al. Mid-Holocene extinction of cold-water corals on the Namibian shelf steered by the Benguela oxygen minimum zone. Geology 2019, 47, 1185–1188. [Google Scholar] [CrossRef]
- Freiwald, A.; Henrich, R.; Pätzold, J. Anatomy of a deep-water coral reef from Stjernsund, West Finmark, Northern Norway. In Cool-Water Carbonates; James, N.P., Clarke, J.A.D., Eds.; Special Publications—SEPM: Broken Arrow, OK, USA, 1997; Volume 56, pp. 141–162. [Google Scholar]
- Roberts, J.M.; Wheeler, A.; Freiwald, A. Reefs of the Deep: The Biology and Geology of Cold-Water Coral Ecosystems. Science 2006, 312, 543–547. [Google Scholar] [CrossRef] [Green Version]
- Conway, K.; Krautter, M.; Barrie, J.; Whitney, F.; Thomson, R.; Reiswig, H.; Lehnert, H.; Mungov, G.; Bertram, M. Sponge Reefs in the Queen Charlotte Basin, Canada: Controls on Distribution, Growth and Development. In Cold-Water Corals and Ecosystems; Freiwald, A., Roberts, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 605–621. [Google Scholar] [CrossRef]
- Georgieva, M.N.; Paull, C.K.; Little, C.T.S.; McGann, M.; Sahy, D.; Condon, D.; Lundsten, L.; Pewsey, J.; Caress, D.W.; Vrijenhoek, R.C. Discovery of an Extensive Deep-Sea Fossil Serpulid Reef Associated with a Cold Seep, Santa Monica Basin, California. Front. Mar. Sci. 2019, 6, 115. [Google Scholar] [CrossRef]
- James, N.; Feary, D.; Surlyk, F.; Simo, T.; Betzler, C.; Holbourn, A.; Li, Q.; Matsuda, H.; Machiyama, H.; Brooks, G.; et al. Quaternary Bryozoan Reef Mounds in Cool-Water, Upper Slope Environments: Great Australian Bight. Geology 2000, 28. [Google Scholar] [CrossRef]
- Mortensen, P.; Buhl-Mortensen, L.; Dolan, M.; Dannheim, J.; Kröger, K. Megafaunal diversity associated with marine landscapes of northern Norway: A preliminary assessment. Nor. J. Geol. 2009, 89, 163–171. [Google Scholar]
- Stalder, C.; Vertino, A.; Rosso, A.; Rüggeberg, A.; Pirkenseer, C.; Spangenberg, J.E.; Spezzaferri, S.; Camozzi, O.; Rappo, S.; Hajdas, I. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea. PLoS ONE 2015, 10, e0140223. [Google Scholar] [CrossRef] [PubMed]
- Riosmena-Rodríguez, R.; Nelson, W.; Aguirre, J. Rhodolith/Maërl Beds: A Global Perspective. In Coastal Research Library; Springer: Cham, Switzerland, 2017; Volume 15. [Google Scholar] [CrossRef]
- Rueda, J.L.; Urra, J.; Aguilar, R.; Angeletti, L.; Bo, M.; García-Ruiz, C.; González-Duarte, M.M.; López, E.; Madurell, T.; Maldonado, M.; et al. Cold-water coral associated fauna in the Mediterranean Sea and adjacent areas. In Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World 9; Orejas, C., Jiménez, C., Eds.; Springer International Publishing AG, part of Springer Nature: Berlin, Germany, 2019; pp. 295–333. [Google Scholar] [CrossRef]
- Hebbeln, D.; Van Rooij, D.; Wienberg, C. Good neighbours shaped by vigorous currents: Cold-water coral mounds and contourites in the North Atlantic. Mar. Geol. 2016, 378, 171–185. [Google Scholar] [CrossRef]
- Riding, R. Structure and Composition of Organic Reefs and Carbonate Mud Mounds: Concepts and Categories. Earth. Sci. Rev. 2002, 58, 163–231. [Google Scholar] [CrossRef]
- Roberts, J.M.; Wheeler, A.; Freiwald, A.; Cairns Stephen, D. Cold-Water Corals: The Biology and Geology of Deep-Sea Coral Habitats; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Dullo, W.-C.; Flögel, S.; Rüggeberg, A. Cold-Water Coral Growth in Relation to the Hydrography of the Celtic and Nordic European Continental Margin. Mar. Ecol. Prog. Ser. 2008, 371, 165–176. [Google Scholar] [CrossRef]
- Davies, A.J.; Guinotte, J.M. Global Habitat Suitability for Framework-Forming Cold-Water Corals. PLoS ONE 2011, 6, e18483. [Google Scholar] [CrossRef] [PubMed]
- Thresher, R.E.; Tibrook, B.; Fallon, S.; Wilson, N.C.; Adkins, J.F. Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar. Ecol. Prog. Ser. 2011, 442, 87–99. [Google Scholar] [CrossRef]
- Wienberg, C.; Titschack, J. Framework-forming scleractinian cold-water corals through space and time: A late Quaternary North Atlantic perspective. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Rossi, S., Bramanti, L., Gori, A., Orejas, C., Eds.; Springer: Cham, Switzerland, 2017; pp. 699–732. [Google Scholar] [CrossRef]
- Puerta, P.; Johnson, C.; Carreiro-Silva, M.; Henry, L.-A.; Kenchington, E.; Morato, T.; Kazanidis, G.; Rueda, J.L.; Urra, J.; Ross, S.; et al. Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic. Front. Mar. Sci. 2020, 7, 239. [Google Scholar] [CrossRef] [Green Version]
- White, M.; Mohn, C.; de Stigter, H.; Mottram, G. Deep-water coral development asa function of hydrodynamics and surfaceproductivity around the submarine banks ofthe Rockall Trough, NE Atlantic. In Cold-Water Corals and Ecosystems; Freiwald, A., Roberts, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 503–514. [Google Scholar]
- Mienis, F.; de Stigter, H.C.; White, M.; Duineveld, G.; de Haas, H.; van Weering, T.C.E. Hydrodynamic Controls on Cold Water Coral Growth and Carbonate Mound Development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep. Res. Part 1. Oceanogr. Res. Pap. 2007, 54, 1655–1674. [Google Scholar] [CrossRef]
- Duineveld, G.; Lavaleye, M.; Bergman, M.; Stigter, H.; Mienis, F. Trophic Structure of a Cold-Water Coral Mound Community (Rockall Bank, NE Atlantic) in Relation to the near-Bottom Particle Supply and Current Regime. Bull. Mar. Sci. 2007, 81, 449–467. [Google Scholar]
- Duineveld, G.C.A.; Jeffreys, R.M.; Lavaleye, M.S.S.; Davies, A.J.; Bergman, M.J.N.; Watmough, T.; Witbaard, R. Spatial and tidal variation in food supply to shallow cold-water coral reefs of theMingulay Reef complex (Outer Hebrides, Scotland). Mar. Ecol. Prog. Ser. 2012, 444, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.J.; Duineveld, G.C.; Lavaleye, M.S.; Bergman, M.J.; van Haren, H.; Roberts, J.M. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol. Oceanogr. 2009, 54, 620–629. [Google Scholar] [CrossRef] [Green Version]
- Taviani, M.; Angeletti, L.; Beuck, L.; Campiani, E.; Canese, S.; Foglini, F.; Freiwald, A.; Montagna, P.; Trincardi, F. On and off the Beaten Track: Megafaunal Sessile Life and Adriatic Cascading Processes. Mar. Geol. 2015, 375. [Google Scholar] [CrossRef]
- Dorschel, B.; Hebbeln, D.; Rüggeberg, A.; Dullo, C. Carbonate Budget of a Cold-Water Coral Carbonate Mound: Propeller Mound, Porcupine Seabight. Int. J. Earth Sci. 2007, 96, 73–83. [Google Scholar] [CrossRef]
- Mienis, F.; de Stigter, H.C.; de Haas, H.; van Weering, T.C.E. Near-bed perticle deposition and resuspention in a cold-water coral moundd area at the Southwest Rockall trough margin, NE Atlantic. Deep-Sea Research Part 1 2009, 56, 1026–1040. [Google Scholar] [CrossRef]
- Fentimen, R.; Feenstra, E.; Rüggeberg, A.; Vennemann, T.; Hajdas, I.; Adatte, T.; Van Rooij, D.; Foubert, A. Cold-Water Coral Mound Archive Provides Unique Insights Into Intermediate Water Mass Dynamics in the Alboran Sea During the Last Deglaciation. Front. Mar. Sci. 2020, 7, 354. [Google Scholar] [CrossRef]
- Dorschel, B.; Hebbeln, D.; Rüggeberg, A.; Dullo, W.-C.; Freiwald, A. Growth and Erosion of a Cold-Water Coral Covered Carbonate Mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet. Sci. Lett. 2005, 233, 33–44. [Google Scholar] [CrossRef]
- Kano, A.; Ferdelman, T.G.; Williams, T.; Henriet, J.P.; Ishikawa, T.; Kawagoe, N.; Takashima, C.; Kakizaki, Y.; Abe, K.; Sakai, S.; et al. the IODP Exp. 307 Scientists. Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology 2007, 35, 1051–1054. [Google Scholar] [CrossRef] [Green Version]
- Frank, N.; Freiwald, A.; López Correa, M.; Wienberg, C.; Eisele, M.; Hebbeln, D.; D, V.; JP, H.; Colin, C.; van Weering, T.; et al. Northeast Atlantic Cold-Water Coral Reefs and Climate. Geology 2011, 39, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Wienberg, C.; Frank, N.; Mertens, K.; Stuut, J.-B.; Marchant, M.; Fietzke, J.; Mienis, F.; Hebbeln, D. Glacial Cold-Water Coral Growth in the Gulf of Cádiz: Implications of Increased Palaeo-Productivity. Earth Planet. Sci. Lett. 2010, 298, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Thierens, M.; Browning, E.; Pirlet, H.; Loutre, M.F.; Dorschel, B.; Huvenne, V.A.I.; Titschack, J.; Colin, C.; Foubert, A.; Wheeler, A.J. Cold-Water Coral Carbonate Mounds as Unique Palaeo-Archives: The Plio-Pleistocene Challenger Mound Record (NE Atlantic). Epic. Sci. Rev. 2013, 73, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Freiwald, A.; Fosså, J.; Grehan, A.; Koslow, T.; Roberts, J. Cold-Water Coral Reefs: Out of Sight—No Longer out of Mind; UNEP-WCMC: Cambridge, UK, 2004. [Google Scholar]
- Eisele, M.; Hebbeln, D.; Wienberg, C. Growth History of a Cold-Water Coral-Covered Carbonate Mound—Galway Mound, Porcupine Seabight, NE Atlantic. Mar. Geol. 2008, 253, 160–169. [Google Scholar] [CrossRef]
- Fink, H.; Wienberg, C.; Hebbeln, D.; Mcgregor, H.; Schmiedl, G.; Taviani, M.; Freiwald, A. Oxygen Control on Holocene Cold-Water Coral Development in the Eastern Mediterranean Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2012, 62, 89–96. [Google Scholar] [CrossRef]
- Fink, H.G.; Wienberg, C.; De Pol-Holz, R.; Wintersteller, P.; Hebbeln, D. Cold-Water Coral Growth in the Alboran Sea Related to High Productivity during the Late Pleistocene and Holocene. Mar. Geol. 2013, 71–82. [Google Scholar] [CrossRef]
- Fink, H.G.; Wienberg, C.; De Pol-Holz, R.; Hebbeln, D. Spatio-temporal distribution patterns of Mediterranean cold-water corals (Lophelia pertusa and Madrepora oculata) during the past 14,000 years. Deep-Sea Res. I Oceanogr. Res. Pap. 2015, 103, 37–48. [Google Scholar] [CrossRef]
- Van der Land, C.; Eisele, M.; Mienis, F.; de Haas, H.; Hebbeln, D.; Reijmer, J.J.G.; van Weering, T.C.E. Carbonate mound development in contrasting settings on the Irish margin. Deep-Sea Res. Part 2 Top. Stud. Oceanogr. 2014, 99, 297–306. [Google Scholar] [CrossRef]
- Wang, H.; Lo Iacono, C.; Wienberg, C.; Titschack, J.; Hebbeln, D. Cold-Water Coral Mounds in the Southern Alboran Sea (Western Mediterranean Sea): Internal Waves as an Important Driver for Mound Formation since the Last Deglaciation. Mar. Geol. 2019, 412, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cyr, F.; van Haren, H.; Mienis, F.; Duineveld, G.; Bourgault, D. On the Influence of Cold-Water Coral Mound Size on Flow Hydrodynamics, and Vice Versa. Geophys. Res. Lett. 2016, 43, 775–783. [Google Scholar] [CrossRef] [Green Version]
- Mullins, H.T.; Newton, C.R.; Heath, K.; Van Buren, H.M. Modern deep-water coral mounds north of Little Bahama Bank: Criteria for the recognition of deep-water coral bioherms in the rock record. J. Sediment. Petrol. 1981, 51, 999–1013. [Google Scholar]
- Kirkby, K.C.; Hunt, D. Episodic growth of a Waulsortian buildup: The Lower Carboniferous Muleshoe Mound, Sacramento Mountains, New Mexico, USA. In Recent Advances in Lower Carboniferous Geology; Strogen, P., Somerville, I.D., Jones, G.L., Eds.; Special Publications: London, UK, 1996; Volume 107, pp. 97–110. [Google Scholar]
- De Mol, B.; Van Rensbergen, P.; Pillen, S.; Van Herreweghe, K.; Van Rooij, D.; Mc Donnell, A.; Huvenne, V.; Ivanov, M.; Swennen, R.; Henriet, J.P. Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar. Geol. 2002, 188, 193–231. [Google Scholar] [CrossRef]
- Grasmueck, M.; Eberli, G.; Correa, T.; Viggiano, D.A.; Luo, J.; Wyatt, G.J.; Reed, J.; Wright, A.; Pomponi, S.A. AUV-Based Environmental Characterization of Deepwater Coral Mounds in the Straits of Florida. OTC 2007, 158–169. [Google Scholar] [CrossRef]
- Titschack, J.; Baum, D.; De Pol-Holz, R.; López Correa, M.; Forster, N.; Flögel, S.; Hebbeln, D.; Freiwald, A. Aggradation and Carbonate Accumulation of Holocene Norwegian Cold-Water Coral Reefs. Sedimentology 2015, 62, 1873–1898. [Google Scholar] [CrossRef]
- Wang, H.; Titschack, J.; Wienberg, C.; Korpanty, C.; Hebbeln, D. The Importance of Ecological Accommodation Space and Sediment Supply for Cold-Water Coral Mound Formation, a Case Study From the Western Mediterranean Sea. Front. Mar. Sci. 2021, 8, 1941. [Google Scholar] [CrossRef]
- Margreth, S.; Gennari, G.; Rüggeberg, A.; Comas, M.C.; Pinheiro, L.M.; Spezzaferri, S. Growth and demise of cold-water coral ecosystemson mud volcanoes in theWest Alboran Sea: The messages from the planktonic and benthic foraminifera. Mar. Geol. 2011, 282, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Lo Iacono, C.; Gràcia, E.; Ranero, C.R.; Emelianov, M.; Huvenne, V.; Bartolomé, R.; Booth-Rea, G.; Prades, J. The West Melilla Cold Water Coral Mounds, Eastern Alboran Sea: Morphological Characterization and Environmental Context. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 99, 316–326. [Google Scholar] [CrossRef]
- Ercilla, G.; Juan, C.; Estrada, F.; Alonso, B.; Casas, D.; Farran, M.; García, M.; Ammar, A. Significance of Bottom Currents in Deep-Sea Morphodynamics: An Example from the Alboran Sea. Mar. Geol. 2016, 378, 157–170. [Google Scholar] [CrossRef]
- Juan, C.; Ercilla, G.; Estrada, F.; Alonso, B.; Casas, D.; Vázquez, J.T.; d’Acremont, E.; Medialdea, T.; Hernández-Molina, F.J.; Gorini, C.; et al. Multiple Factors Controlling the Deep Marine Sedimentation of the Alboran Sea (SW Mediterranean) after the Zanclean Atlantic Mega-Flood. Mar. Geol. 2020, 423. [Google Scholar] [CrossRef]
- Ballesteros, M.; Rivera, J.; Muñoz, A.; Muñoz-Martín, A.; Acosta Yepes, J.; Gorosabel, A.; Uchupi, E. Alboran Basin, Southern Spain. Part II: Neogene Tectonic Implications for the Orogenic Float Model. Mar. Pet. Geol 2008, 25. [Google Scholar] [CrossRef] [Green Version]
- Pereiro-Muñoz, A.; Ballesteros, M.; Montoya, I.; Rivera, J.; Acosta, J.; Uchupi, E. Alborán Basin, southern Spain—Part I: Geomorphology. Mar. Petrol. Geol. 2008, 25, 59–73. [Google Scholar] [CrossRef]
- Hebbeln, D. Report and Preliminary Results of RV POSEIDON Cruise POS 385 “Cold-Water Corals of the Alboran Sea (Western Mediterranean Sea)”, Faro—Toulon, May 29—June 16, 2009; Universität Bremen: Bremen, Germany, 2009; pp. 1–79. [Google Scholar]
- Hebbeln, D. Highly variable submarine landscapes in the Alborán Sea created by cold-water corals. In Mediterranean Cold-Water Corals: Past, Present and Future: Understanding the Deep-Sea Realms of Coral; Orejas, C., Jiménez, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 61–65. [Google Scholar]
- Corbera, G.; Lo Iacono, C.; Gràcia, E.; Grinyó, J.; Pierdomenico, M.; Huvenne, V.A.I.; Aguilar, R.; Maria Gili, J. Ecological characterisation of a Mediterranean cold-water coral reef: Cabliers Coral Mound Province (Alboran Sea, western Mediterranean). Prog. Oceanog. 2019, 175, 245–262. [Google Scholar] [CrossRef]
- Corbera, G.; Lo Iacono, C.; Standish, C.; Anagnostou, E.; Titschack, J.; Katsamenis, O.; Cacho, I.; Rooij, D.; Huvenne, V.; Foster, G. Glacio-Eustatic Variations and Sapropel Events as Main Controls on the Middle Pleistocene-Holocene Evolution of the Cabliers Coral Mound Province (W Mediterranean). Quat. Sci. Rev. 2021, 253. [Google Scholar] [CrossRef]
- Lo Iacono, C.; Gràcia, E.; Diez, S.; Bozzano, G.; Moreno, X.; Dañobeitia, J.; Alonso, B. Seafloor Characterization and Backscatter Variability of the Almería Margin (Alboran Sea, SW Mediterranean) Based on High-Resolution Acoustic Data. Mar. Geol. 2008, 250, 1–18. [Google Scholar] [CrossRef]
- D’Acremont, E.; Gorini, C.; Alonso, B.; Ammar, A.; El Abbassi, M.; de Batist, M.; Ceramicola, S.; Do Couto, D.; Ercilla, G.; Gutscher, M.; et al. Active sedimentation and tectonics in the South Alboran Sea: Preliminary results of the Marlboro and SARAS surveys. In Proceedings of the Exploring the Mediterranean: New Concepts in an Ancient Seaway, Barcelona, Spain, 8–11 April 2013. [Google Scholar]
- Vázquez, J.-T.; Ercilla, G.; Catalán, M.; Do Couto, D.; Estrada, F.; Galindo-Zaldívar, J.; Juan, C.; Palomino, D.; Vegas, R.; Alonso, B.; et al. Ch.5, A Geological history for the Alboran Sea region. In Alboran Sea and its Marine Resources; Baéz, J.C., Vázquez, J.T., Caminas, J.A., Malouli, M., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 111–156. [Google Scholar] [CrossRef]
- Parrilla, G.; Kinder, T.H.; Preller, R.H. Deep and Intermediate Mediterranean Water in the Western Alboran Sea. Deep Sea Res. Part A. Oceanogr. Res. Pap. 1986, 33, 55–88. [Google Scholar] [CrossRef]
- Vargas-Yáñez, M.; García-Martínez, M.C.; Moya, F.; Balbín, R.; López-Jurado, J.L. Ch.4. The Oceanographic and Climatic Context. In Alboran Sea and its Marine Resources; Baéz, J.C., Vázquez, J.T., Caminas, J.A., Malouli, M., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 85–109. [Google Scholar] [CrossRef]
- Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 1999, 20, 23–442. [Google Scholar] [CrossRef] [Green Version]
- Sarhan, T.; Lafuente, J.; Vargas-Yáñez, M.; Vargas, J.; Plaza, F. UpwellingMechanisms in theNorthwesternAlboran Sea. J. Mar. Syst. 2000, 23, 317–331. [Google Scholar] [CrossRef]
- Morán, X.A.G.; Taupier-Letage, I.; Vázquez-Domıínguez, E.; Ruiz, S.; Arin, L.; Raimbault, P.; Estrada, M. Physical-Biological Coupling in the Algerian Basin (SW Mediterranean): Influence of Mesoscale Instabilities on the Biomass and Production of Phytoplankton and Bacterioplankton. Deep Sea Res. Part I Oceanogr. Res. Pap. 2001, 48, 405–437. [Google Scholar] [CrossRef]
- Rueda, J.L.; Gofas, S.; Aguilar, R.; de la Torriente, A.; García Raso, J.E.; Lo Iacono, C.; Luque, Á.A.; Marina, P.; Mateo-Ramírez, Á.; Moya-Urbano, E.; et al. Chapter 10: Benthic fauna of littoral and deep-sea habitats of the Alboran Sea: A hotspot of biodiversity. In Alboran Sea, Ecosystems and Marine Resources; Báez, J.C., Vázquez, J.T., Camiñas, J.A., Malouli, M., Eds.; Springer Nature Series: Cham, Switzerland, 2021; pp. 285–358. [Google Scholar] [CrossRef]
- Palomino, D.; Alonso, B.; Lo Iacono, C.; Casas, D.; D’Acremont, E.; Ercilla, G.; Gorini, C.; Vázquez, J.T. Seamounts and Seamount-like Structures of the Alborán Sea. In Atlas of the Mediterranean Seamounts and Seamount Like Structures; Würtz, M., Rovere, M., Eds.; IUCN: Gland, Switzerland; Málaga, Spain, 2015; pp. 21–58. [Google Scholar]
- Vázquez, J.; Ercilla, G.; Alonso, B.; Juan, C.; Rueda, J.L.; Palomino, D.; Fernández-Salas, L.M.; Bárcenas, P.; Casas, D.G.; Díaz-del-Río-Español, V.; et al. Submarine Canyons and Related Features in the Alboran Sea: Continental Margins and Major Isolated Reliefs. Submarine Canyon Dynamics in the Mediterranean and Tributary Seas- An Integrated Geological, Oceanographic and Biological Perspective. In Submarine Canyon Dynamics in the Mediterranean and Tributary Seas; Briand, F., Ed.; CIESM Publisher: Villa Girasole, Monaco, 2015; Volume 47, pp. 183–196. [Google Scholar]
- Wienberg, C. A deglacial cold-water coral boom in the Alboran Sea: From coral mounds and species dominance. In Mediterranean Cold-Water Corals: Past, Present and Future, Coral Reefs of the World 9; Orejas, C., Jiménez, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 57–60. [Google Scholar]
- Grosse, P.; van Wyk de Vries, B.; Petrinovic, I.A.; Euillades, P.A.; Alvarado, G. Morphometry and evolution of arc volcanoes. Geology 2009, 37, 651–654. [Google Scholar] [CrossRef]
- Vázquez, J.T.; Estrada, F.; Vegas, R.; Ercilla, G.; d’Acremont, E.; Fernández-Salas, L.M.; Alonso, B.; Fernández-Puga, M.C.; Gomez-Ballesteros, M.; Gorini, C.; et al. Quaternary tectonics influence on the Adra continental slope morphology (Northern Alboran Sea). In Una Aproximación Multidisciplinar al Estudio de las Fallas Activas, los Terremotos y el Riesgo Sísmico; Álvarez-Gomez, J.A., Martín-González, F., Eds.; Segunda Reunión Ibérica Sobre Fallas Activas y Paleosismología: Murcia, Spain, 2014. [Google Scholar]
- Thiem, Ø.; Ravagnan, E.; Fosså, J.H.; Berntsen, J. Food Supply Mechanisms for Cold-Water Corals along a Continental Shelf Edge. J. Mar. Syst. 2006, 60, 207–219. [Google Scholar] [CrossRef]
- Addamo, A.M.; Vertino, A.; Stolarski, J.; García-Jiménez, R.; Taviani, M.; Machordom, A. Merging Scleractinian Genera: The Overwhelming Genetic Similarity between Solitary Desmophyllum and Colonial Lophelia. BMC Evol. Biol. 2016, 16, 108. [Google Scholar] [CrossRef] [Green Version]
- Remia, A.; Taviani, M. Shallow-Buried Pleistocene Madrepora-Dominated Coral Mounds on a Muddy Continental Slope, Tuscan Archipelago, NE Tyrrhenian Sea. Facies 2005, 50, 419–425. [Google Scholar] [CrossRef]
- Taviani, M.; Corselli, C.; Freiwald, A.; Malinverno, E.; Mastrototaro, F.; Remia, A.; Savini, A.; Tursi, A. CORAL Shipboard Staff. Rise, decline and ressurrection of deep-coral banks in the Mediterranean BassIn Results of 2002 Coral Mission in the Ionian Sea. In Cold-Water Corals and Ecosystems; Freiwald, A., Roberts, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Savini, A.; Corselli, C. High-Resolution Bathymetry and Acoustic Geophysical Data from Santa Maria Di Leuca Cold Water Coral Province (Northern Ionian Sea—Apulian Continental Slope). Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 326–344. [Google Scholar] [CrossRef]
- Martorelli, E.; Petroni, G.; Chiocci, F.L. Party, and the P. S. Contourites Offshore Pantelleria Island (Sicily Channel, Mediterranean Sea): Depositional, Erosional and Biogenic Elements. Geo-Mar. Lett. 2011, 31, 481–493. [Google Scholar] [CrossRef]
- Savini, A.; Vertino, A.; Marchese, F.; Beuck, L.; Freiwald, A. Mapping Cold-Water Coral Habitats at Different Scales within the Northern Ionian Sea (Central Mediterranean): An Assessment of Coral Coverage and Associated Vulnerability. PLoS ONE 2014, 9, e87108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeletti, L.; Castellan, G.; Montagna, P.; Remia, A.; Taviani, M. The “Corsica Channel Cold-Water Coral Province” (Mediterranean Sea). Front. Mar. Sci. 2020, 7, 661. [Google Scholar] [CrossRef]
- Foubert, A.; Depreiter, D.; Beck, T.; Maignien, L.; Pannemans, B.; Frank, N.; Blamart, D.; Henriet, J.P. Carbonate mounds in a mud volcano province off northwest Morocco: Key to processes and controls. Mar. Geol. 2008, 248, 74–96. [Google Scholar] [CrossRef]
- Wienberg, C.; Hebbeln, D.; Fink, H.G.; Mienis, F.; Dorschel, B.; Vertino, A.; López Correa, M.; Freiwald, A. Scleractinian Cold-Water Corals in the Gulf of Cádiz—First Clues about Their Spatial and Temporal Distribution. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 1873–1893. [Google Scholar] [CrossRef]
- Palomino, D.; López-González, N.; Vázquez, J.T.; Fernández-Salas, L.M.; Rueda, J.L.; Sánchez-Leal, R.; Díaz-del-Río, V. Multidisciplinary Study of Mud Volcanoes and Diapirs and Their Relationship to Seepages and Bottom Currents in the Gulf of Cádiz Continental Slope (Northeastern Sector). Mar. Geol. 2016, 378, 196–212. [Google Scholar] [CrossRef]
- Vandorpe, T.; Wienberg, C.; Hebbeln, D.; Van den Berghe, M.; Gaide, S.; Wintersteller, P.; Van Rooij, D. Multiple generations of buried cold-water coral mounds since the early-middle Pleistocene transition in the Atlantic Moroccan coral province, southern Gulf of Cadiz. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 485, 293–304. [Google Scholar] [CrossRef]
- McCulloch, M.; Taviani, M.; Montagna, P.; López Correa, M.; Remia, A.; Mortimer, G. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas. Earth. Planet. Sci. Lett. 2010, 298, 143–152. [Google Scholar] [CrossRef]
- Juan, C. The Influence of Bottom Currents on the Sedimentary Evolution of the Alboran Sea during the Pliocene and Quaternary. Ph.D. Thesis, Departament d’Estratigrafia, Paleontologia I Geociències Marines, Universitat de Barcelona, Barcelona, Spain, 2016. Available online: http://hdl.handle.net/10803/400655 (accessed on 25 January 2022).
- Chiocci, F.L.; Ercilla, G.; Torres, J. Stratal Architecture of Western Mediterranean Margins as the Result of the Stacking of Quaternary Lowstand Deposits below “Glacio-Eustatic Fluctuation Base-Level”. Sediment. Geol. 1997, 112, 195–217. [Google Scholar] [CrossRef]
- Lobo, F.J.; Ercilla, G.; Fernández Salas, L.; Gámez, D. Chapter 11 The Iberian Mediterranean Shelves. In Geological Society; Memoirs: London, UK, 2014; Volume 41, pp. 147–170. [Google Scholar] [CrossRef]
- Braga, J.C.; Aguirre, J. Calcareous algae of Cabo de Gata-Nijar Nature Park; Instituto Geológico y Minero de España: Madrid, Spain, 2009; 208p, ISBN 978-84-613-2560-3. [Google Scholar]
- Keegan, B. The macrofauna of maërl substrates of the West coast of Ireland. Cah Biol. Mar. 1974, 15, 513–530. [Google Scholar]
- Hall-Spencer, J.M.; Atkinson, R.J.A. Upogebia Deltaura (Crustacea: Thalassinidea) in Clyde Sea Maerl Beds, Scotland. J. Mar. Biol. Assoc. United Kingdom 1999, 79, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Filho, G.H.; Francini-Filho, R.B.; Pierozzi, I., Jr.; Pinheiro, H.T.; Bastos, A.C.; Moura, R.L.; Moraes, F.C.; Matheus, Z.; Bahia, R.G.; Amado-Filho, G.M. Sponges and fish facilitate succession from rhodolith beds to reefs. Bull. Mar. Sci. 2014, 91, 45–46. [Google Scholar] [CrossRef]
- Amado-Filho, G.M.; Moura, R.L.; Bastos, A.C.; Francini-Filho, R.B.; Pereira-Filho, G.H.; Bahia, R.G.; Moraes, F.C.; Motta, F.S. Mesophotic cosystems of the unique South Atlantic atoll are composed by rhodolith beds and scattered consolidated reefs. Mar. Biodiv. 2016, 46, 407–420. [Google Scholar] [CrossRef]
- Gofas, S.; Luque, A.A.; Salas, C.; Templado, J.; Pola, M.; Urra, J.; Brusa, V.S.; Verdes, A. Moluscos de Los Fondos de Cascajo Profundo de La Isla de Alborán (Proyecto LIFE+ INDEMARES Alborán), 2014. Available online: http://hdl.handle.net/10630/8321 (accessed on 25 January 2022).
- De La Torriente, A.; Aguilar, R.; Serrano, A.; García, S.; Fernández Salas, L.; García Muñoz, M.; Punzón, A.; Arcos, J.; Sagarminaga, R. Sur de Almería Seco de Los Olivos. In Proyecto LIFE+ INDEMARES; del Ministerio de Agricultura, F.B., Medio Ambiente, A.y., Eds.; 2014; 102p, Available online: www.indemares.es (accessed on 25 January 2022).
- Aguirre, J.; Braga, J.C.; Martín, J.M.; Puga-Bernabeu, A.; Pérez-Asensio, J.N.; Sánchez-Almazo, I.M.; Génio, L. An enigmatic kilometer-scale concentration of small mytilids (Late Miocene, Guadalquivir Basin, S Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 436, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Taviani, M.; Bouchet, P.; Metivier, B.; Fontugne, M.; Delibrias, G. Intermediate steps of southwards faunal shifts testified by last glacial submerged thanatocoenoses in the Atlantic ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 86, 331–338. [Google Scholar] [CrossRef]
- Meadows, P.S.; Shand, P. Experimental Analysis of Byssus Thread Production by Mytilus Edulis and Modiolus Modiolus in Sediments. Mar. Biol. 1989, 101, 219–226. [Google Scholar] [CrossRef]
- Seed, R.; Brown, R.A. Growth as a Strategy for Survival in Two Marine Bivalves, Cerastoderma Edule and Modiolus Modiolus. J. Anim. Ecol. 1978, 47, 283. [Google Scholar] [CrossRef]
- Holt, T.J.; Rees, E.I.; Hawkins, S.J.; Seed, R. Biogenic Reefs (Volume IX). An Overview of Dynamic and Sensitivity Characteristics for Conservation Management of Marine SACs; Scottish Association for Marine Science: Oban, UK, 1998; 174p. [Google Scholar]
- Rees, E.I.S.; Sanderson, W.G.; Mackie, A.S.Y.; Holt, R.H.F. Small-Scale Variation within a Modiolus Modiolus (Mollusca: Bivalvia) Reef in the Irish Sea. III. Crevice, Sediment Infauna and Epifauna from Targeted Cores. J. Mar. Biol. Assoc. UK 2008, 88, 151–156. [Google Scholar] [CrossRef]
- Sanderson, W.G.; Holt, R.H.F.; Kay, L.; Ramsay, K.; Perrins, J.; Mcmath, A.J.; Rees, E.I.S. Small-Scale Variation within a Modiolus Modiolus (Mollusca: Bivalvia) Reef in the Irish Sea. II. Epifauna Recorded by Divers and Cameras. J. Mar. Biol. Assoc. UK 2008, 88, 143–149. [Google Scholar] [CrossRef]
- Lindenbaum, C.; Bennell, J.D.; Rees, E.I.S.; Mcclean, D.; Cook, W.; Wheeler, A.J.; Sanderson, W.G. Small-Scale Variation within a Modiolus Modiolus (Mollusca: Bivalvia) Reef in the Irish Sea: I. Seabed Mapping and Reef Morphology. J. Mar. Biol. Assoc. UK 2008, 88, 133–141. [Google Scholar] [CrossRef]
- Van Rooij, D.; De Mol, B.; Huvenne, V.; Ivanov, M.K.; Henriet, J.-P. Seismic evidence of current controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Mar. Geol. 2003, 195, 31–53. [Google Scholar] [CrossRef]
- Huvenne, V.A.I.; Bailey, W.R.; Shannon, P.M.; Naeth, J.; di Primio, R.; Henriet, J.-P.; Horsfield, B.; de Haas, H.; Wheeler, A.J.; Olu-Le Roy, K. The Magellan mound province in the Porcupine Basin. Int. J. Earth Sci. 2007, 96, 85–101. [Google Scholar] [CrossRef] [Green Version]
- van Haren, H. Internal wave–zooplankton interactions in the Alboran Sea (W-Mediterranean). J. Plankton Res. 2014, 36, 1124–1134. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, B.M.; Readman, P.W.; Shannon, P.M.; Jacob, A.W.B. A model for the development of a carbonate mound population in the Rockall Trough based on deep-towed sidescan sonar data. Mar. Geol. 2003, 198, 55–66. [Google Scholar] [CrossRef]
- Huvenne, V.A.I.; De Mol, B.; Henriet, J.-P. A 3D seismic study of the morphology and spatial distribution of buried coral banks in the Porcupine Basin, SW of Ireland. Mar. Geol. 2003, 198, 5–25. [Google Scholar] [CrossRef]
- De Haas, H.; Mienis, F.; Frank, N.; Richter, T.O.; Steinacher, R.; de Stigter, H.; van der Land, C.; van Weering, T.C.E. Morphology and Sedimentology of (Clustered) Cold-Water Coral Mounds at the South Rockall Trough Margins, NE Atlantic Ocean. Facies 2008, 55, 1–26. [Google Scholar] [CrossRef]
- Hernández-Molina, F.J.; Serra, N.; Stow, D.A.V.; Llave, E.; Ercilla, G.; van Rooij, D. Along-Slope Oceanographic Processes and Sedimentary Products around the Iberian Margin. Geo-Mar. Lett. 2011, 31, 315–341. [Google Scholar] [CrossRef] [Green Version]
- Ercilla, G.; Juan, C.; Periáñez, R.; Alonso, B.; Abril, J.M.; Estrada, F.; Casas, D.; Vázquez, J.T.; d’Acremont, E.; Gorini, C.; et al. Influence of Alongslope Processes on Modern Turbidite Systems and Canyons in the Alboran Sea (Southwestern Mediterranean). DSRI 2019, 144, 1–16. [Google Scholar] [CrossRef]
- Glogowski, S.; Dullo, W.-C.; Feldens, P.; Liebetrau, V.; Reumont, J.; Hühnerbach, V.; Krastel, S.; Wynn, R.; Flögel, S. The Eugen Seibold Coral Mounds Offshore Western Morocco: Oceanographic and Bathymetric Boundary Conditions of a Newly Discovered Cold-Water Coral Province. Geo-Mar. Lett. 2015, 35, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Beyer, H.; Schenke, H.W.; Klenke, M.; Niederjasper, F. High resolution bathymetry of the eastern slope of the Porcupine Seabight. Mar. Geol. 2003, 198, 27–54. [Google Scholar] [CrossRef]
- García, M.; Alonso, B.; Ercilla, G.; Gràcia, E. The tributary valley systems of the Almeria Canyon (Alboran Sea, SW Mediterranean): Sedimentary architecture. Mar. Geol. 2006, 226, 207–223. [Google Scholar] [CrossRef]
- Huvenne, V.A.I.; Van Rooij, D.; De Mol, B.; Thierens, M.; O’Donnell, R.; Foubert, A. Sediment Dynamics and Palaeo-Environmental Context at Key Stages in the Challenger Cold-Water Coral Mound Formation: Clues from Sediment Deposits at the Mound Base. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 2263–2280. [Google Scholar] [CrossRef]
Expedition | Mound Field | Dive | Track Length (m) | Water Depth (m) | Start Coordinates | End Coordinates |
---|---|---|---|---|---|---|
POS-385 | Málaga | 02 | 1128 | 243–233 | 36°37.35′ N 04°13.16′ W | 36°37.72′ N 04°12.69′ W |
POS-385 | Málaga | 03 | 1931 | 236–218 | 36°37.48′ N 04°13.10′ W | 36°37.78′ N 04°12.91′ W |
MONCARAL | Alcántara | 01 | 2512 | 309–317 | 36°19.83′ N 04°59.85′ W | 36°20.17′ N 04°59.65′ W |
MONCARAL | Alcántara | 02 | 353 | 291–297 | 36°20.40′ N 04°59.74′ W | 36°20.46′ N 04°59.69′ W |
MONCARAL | Alcántara | 03 | 1452 | 243–253 | 36°21.35′ N 05°01.46′ W | 36°21.56′ N 05°01.46′ W |
MONCARAL | Málaga | 04 | 1307 | 238–261 | 36°37.20′ N 04°12.13′ W | 36°37.34′ N 04°12.01′ W |
MONCARAL | Málaga | 05 | 1895 | 271–276 | 36°36.90′ N 04°11.73′W | 36°37.06′ N 04°11.60′ W |
MONCARAL | Málaga | 06 | 1586 | 225–230 | 36°37.61′ N 04°12.97′ W | 36°37.83′ N 04°12.84′ W |
MONCARAL | Aceitunas | 07 | 1348 | 180 | 36°36.94′ N 02°55.95′ W | 36°37.06′ N 02°56.27′ W |
MONCARAL | Aceitunas | 08 | 1192 | 194–200 | 36°36.18′ N 02°54.28′ W | 36°36.37′ N 02°54.71′ W |
Mound Field | Location | Depth Range (m) | N° of Exposed Mounds | N° of Buried Mounds | Length Range (m) | Width Range (m) | Iri Range | BA (km2) | H Range (m) | Mean Slope (°) |
---|---|---|---|---|---|---|---|---|---|---|
Alcántara | North-western Alboran Sea | 239–297 | 18 | 26 | 131–966 | 84–361 | 1.3–3.1 | 0.82 | 3–14 | 2.5–6 |
Málaga | North-central Alboran Sea | 220–273 | 64 | 58 | 79–831 | 57–313 | 1.03–4.7 | 1.33 | 2–18 | 2.5–16 |
Aceitunas | North-eastern Alboran Sea | 155–401 | 243 | 120 | 6–630 | 5–295 | 1.03–3.5 | 3.08 | 1–15 | 2–20 |
All mound fields | 155–401 | 325 | 204 | 6–966 | 5–361 | 1.03–4.7 | 5.23 | 1–18 | 2–20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Guillamón, O.; Rueda, J.L.; Wienberg, C.; Ercilla, G.; Vázquez, J.T.; Gómez-Ballesteros, M.; Urra, J.; Moya-Urbano, E.; Estrada, F.; Hebbeln, D. Morphosedimentary, Structural and Benthic Characterization of Carbonate Mound Fields on the Upper Continental Slope of the Northern Alboran Sea (Western Mediterranean). Geosciences 2022, 12, 111. https://doi.org/10.3390/geosciences12030111
Sánchez-Guillamón O, Rueda JL, Wienberg C, Ercilla G, Vázquez JT, Gómez-Ballesteros M, Urra J, Moya-Urbano E, Estrada F, Hebbeln D. Morphosedimentary, Structural and Benthic Characterization of Carbonate Mound Fields on the Upper Continental Slope of the Northern Alboran Sea (Western Mediterranean). Geosciences. 2022; 12(3):111. https://doi.org/10.3390/geosciences12030111
Chicago/Turabian StyleSánchez-Guillamón, Olga, Jose L. Rueda, Claudia Wienberg, Gemma Ercilla, Juan Tomás Vázquez, Maria Gómez-Ballesteros, Javier Urra, Elena Moya-Urbano, Ferran Estrada, and Dierk Hebbeln. 2022. "Morphosedimentary, Structural and Benthic Characterization of Carbonate Mound Fields on the Upper Continental Slope of the Northern Alboran Sea (Western Mediterranean)" Geosciences 12, no. 3: 111. https://doi.org/10.3390/geosciences12030111