Molecular Indicators of Sources and Biodegradation of Organic Matter in Sediments of Fluid Discharge Zones of Lake Baikal
Abstract
:1. Introduction
2. Geological Setting of Lake Baikal Sampling Sites
3. Materials and Methods
3.1. Sample Collection and Pretreatment
3.2. Organic-Geochemical Analysis
4. Results and Discussion
4.1. Group Composition of the Extractable Organic Matter
4.2. Geochemical Characteristic of Molecular Markers
4.2.1. N-Alkanes and Isoprenoids
4.2.2. Terpanes and Steranes
4.2.3. Polycyclic Aromatic Hydrocarbons
4.2.4. Dimethylalkanes
4.3. Specificity of OM in Zones of Authigenic Carbonates Formation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuz’min, M.I.; Karabanov, E.B.; Kawai, T.; Williams, D.; Bychinskii, V.A.; Kerber, E.V.; Kravchinskii, V.A.; Bezrukova, E.V.; Prokopenko, A.A.; Geletii, V.F.; et al. Deep drilling on Lake Baikal: Main results. Russ. Geol. Geophys. 2001, 42, 8–34. [Google Scholar]
- Granin, N.G.; Makarov, M.M.; Kucher, K.M.; Gnatovsky, R.Y. Gas seeps in Lake Baikal—Detection, distribution, and implications for water column mixing. Geo-Mar. Lett. 2010, 30, 399–409. [Google Scholar] [CrossRef]
- Khlystov, O.; De Batist, M.; Shoji, H.; Hachikubo, A.; Nishio, S.; Naudts, L.; Poort, J.; Khabuev, A.; Belousov, O.; Manakov, A.; et al. Gas hydrate of Lake Baikal: Discovery and varieties. J. Asian Earth Sci. 2013, 62, 162–166. [Google Scholar] [CrossRef]
- Mats, V.D.; Efimova, I.M. Geologic history of Lake Baikal. Priroda 2017, 3, 13–27. (In Russian) [Google Scholar]
- Garkusha, D.N.; Fedorov, Y.A.; Tambieva, N.S.; Andreev, Y.A.; Mikhaylenko, O.A. Methane in water and bottom sediments of Lake Baikal. Water Resour. 2019, 46, 511–522. [Google Scholar] [CrossRef]
- Klerkx, J.; Zemskaya, T.I.; Matveeva, T.V.; Khlystov, O.M.; Namsaraev, B.B.; Dagurova, O.P.; Golobokova, L.P.; Vorobyova, S.S.; Pogodaeva, T.P.; Granin, N.G.; et al. Methane hydrates in surface layer of deepwater sediments of Lake Baikal. Dokl. Earth Sci. 2003, 393, 822–826. [Google Scholar]
- Kalmychkov, G.V.; Egorov, A.V.; Kuz’min, M.I.; Khlystov, O.M. Genetic types of methane from Lake Baikal. Dokl. Earth Sci 2006, 411, 1462–1465. [Google Scholar] [CrossRef]
- Kontorovich, A.E.; Kashirtsev, V.A.; Moskvin, V.I.; Burshtein, L.M.; Zemskaya, T.I.; Kostyreva, E.A.; Kalmychkov, G.V.; Khlystov, O.M. Petroleum potential of Baikal deposits. Russ. Geol. Geophys. 2007, 48, 1046–1053. [Google Scholar] [CrossRef]
- Krylov, A.A.; Khlystov, O.M.; Zemskaya, T.I.; Minami, H.; Hachikubo, A.; Shoji, H.; Kida, M.; Pogodaeva, T.; Naudts, L.; Poort, J. Crystallization of Authigenic Carbonates in Mud Volcanoes at Lake Baikal. Geochem. Int. 2008, 46, 985–995. [Google Scholar] [CrossRef] [Green Version]
- Tsekhovsky, U.G.; Yapaskurt, O.V. Processes of Cenozoic lithogenesis in the Baikal Rift Zone. Lithol. Mineral. Resour. 2016, 5, 448–464. [Google Scholar]
- Vologina, E.G.; Sturm, M. Types of Holocene deposits and regional pattern of sedimentation in Lake Baikal. Russ. Geol. Geophys. 2009, 50, 722–727. [Google Scholar] [CrossRef]
- Vologina, E.G.; Sturm, M.; Vorobieva, S.S. Modern sedimentation in Lake Baikal. Results of experiments with sedimentation traps. In Proceedings of the XII Ural Lithological Meeting, Ekaterinburg, Russia, 22–26 October 2018; Maslov, A.V., Alexeev, V.P., Mizens, G.A., Talalay, A.G., Sapurin, S.A., Melnichuk, O.Y., Badida, L.V., Eds.; IGG UrO RAN: Ekaterinburg, Russia, 2018; p. 384. (In Russian). [Google Scholar]
- Zemskaya, T.I.; Lomakina, A.V.; Mamaeva, E.V.; Zakharenko, A.S.; Pogodaeva, T.V.; Petrova, D.P.; Galachyants, Y.P. Bacterial communities in sediments of Lake Baikal from areas with oil and gas discharge. Aquat. Microb. Ecol. 2015, 76, 95–109. [Google Scholar] [CrossRef]
- Mats, V.D.; Shcherbakov, D.U.; Efimova, I.M. Late Cretaceous–Cenozoic history of the Lake Baikal depression and formation its unique biodiversity. Stratigr. Geol. Correl. 2011, 19, 404–423. [Google Scholar] [CrossRef]
- Parfenova, V.V.; Gladkikh, A.S.; Belykh, O.I. Comparative analysis of biodiversity in the planktonic and biofilm bacterial communities in Lake Baikal. Microbiology 2013, 82, 91–101. [Google Scholar] [CrossRef]
- Namsaraev, B.B.; Zemskaya, T.I. Microbiological Processes of Carbon Circulation in Lake Baikal Bottom Sediments; SB RAS Publication: Novosibirsk, Russia, 2000. [Google Scholar]
- Pimenov, N.V.; Zakharova, E.E.; Bryukhanov, A.L.; Korneeva, V.A.; Tourova, T.P.; Kuznetsov, B.B.; Pogodaeva, T.V.; Zemskaya, T.I.; Kalmychkov, G.V. Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal. Microbiology 2014, 83, 47–55. [Google Scholar] [CrossRef]
- Zemskaya, T.I.; Sitnikova, T.Y.; Kiyashko, S.I.; Kalmychkov, G.V.; Pogodaeva, T.V.; Mekhanikova, I.V.; Naumova, T.V.; Shubenkova, O.V.; Chernitsina, S.M.; Kotsar, O.V.; et al. Faunal communities at sites of gas- and oil-bearing fluids in Lake Baikal. Geo-Mar. Lett. 2012, 32, 437–451. [Google Scholar] [CrossRef]
- Zemskaya, T.I.; Bukin, S.V.; Lomakina, A.V.; Pavlova, O.N. Microorganisms of bottom sediments of Baikal—The deepest and most ancient lake in the world. Microbiology 2021, 90, 286–303. [Google Scholar] [CrossRef]
- Tissot, B.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer: Berlin/Heidenberg, Germany, 1984. [Google Scholar]
- Philp, R.P. Biological markers in fossil fuel production. Mass Spectrometry Rev. 1985, 4, 1–54. [Google Scholar] [CrossRef]
- Gupta, N.S.; Briggs, D.E.G.; Collinson, M.E.; Evershed, R.P.; Michels, R.; Jack, K.S.; Pancost, R.D. Evidence for the in situ polymerisation of labile aliphatic organic compounds during the preservation of fossil leaves: Implications for organic matter preservation. Org. Geochem. 2007, 38, 499–522. [Google Scholar] [CrossRef]
- Petrova, V.I.; Batova, G.I.; Kursheva, A.V.; Litvinenko, I.V. Geochemistry of organic matter of bottom sediments in the central arctic rises of the Arctic Ocean. Russ. Geol. Geophys. 2010, 51, 88–97. [Google Scholar] [CrossRef]
- Golubev, V.A. Sources of subaquaeous discharge and heat balance of North Baikal. Dokl. Earth Sci. 1993, 328, 315–318. [Google Scholar]
- Granina, L.Z.; Klerkx, J.; Callender, E.; Leermakers, M.; Golobokova, L.P. Bottom sediments and pore waters near a hydrothermal vent in Lake Baikal (Frolikha Bay). Russ. Geol. Geophys. 2007, 48, 237–246. [Google Scholar] [CrossRef]
- Namsaraev, B.B.; Dulov, L.Y.; Dubinina, G.A.; Zemskaya, T.I.; Granina, L.Z.; Karabanov, Y.B. Bacterial synthesis and destruction of organic-matter in microbial mats of Lake Baikal. Microbiology 1994, 63, 193–197. [Google Scholar]
- Kaygorodova, I.A. Deep-water fauna of Oligochaeta (Annelida, Clitellata) near a hydrothermal spring of Frolikha Bay, Northern Baikal (East Siberia, Russia). J. Sib. Fed. Univ. Biol. 2011, 2, 117–132. (In Russian) [Google Scholar]
- Lomakina, A.V.; Mamaeva, E.V.; Galachyants, Y.P.; Petrova, D.P.; Pogodaeva, T.V.; Shubenkova, O.V.; Khabuev, A.V.; Morozov, I.V.; Zemskaya, T.I. Diversity of archaea in bottom sediments of the discharge area. Geomicrobiol. J. 2018, 35, 50–63. [Google Scholar] [CrossRef]
- Radnaeva, L.D.; Bazarsadueva, S.V.; Taraskin, V.V.; Tulokhonov, A.K. First data on lipids and microorganisms of deepwater endemic sponge Baikalospongia intermedia and sediments from hydrothermal discharge area of the Frolikha Bay (North Baikal, Siberia). J. Great Lakes Res. 2020, 46, 67–74. [Google Scholar] [CrossRef]
- Zemskaya, T.I.; Namsaraev, B.B.; Dultseva, N.M.; Khanaeva, T.A.; Golobokova, L.P.; Dubunina, G.A.; Dulov, L.E.; Wada, E. Ecophysiological characteristics of the mat-forming bacterium Thioploca in bottom sediments of the Frolikha Bay, Northern Baikal. Microbiology 2001, 70, 335–341. [Google Scholar] [CrossRef]
- Kostyreva, E.A.; Kashirtsev, V.A.; Moskvin, V.I.; Bukin, S.V.; Khabuev, A.V. Organic matter of bottom sediments from the zone hydrothermal activity (Frolikha Bay, North Baykal). In Proceedings of the International Exhibition and Scientific Congress “Interexpo GEO-Siberia”, Novosibirsk, Russia, 19–21 May 2019; Kontorovich, A.E., Epov, M.I., Eltsov, I.N., Kondratenko, A.S., Smirnov, M.Y., Nevol’ko, A.I., Eds.; SSUGT: Novosibirsk, Russia, 2019; Volume 2, pp. 81–86. [Google Scholar] [CrossRef]
- Khlystov, O.M.; Minami, H.; Hachikubo, A.; Yamashita, S.; De Batist, M.; Nauds, L.; Khabuev, A.V.; Chenskiy, A.G.; Gubin, N.A.; Vorobyeva, S.S. Age of mud breccia from mud volcanoes in Academician Ridge, Lake Baikal. Geodyn. Tectonophys. 2017, 8, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Khlystov, O.M.; Poort, J.; Mazzini, A.; Akhmanov, G.G.; Minami, H.; Hachikubo, A.; Khabuev, A.V.; Kazakov, A.V.; De Batist, M.; Naudts, L.; et al. Shallow-rooted mud volcanism in Lake Baikal. Mar. Pet. Geol. 2019, 102, 580–589. [Google Scholar] [CrossRef]
- Belykh, O.I.; Ekaterina, G.; Sorokovikova, T.; Saphonova, A.; Tikhonova, I.V. Autotrophic picoplankton of Lake Baikal: Composition, abundance and structure. Hydrobiologia 2006, 568, 9–17. [Google Scholar] [CrossRef]
- Vologina, E.G.; Sturm, M. Particulate fluxes in South Baikal: Evidence from sediment trap experiments. Russ. Geol. Geophys. 2017, 58, 1045–1052. [Google Scholar] [CrossRef]
- Khanaeva, T.A.; Zemskaya, T.I.; Bel’kova, N.L.; Khlystov, O.M.; Namsaraev, B.B. Diversity of laboratory-reared prokaryotes in bottom sediments of the Academichesky Ridge, Lake Baikal. Inland Water Biol. 2010, 3, 38–43. [Google Scholar] [CrossRef]
- Kontorovich, A.E.; Drobot, D.I.; Presnova, R.N. Geochemistry of naphthides and problem of Baikal oil genesis. Sov. Geol. 1989, 2, 21–29. (In Russian) [Google Scholar]
- Delengov, M.T.; Fadeeva, N.P.; Akhmanov, G.G.; Khlystov, O.M. Naphthides of the bottom silts of Lake Baikal of the focused discharge zone of hydrocarbons on the traverse of cape Gorevoy Utes. In Proceedings of the VIII International Conference “Marine Research and Education”, Moscow, Russia, 28–31 October 2019; Volume 2. [Google Scholar]
- Kashirtsev, V.A.; Kontorovich, A.E.; Moskvin, V.I.; Danilova, V.P.; Melenevsky, V.N. Terpanes from oil shows of Lake Baikal. Pet. Chem. 2006, 46, 217–224. [Google Scholar] [CrossRef]
- Khlystov, O.M.; Gorshkov, A.G.; Zemskaya, T.I.; Granin, N.G.; Vorob’eva, S.S.; Pavlova, O.N.; Yakup, M.A.; Makarov, M.M.; Grachev, M.A.; Egorov, A.V.; et al. Oil in the lake of world heritage. Dokl. Earth Sci. 2007, 415, 682–685. [Google Scholar] [CrossRef]
- Zakharenko, A.S.; Galachyants, Y.P.; Morozov, I.V.; Shubenkova, O.V.; Morozov, A.A.; Ivanov, V.G.; Pimenov, N.V.; Krasnopeev, A.Y.; Zemskaya, T.I. Bacterial Communities in Areas of Oil and Methane Seeps in Pelagic of Lake Baikal. Microb. Ecol. 2019, 78, 269–285. [Google Scholar] [CrossRef]
- Gorshkov, A.; Pavlova, O.; Khlystov, O.; Zemskaya, T. Fractioning of petroleum hydrocarbons from seeped oil as a factor of purity preservation of water in Lake Baikal (Russia). J. Great Lakes Res. 2020, 46, 115–122. [Google Scholar] [CrossRef]
- Kashik, S.A.; Isaev, V.P. Generation and emission of methane from bottom sediments of Lake Baikal. Dokl. Earth Sci. 2008, 423, 393–396. [Google Scholar] [CrossRef]
- Khlystov, O.M.; Zemskaya, T.I.; Sitnikova, T.Y.; Mekhanikova, I.V.; Kaigorodova, I.A.; Gorshkov, A.G.; Timoshkin, O.A.; Shubenkova, O.V.; Chernitsina, S.M.; Lomakina, A.V.; et al. Bottom bituminous constructions and biota inhabiting them according to investigation of Lake Baikal with the mir submersible. Dokl. Earth Sci. 2009, 415, 682–685. [Google Scholar] [CrossRef]
- Pavlova, O.N.; Lomakina, A.V.; Gorshkov, A.G.; Suslova, M.Y.; Likhoshvai, A.V.; Zemskaya, T.I. Microbial communities and their ability to oxidize n-alkanes in the area of release of gas- and oil-containing fluids in Mid-Baikal (Cape Gorevoi Utes). Biol. Bull. 2012, 39, 458–463. [Google Scholar] [CrossRef]
- Minami, H.; Hachikubo, A.; Sakagami, H.; Yamashita, S.; Soramoto, Y.; Kotake, T.; Takahash, N.; Shoji, H.; Pogodaeva, T.; Khlystov, O.; et al. Sequentially sampled gas hydrate water, coupled with pore water and bottom water isotopic and ionic signatures at the Kukuy mud volcano, Lake Baikal: Ambiguous deep-rooted source of hydrate-forming water. Geo-Mar. Lett. 2014, 34, 241–251. [Google Scholar] [CrossRef]
- Khlystov, O.M.; Khabuev, A.V.; Minami, H.; Hachikubo, A.; Krylov, A.A. Gas hydrates in Lake Baikal. Limnol. Freshw. Biol. 2018, 1, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Zemskaya, T.I.; Pogodaeva, T.V.; Shubenkova, O.V.; Kalmychkov, G.V.; Pogodaeva, T.V.; Mekhanikova, I.V.; Naumova, T.V.; Shubenkova, O.V.; Chernitsina, S.M.; Kotsar, O.V.; et al. Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME–2 and ANME–3. Geo-Mar. Lett. 2010, 30, 411–425. [Google Scholar] [CrossRef]
- Lomakina, A.V.; Bukin, S.V.; Pogodaeva, T.V.; Ivanov, V.G.; Khalzov, I.A.; Krylov, A.A.; Zemskaya, T.I. Anaerobic oxidation of methane in differences types of geological structures at Lake Baikal. Limnol. Freshw. Biol. 2020, 4, 1000–1003. [Google Scholar] [CrossRef]
- Lomakina, A.; Pogodaeva, T.; Kalmychkov, G.; Chernitsyna, S.; Zemskaya, T. Diversity of NC10 bacteria and ANME-2d archaea in sediments of fault zones at Lake Baikal. Diversity 2020, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Minami, H.; Hachikubo, A.; Yamashita, S.; Sakagami, H.; Kasashima, R.; Konishi, M.; Shoji, H.; Takahashi, N.; Pogodaeva, T.; Krylov, A.; et al. Hydrogen and oxygen isotopic anomalies in pore waters suggesting clay mineral dehydration at gas hydrate bearing Kedr mud volcano, southern Lake Baikal Russia. Geo-Mar. Lett. 2018, 38, 403–415. [Google Scholar] [CrossRef]
- Hachikubo, A.; Minami, H.; Yamashita, S.; Khabuev, A.; Krylov, A.; Kalmychkov, G.; Poort, J.; De Batist, M.; Chenskiy, A.; Manakov, A.; et al. Characteristics of hydrate-bound gas retrieved at the Kedr mud volcano (southern Lake Baikal). Nature Research. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Luzhetsky, V.G. Gas hydrates in the region of Posolskaya Bank of Lake Baikal. In Proceedings of the International Scientific Congress “Interexpo GEO-Siberia”, Novosibirsk, Russia, 22–24 April 2008; SSUGT: Novosibirsk, Russia, 2008; Volume 5, pp. 1–6. (In Russian). [Google Scholar]
- Bukin, S.V.; Pavlova, O.N.; Manakov, A.Y.; Kostyreva, E.A.; Chernitsyna, S.M.; Mamaeva, E.V.; Pogodaeva, T.V.; Zemskaya, T.I. The ability of microbial community of Lake Baikal bottom sediments associated with gas discharge to carry out the transformation of organic matter under thermobaric conditions. Front. Microbiol. 2016, 7, 1–12. [Google Scholar] [CrossRef]
- Chernitsyna, S.M.; Mamaeva, E.V.; Lomakina, A.V.; Pogodaeva, T.V.; Galach’yants, Y.P.; Bukin, S.V.; Khlystov, O.M.; Zemskaya, T.I.; Pimenov, N.V. Phylogenetic Diversity of Microbial Communities of the Posolsk Bank Bottom Sediments, Lake Baikal. Microbiology 2016, 85, 672–680. [Google Scholar] [CrossRef]
- Dagurova, O.P.; Namsaraev, B.B.; Kozyreva, L.P.; Zemskaya, T.I.; Dulov, L.E. Bacterial processes of the methane cycle in bottom sediments of Lake Baikal. Microbiology 2004, 73, 202–210. [Google Scholar] [CrossRef]
- Morgunova, I.P.; Petrova, V.I.; Litvinenko, I.V.; Kursheva, A.V.; Batova, G.I.; Renaud, P.E.; Granovitch, A.I. Hydrocarbon molecular markers in the Holocene bottom sediments of the Barents Sea as indicators of natural and anthropogenic impacts. Mar. Pollut. Bull. 2019, 149, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Morgunova, I.P.; Kursheva, A.V.; Petrova, V.I.; Litvinenko, I.V.; Batova, G.I.; Renaud, P.E.; Maltseva, A.L.; Granovitch, A.I. Natural and anthropogenic organic matter inputs to intertidal deposits of the urbanized Arctic region: A multi-proxy approach. Mar. Chem. 2021, 234, 1–15. [Google Scholar] [CrossRef]
- Huang, X.Y.; Jiao, D.; Lu, L.Q.; Xie, S.C.; Huang, J.H.; Wang, Y.B.; Yin, H.F.; Wang, H.M.; Zhang, K.X.; Lai, X.L. The fluctuating environment associated with the episodic biotic crisis during the Permo/Triassic transition: Evidence from microbial biomarkers in Changxing, Zhejiang Province. Sci. China Ser. D Earth Sci. 2007, 50, 1052–1059. [Google Scholar] [CrossRef]
- Meredith, W.; Snape, C.E.; Carr, A.D.; Nytoft, H.P.; Love, G.D. The occurrence of unusual hopenes in hydropyrolysates generated from severely biodegraded oil seep asphaltenes. Org. Geochem. 2008, 39, 1243–1248. [Google Scholar] [CrossRef]
- Parfenova, T.M.; Pushkarev, M.S.; Ivanova, E.N. Hopanes and hopenes of the Lower Cambrian Synyaya formation (northern slope of the Aldan Anteclise). Dokl. Earth Sci. 2010, 430, 129–133. [Google Scholar] [CrossRef]
- Xu, H.; George, S.C.; Houa, D. Algal-derived polycyclic aromatic hydrocarbons in Paleogene lacustrine sediments from the Dongying Depression, Bohai Bay Basin, China. Mar. Pet. Geol. 2019, 102, 402–425. [Google Scholar] [CrossRef]
- Kashirtsev, V.A.; Dzyuba, O.S.; Nikitenko, B.L.; Kostyreva, E.A.; Ivanova, I.K.; Shevchenko, N.P. Geochemistry of high-molecular weight dimethylalkanes. Russ. Geol. Geophys. 2021, 62, 866–877. [Google Scholar] [CrossRef]
- Edgington, D.; Klump, J.; Robbins, J.; Kusner, Y.S.; Pampura, V.D.; Sandimirov, I.V. Sedimentation rates, residence times and radionuclide inventories in Lake Baikal from 137Cs and 210Pb in sediment cores. Nature 1991, 350, 601–604. [Google Scholar] [CrossRef]
- Gar’kusha, D.N.; Fedorov, Y.A.; Andreev, Y.A.; Tambieva, N.S.; Mikhailenko, O.A. Methane and sulfide sulfur in the bottom sediments of Lake Baikal. Geokhimia 2019, 64, 427–439. [Google Scholar] [CrossRef]
- Ferronsky, V.I.; Polyakov, V.A.; Kuprin, P.N.; Vlasova, L.S. Hydrotroilite as a bioindicator of paleohydrological and paleoclimatic processes in the Caspian basin. Water Resour. 2014, 41, 473–487. [Google Scholar] [CrossRef]
- Fedorov, Y.A.; Gar’kusha, D.N.; Tambieva, N.S.; Andreev, Y.A.; Mikhailenko, O.A. Influence of the grain size composition of bottom sediments in Lake Baikal on the distribution of methane and sulfide sulfur. Lithol. Mineral. Resour. 2019, 54, 53–65. [Google Scholar] [CrossRef]
- Garankina, V.P.; Dambaev, V.B.; Buryukhaev, S.P. Isotope composition of carbon of organic matter of bottom sediments of Lake Baikal. Bull. Buryat State Univ. 2009, 3, 14–17. (In Russian) [Google Scholar]
- Bordovskiy, O.K. Accumulation of organic matter in bottom sediments. Mar. Geol. 1965, 3, 3–82. [Google Scholar] [CrossRef]
- Romankevich, E.A. Geochemistry of Organic Matter in the Ocean; Springer: Berlin/Heidelberg, Germany, 1984; p. 334. [Google Scholar] [CrossRef]
- Geodekyan, A.A.; Ulmishek, G.F.; Tcherova, T.G.; Avilov, V.I.; Bokovoy, A.P.; Verkhovskaya, Z.I.; Fedorova, M.S. Bituminological studies of the samples from site 379 and laboratory simulation of dispersed organic matter transformation. Deep Sea Drill. Proj. Initial Rep. 1978, 42 Pt 2. [Google Scholar] [CrossRef]
- Bazhenova, O.K.; Burlin, U.K.; Sokolov, B.A.; Hain, V.E. Geology and Geochemistry of Oil and Gas, 2nd ed.; Moscow University Publishing House, Publishing Center “Akademia”: Moskow, Russia, 2004; p. 417. (In Russian) [Google Scholar]
- Ficken, K.J.; Li, B.; Swain, D.L.; Eglinton, G. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 2000, 31, 745–749. [Google Scholar] [CrossRef]
- Vogts, A.; Moossen, H.; Rommerskirchen, F.; Rullkötter, J. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org. Geochem. 2009, 40, 1037–1054. [Google Scholar] [CrossRef]
- Seki, O.; Harada, N.; Sato, M.; Kawamura, K.; Ijiri, A.; Nakatsuka, T. Assessment for paleoclimatic utility of terrestrial biomarker records in the Okhotsk Sea sediments. Deep-Sea Res. II 2012, 61–64, 85–92. [Google Scholar] [CrossRef]
- Dembicki, H.; Meinschein, W.G.; Hattin, D.E. Possible ecological and environmental significance of the predominance of even-carbon number C20-C30 n-alkanes. Geochim. Cosmochim. Acta 1976, 40, 203–208. [Google Scholar] [CrossRef]
- Grimalt, J.; Albaiges, J. Predominance of even carbon-numbered n-alkanes in coal seam samples of Nograd Basin (Hungary). Naturwissenschaften 1986, 73, 729–731. [Google Scholar] [CrossRef]
- Nishimura, M.; Baker, E.W. Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments. Geochim. Cosmochim. Acta 1986, 50, 299–305. [Google Scholar] [CrossRef]
- Lein, A.Y.; Makkaveev, P.N.; Savvichev, A.S.; Kravchishina, M.D.; Belyaev, N.A.; Dara, O.M.; Ponyaev, M.S.; Zaharova, E.E.; Rozanov, A.G.; Ivanov, M.V.; et al. The processes of particulate matter transformation from water column to sediment in the Kara Sea. Oceanology 2013, 53, 570–606. [Google Scholar] [CrossRef]
- Bourbonniere, R.A.; Meyers, P.A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr. 1996, 41, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; Volume 2. [Google Scholar] [CrossRef]
- Bouloubassi, I.; Saliot, A. Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanol. Acta 1993, 16, 145–161. [Google Scholar]
- Ganeeva, Y.M.; Yusupova, T.N.; Romanov, G.V. Waxes in asphaltenes of crude oils and wax deposits. Pet. Sci. 2016, 13, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, O.N.; Izosimova, O.N.; Gorshkov, A.G.; Novikova, A.S.; Bukin, S.V.; Ivanov, V.G.; Khlystov, O.M.; Zemskaya, T.I. Current state of deep oil seepage near cape Gorevoy Utes (Central Baikal). Russ. Geol. Geophys. 2020, 61, 1007–1014. [Google Scholar] [CrossRef]
- Pavlova, O.N.; Izosimova, O.N.; Chernitsyna, S.M.; Ivanov, V.G.; Pogodaeva, T.V.; Khabuev, A.V.; Gorshkov, A.G.; Zemskaya, T.I. Anaerobic oxidation of petroleum hydrocarbons in enrichment cultures from sediments of the Gorevoy Utes natural oil seep under methanogenic and sulfate-reducing conditions. Microb. Ecol. 2021. [Google Scholar] [CrossRef]
- Petrov, A.A. Petroleum Hydrocarbons; Nauka: Moscow, Russia, 1984; p. 263. (In Russian) [Google Scholar]
- Ćmiel, S.R.; Fabiańska, M.J. Geochemical and petrographic properties of some Spitsbergen coals and dispersed organic matter. Int. J. Coal Geol. 2004, 57, 77–97. [Google Scholar] [CrossRef]
- Van Koeverden, J.H.; Karlsen, D.A.; Schwark, L.; Chpitsglouz, A.; Backer-Owe, K. Oil-prone Lower Carboniferous coals in the Norwegian Barents Sea: Implications for a Palaeozoic petroleum system. J. Pet. Geol. 2010, 33, 155–182. [Google Scholar] [CrossRef]
- Shanmugam, G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. Am. Assoc. Pet. Geol Bull. 1985, 69, 1241–1254. [Google Scholar] [CrossRef]
- Pavlova, O.N.; Zemskaya, T.I.; Lomakina, A.V.; Shubenkova, O.V.; Manakov, A.Y.; Moskvin, V.I.; Morozov, I.V.; Bukin, S.V.; Khlystov, O.M. Transformation of organic matter by microbial community in sediments of Lake Baikal under experimental thermobaric conditions of protocatagenesis. Geomicrobiol. J. 2016, 33, 599–606. [Google Scholar] [CrossRef]
- Samuel, O.J.; Kildahl-Andersen, G.; Nytoft, H.P.; Johansen, J.E.; Jones, M. Novel tricyclic and tetracyclic terpanes in tertiary deltaic oils: Structural identification, origin and application to petroleum correlation. Org. Geochem. 2010, 41, 1326–1337. [Google Scholar] [CrossRef]
- Ageta, H.; Shiojima, K.; Arai, Y. Acid-induced rearrangement of triterpenoid hydrocarbons belonging to the hopane and migrated hopane series. Chem. Pharm. Bull. 1987, 35, 2705–2716. [Google Scholar] [CrossRef] [Green Version]
- Damste, J.S.S.; Schouten, S.; Volkman, J.K. C27–C30 neohop-13(18)-enes and their saturated and aromatic derivatives in sediments: Indicators for diagenesis and water column stratification. Geochim. Cosmochim. Acta 2014, 133, 402–421. [Google Scholar] [CrossRef] [Green Version]
- Ando, T.; Sawada, K.; Nakamura, H.; Omatsu, K.; Takashima, R.; Nishi, H. Depositional environments and maturity evaluated by biomarker analyses of sediments deposited across the Cenomanian–Turonian boundary in the Yezo Group, Tomamae area, Hokkaido, Japan. Isl. Arc 2017, 26, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Damsté, J.S.S.; Van Duin, A.C.T.; Hollander, D.; Kohnen, M.E.L.; De Leeuw, J.W. Early diagenesis of bacteriohopanepolyol derivatives: Formation of fossil homohopanoids. Geochim. Cosmochim. Acta 1995, 59, 5141–5157. [Google Scholar] [CrossRef]
- Summons, R.E.; Jahnke, L.L.; Hope, J.M.; Logan, G.A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 1999, 400, 554–557. [Google Scholar] [CrossRef]
- Farrimond, P.; Talbot, H.M.; Watson, D.F.; Schulz, L.K.; Wilhelms, A. Methylhopanoids: Molecular indicators of ancient bacteria and a petroleum correlation tool. Geochim. Cosmochim. Acta 2004, 68, 3873–3882. [Google Scholar] [CrossRef]
- Aguiar, A.; Aguiar, H.G.M.; Azevedo, D.A.; Neto, F.R.A. Identification of methylhopane and methylmoretane series in Ceara Basin oils, Brazil, using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Energy Fuels 2011, 25, 1060–1065. [Google Scholar] [CrossRef]
- Damsté, J.S.S.; Kenig, F.; Koopmans, M.P.; Köster, J.; Schouten, S.; Hayes, J.M.; Leeuw, J.W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 1995, 59, 1895–1900. [Google Scholar] [CrossRef] [Green Version]
- Takishita, K.; Chikaraishi, Y.; Leger, M.M.; Kim, E.; Yabuki, A.; Ohkouchi, N.; Roger, A.J. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen. Biol. Direct 2012, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Santos Neto, E.V.; Hayes, J.M.; Takaki, T. Isotopic biogeochemistry of the Neocomian lacustrine and Upper Aptian marine-evaporitic sediments of the Potiguar Basin, Northeastern Brazil. Org. Geochem. 1998, 28, 361–381. [Google Scholar] [CrossRef]
- Morgunova, I.P.; Semenov, P.B.; Krylov, A.A.; Kursheva, A.V.; Litvinenko, I.V.; Malyshev, S.A.; Minami, H.; Hachikubo, A.; Zemskaya, T.I.; Khlystov, O.M. Hydrocarbon molecular markers in bottom sediments of fluid discharge zones of Lake Baikal. Neftegazov. Geologia. Teor. Pract. 2018, 13, 1–25. (In Russian) [Google Scholar] [CrossRef]
- Pancost, R.D.; Damsté, J.S.S.; de Lint, S.; van der Maarel, M.J.; Gottschal, J.C. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. The Medinaut Shipboard Scientific Party. Appl. Environ. Microbiol. 2000, 66, 1126–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoneit, B.R.T.; Grimalt, J.O.; Wang, T.G.; Cox, R.E.; Hatcher, P.G.; Nissenbaum, A. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Org. Geochem. 1986, 10, 877–889. [Google Scholar] [CrossRef]
- Jiang, C.; Alexander, R.; Kagi, R.I.; Murray, A.P. Origin of perylene in ancient sediments and its geological significance. Org. Geochem. 2000, 31, 1545–1559. [Google Scholar] [CrossRef]
- Marynowski, L.; Smolarek, J.; Bechtel, A.; Philippe, M.; Kurkiewicz, S.; Simoneit, B.R.T. Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi. Org. Geochem. 2013, 59, 143–151. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Canuel, E.A. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation. Environ. Sci. Pollut. Res. 2016, 23, 10426–10442. [Google Scholar] [CrossRef]
- Hanson, J.R. The aromatisation of terpenes and steroids by dehydrogenation. J. Chem. Res. 2015, 39, 127–133. [Google Scholar] [CrossRef]
- Douglas, A.G.; Mair, B.J. Sulfur: Role in Genesis of Petroleum. Science 1965, 147, 499–501. [Google Scholar] [CrossRef]
- Hossain, H.M.Z.; Sampei, Y.; Hossain, Q.H.; Roser, B.P.; Sultan-Ul-Islam, M.D. Characterization of alkyl phenanthrene distributions in Permian Gondwana coals and coaly shales from the Barapukuria Basin, NW Bangladesh. Res. Org. Geochem. 2013, 29, 17–28. [Google Scholar] [CrossRef]
- Pavlova, O.N.; Bukin, S.V.; Kostyreva, E.; Moskvin, V.I.; Manakov, A.Y.; Morozov, I.V.; Galachyants, Y.P.; Khabuev, A.V.; Zemskaya, T.I. Experimental transformation of organic matter by the microbial community from the bottom sediments of Akademichesky Ridge (Lake Baikal). Russ. Geol Geophys. 2019, 60, 926–937. [Google Scholar] [CrossRef]
- Popovskaya, G.I. Ecological monitoring of phytoplankton in Lake Baikal. Aquat. Ecosyst. Health Manag. 2000, 3, 215–225. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, D.; Liao, Z. High concentration retene and methylretene in Silurian carbonate of Michigan Basin. Chin. Sci. Bull. 1999, 44, 2083–2086. [Google Scholar] [CrossRef]
- Romero-Sarmiento, M.-F.; Riboulleau, A.; Vecoli, M.; Versteegh, G. Occurrence of retene in upper Silurian–lower Devonian sediments from North Africa: Origin and implications. Org. Geochem 2010, 41, 302–306. [Google Scholar] [CrossRef]
- Ciobanu, M.-C.; Burgaud, G.; Dufresne, A.; Breuker, A.; Rédou, V.; Maamar, S.B.; Gaboyer, F.; Vandenabeele-Trambouze, O.; Lipp, J.S.; Schippers, A.; et al. Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J. 2014, 8, 1370–1380. [Google Scholar] [CrossRef]
- Gorshkov, A.G.; Izosimova, O.N.; Kustova, O.V.; Marinaite, I.I.; Galachyants, Y.P.; Sinyukovich, V.N.; Khodzher, T.V. Wildfires as a Source of PAHs in Surface Waters of Background Areas (Lake Baikal, Russia). Water 2021, 13, 2636. [Google Scholar] [CrossRef]
- Kashirtsev, V.A.; Sovetov, Y.K.; Kostyreva, E.A.; Melenevskii, V.M.; Kuchkina, A.Y. New homologous series of biomarker molecules from Vendian deposits of the Sayan-adjacent Biryusa area. Russ. Geol. Geophys. 2009, 50, 541–545. [Google Scholar] [CrossRef]
- Kashirtsev, V.A.; Dolzhenko, K.V.; Fomin, A.N.; Kontorovich, A.E.; Shevchenko, N.P. Hydrocarbon composition of bitumen from deeply buried terrestrial organic matter (zone of apocatagenesis). Russ. Geol. Geophys. 2017, 5, 702–710. [Google Scholar] [CrossRef]
- Schouten, S.; Hopmans, E.C.; Pancost, R.D.; Damsté, J.S.S. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc. Natl. Acad. Sci. USA 2000, 97, 14421–14426. [Google Scholar] [CrossRef] [Green Version]
- Krylov, A.; Khlystov, O.; Zemskaya, T.; Minami, H.; Hachikubo, A.; Nunokawa, Y.; Kida, M.; Shoji, H.; Naudts, L.; Poort, J.; et al. First discovery and formation process of authigenic siderite from gas hydrate–bearing mud volcanoes in fresh water: Lake Baikal, eastern Siberia. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Krylov, A.A.; Khlystov, O.M.; Hachikubo, A.; Minami, H.; Nunokawa, Y.; Shoji, H.; Zemskaya, T.I.; Naudts, L.; Pogodaeva, T.V.; Kida, M.; et al. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: Implications for methane and carbonate origin. Geo-Mar. Lett. 2010, 30, 427–437. [Google Scholar] [CrossRef]
- Braids, O.C.; Miller, R.H. Fats, waxes, and resins in soil. In Soil Components; Gieseking, J., Ed.; Springer: New York, NY, USA, 1975; Volume 1, pp. 343–368. [Google Scholar] [CrossRef]
- Wu, Q.; Schleuss, U.; Blume, H.-P. Investigation on soil lipid extraction with different organic solvents. J. Plant. Nutr. Soil Sci. 1995, 158, 347–350. [Google Scholar] [CrossRef]
- Fuchsman, C.H. Peat, Industrial Chemistry and Technology; Academic Press: New York, NY, USA, 1980; p. 279. [Google Scholar]
- Petrova, V.I.; Batova, G.I.; Kursheva, A.V.; Litvinenko, I.V.; Morgunova, I.P. Molecular geochemistry of organic matter of Triassic rocks in the northeastern part of the Barents Sea: The influence of tectonic and magmatic processes. Russ. Geol. Geophys. 2017, 58, 322–331. [Google Scholar] [CrossRef]
- Bukin, S.V.; Pavlova, O.N.; Kalmychkov, G.V.; Ivanov, V.G.; Pogodaeva, T.V.; Galach’yants, Y.P.; Bukin, Y.S.; Khabuev, A.V.; Zemskaya, T.I. Substrate specificity of methanogenic communities from Lake Baikal bottom sediments associated with hydrocarbon gas discharge. Microbiology 2018, 87, 549–558. [Google Scholar] [CrossRef]
- Conrad, R.; Claus, P.; Casper, P. Stable isotope fractionation during the methanogenic degradation of organic matter in the sediment of an acidic bog lake, Lake Grosse Fuchskuhle. Limnol. Oceanogr. 2010, 55, 1932–1942. [Google Scholar] [CrossRef]
- Liu, Y.; Conrad, R.; Yao, T.; Gleixner, G.; Claus, P. Change of methane production pathway with sediment depth in a lake on the Tibetan plateau. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 474, 279–286. [Google Scholar] [CrossRef]
- Namsaraev, B.B.; Dulov, L.E.; Sokolova, E.N.; Zemskaya, T.I. Bacterial methane production in Lake Baikal bottom sediments. Mikrobiologiya 1995, 64, 411–417. [Google Scholar]
Core # | Sampling Intervals, cm | Coordinates | Lithological Description | Content in Sediment, % | Content in OM, % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | W | CaCO3 | TOC | OM | EOM1 | EOM2 | HA | ROM | |||
Northern Baikal | |||||||||||
Frolikha Bay (low-temperature hydrothermal seep) | |||||||||||
1 | n = 2: 0–10; 25–35 | 55.52 | 109.78 | Diatomaceous silt with hydrotroilite; -//- | 0.00–0.00 0.00 | 0.6–0.9 0.7 | 1.1–1.6 1.3 | 2.3–2.6 2.5 | − | − | − |
2 | n = 2: 5–15; 137–147 | 55.52 | 109.76 | -//-; Turbidite with sand layers | 0.00–0.33 0.17 | 1.5–2.0 1.8 | 2.8–3.6 3.2 | 1.5–2.5 2.0 | − | − | − |
Background area near the Barguzinsky Nature Reserve | |||||||||||
3 | n = 3: 5–15; 62–72; 110–120 | 54.46 | 109.06 | Oxidized layer, silt with hydrotroilite; silt with sand | 0.00–0.33 0.17 | 0.5–1.5 1.0 | 0.9–2.7 1.8 | 1.3–1.8 1.6 | − | − | − |
Central Baikal | |||||||||||
Background area near the Ushkany Islands (Fe-Mn crusts) | |||||||||||
4 | n = 3: 0–3; 3–16; 16–27 | 53.88 | 108.61 | Diatomaceous silt; -//-; Oxidized clay layer with hydrotroilite | 0.08–0.33 0.22 | 0.2–1.2 0.8 | 0.3–2.2 1.5 | 0.3–1.9 1.0 | 1.2–3.3 2.2 | 0.0–22.0 10.1 | 75.2–94.8 86.7 |
Academician Ridge, mud volcano | |||||||||||
5 | n = 3: 10–20; 40–50; 120–130 | 53.50 | 108.00 | Mud volcanic breccia; -//-; -//- | 0.00–0.17 0.08 | 0.8–0.9 0.9 | 1.5–1.7 1.6 | 1.1–1.2 1.1 | 1.4–3.4 2.4 | 4.6–11.0 8.6 | 84.4–92.0 87.9 |
Academician Ridge, background area | |||||||||||
6 | n = 2: 5–15; 95–105 | 53.50 | 108.07 | Diatomaceous silty-clay with hydrotroilite; -//- | 0.00–0.67 0.33 | 1.3–2.0 1.7 | 2.4–3.7 3.0 | 1.1–1.3 1.2 | − | − | − |
Gorevoy Utes, oil seepage | |||||||||||
7 | n = 2: 10–20; 100–120 | 53.30 | 108.40 | Diatomaceous silt with oil; Grey clay with oil | 0.08–0.42 0.25 | 1.2–3.8 2.5 | 2.3–6.9 4.6 | 17.0–41.3 29.2 | 3.9–7.1 5.5 | 2.2–20.8 11.5 | 49.4–58.3 53.8 |
8 | n = 6: 0–15; 50–60; 60–70; 100–110; 190–200; 300–310 | 53.30 | 108.39 | Diatomaceous silt with oil; Diatomaceous silt; -//-; -//-; Clay with hydrotroilite; -//- | 0.08–0.33 0.17 | 1.0–4.8 2.5 | 1.8–8.7 4.5 | 1.4–47.9 12.1 | 1.9–5.9 4.0 | 1.0–20.2 11.4 | 38.4–90.0 72.5 |
Kitami, mud volcano | |||||||||||
9 | n = 2: 0–10; 110–120 | 53.00 | 107.90 | Silty clay; Silty clay with GH | 0.17–0.17 0.17 | 0.8–0.9 0.9 | 1.5–1.7 1.6 | 1.1–2.9 2.0 | 1.6–2.8 2.2 | 6.2–60.4 33.3 | 36.9–88.1 62.5 |
Cape Tolsty, oil seepage | |||||||||||
10 | n = 2: 10–20; 50–65 | 52.60 | 107.40 | Diatomaceous silt with oil; Grey clay | 0.00–0.08 0.04 | 1.6–3.1 2.4 | 3.0–5.7 4.3 | 0.6–1.6 1.1 | 0.8–2.1 1.5 | 15.9–27.8 21.9 | 68.5–82.6 75.6 |
Kukuy, mud volcano, gas hydrates | |||||||||||
11 | n = 3: 0–15; 30–40; 86–96 | 52.59 | 106.73 | Diatomaceous silt with breccia; Clay with carbonates; Clay with GH | 0.08–0.58 0.28 | 1.0–1.3 1.2 | 1.9–2.4 2.2 | 1.4–2.2 1.7 | 1.6–4.3 2.7 | 3.8–7.4 11.0 | 76.9–92.5 84.5 |
Southern Baikal | |||||||||||
Posolsky canyon-1, hydrate hill | |||||||||||
12 | n = 5: 5–15; 20–30; 86–96; 100–110; 193–203 | 52.00 | 106.00 | Diatomaceous silt with hydrotroilite; -//-; -//-; -//-; Silty clay | 0.00–0.50 0.22 | 1.0–2.7 1.7 | 1.8–4.9 3.0 | 0.9–1.6 1.2 | 1.8–2.4 2.1 | 4.9–22.4 11.9 | 74.2–92.1 84.8 |
Malenky, mud volcano | |||||||||||
13 | n = 3: 0–15; 40–50; 80–90 | 51.92 | 105.63 | Diatomaceous silt with breccia; -//-; Clay with pebbles | 0.08–0.08 0.08 | 0.8–1.0 0.9 | 1.4–1.9 1.6 | 1.0–2.1 1.6 | 2.6–4.4 3.7 | 4.7–28.9 17.1 | 67.5–86.9 77.7 |
Kedr, mud volcano, gas hydrates | |||||||||||
14 | n = 3: 10–20; 75–85; 120–135 | 51.60 | 104.90 | Diatomaceous silt; Gas- and water enriched clay; -//- with carbonates | 0.08–0.33 0.19 | 0.7–1.6 1.1 | 1.3–2.8 2.0 | 0.8–1.3 1.1 | 1.4–1.8 1.6 | 0.8–8.8 5.9 | 88.6–96.6 91.4 |
15 | n = 6: 0–10; 20–30; 45–55; 95–105; 120–130; 166–174 | 51.61 | 104.90 | Diatomaceous silt with hydrotroilite; -//-; Silty clay with sand and carbonates; -//-; -//- (no carb.); -//- | 0.08–0.08 0.08 | 0.5–1.2 0.7 | 1.0–2.1 1.3 | 0.6–1.3 0.8 | 1.6–3.6 2.2 | 4.3–13.5 7.5 | 83.6–93.6 89.5 |
Core # | Sampling Interval, cm | β, % 1 | % in EOM1 2 | Al/Ar 3 | ∑MM 4 ng/g | % from ∑MM 5 | Pr/Ph 6 | OEP 7 17-19 | OEP 7 27-31 | TAR 8 | CPI 9 | Ret 10 %∑PAH | MPI1 11 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HCs | Resins | n-Alk. | Ster. | Terp. | PAH | ||||||||||||
Northern Baikal | |||||||||||||||||
Frolikha Bay (low-temperature hydrothermal seep) | |||||||||||||||||
1 | 0–10 | 4.2 | 11.3 | 76.1 | 8.5 | 2 486.8 | 34.7 | 0.0 | 55.0 | 10.3 | 0.8 | 0.7 | 6.0 | 9.8 | 5.2 | 0.0 | 0.3 |
25–35 | 4.7 | 13.2 | 76.1 | 1.5 | 2 486.8 | 38.5 | 0.0 | 49.6 | 12.0 | 0.8 | 0.8 | 5.9 | 5.9 | 4.9 | 0.0 | 0.3 | |
2 | 5–15 | 2.7 | 8.8 | 82.5 | 8.1 | 2 564.7 | 73.7 | 0.0 | 14.8 | 11.5 | 0.9 | 0.5 | 5.5 | 4.7 | 3.9 | 1.4 | 0.3 |
137–147 | 3.6 | 7.7 | 83.1 | 1.0 | 1 433.1 | 67.9 | 0.0 | 22.1 | 10.0 | 0.9 | 0.7 | 6.9 | 13.1 | 4.9 | 0.5 | 0.2 | |
Background area near the Barguzinsky Nature Reserve | |||||||||||||||||
3 | 5–15 | 2.4 | 37.2 | 61.9 | 9.2 | 1 182.9 | 67.5 | 0.4 | 3.5 | 28.6 | 1.0 | 0.5 | 3.8 | 2.0 | 2.3 | 3.4 | 0.3 |
62–72 | 3.3 | 10.5 | 80.0 | 6.0 | 1 425.3 | 72.4 | 0.0 | 8.0 | 19.5 | 1.0 | 0.5 | 4.2 | 3.4 | 2.2 | 1.8 | 0.3 | |
110–120 | 2.7 | 19.2 | 79.4 | 6.0 | 878.7 | 82.6 | 0.0 | 1.4 | 16.0 | 1.1 | 0.6 | 5.3 | 2.2 | 2.8 | 2.4 | 0.4 | |
Central Baikal | |||||||||||||||||
Background area near the Ushkany Islands (Fe-Mn crusts) | |||||||||||||||||
4 | 0–3 | 1.2 | 20.3 | 75.7 | 2.7 | 1 836.9 | 89.9 | 0.1 | 6.9 | 3.2 | 1.4 | 0.9 | 6.1 | 9.4 | 3.1 | 6.1 | 0.6 |
3–16 | 0.6 | 34.1 | 61.4 | 2.5 | 1 479.0 | 94.6 | 0.4 | 2.7 | 2.4 | 0.8 | 0.8 | 6.8 | 7.3 | 3.0 | 14.4 | 0.9 | |
16–27 | 3.5 | 36.8 | 52.7 | 5.5 | 1 584.1 | 93.0 | 0.2 | 4.2 | 2.8 | 1.1 | 0.9 | 4.9 | 9.2 | 2.8 | 8.5 | 0.8 | |
Academician Ridge, mud volcano | |||||||||||||||||
5 | 10–20 | 2.1 | 15.7 | 81.7 | 2.6 | 902.6 | 54.3 | 0.0 | 4.0 | 41.8 | 3.0 | 0.5 | 6.2 | 15.2 | 3.4 | 0.4 | 0.5 |
40–50 | 2.2 | 17.2 | 80.2 | 1.7 | 859.5 | 55.6 | 0.0 | 4.1 | 40.3 | 2.7 | 0.4 | 5.6 | 13.2 | 3.2 | 0.8 | 0.6 | |
120–130 | 1.9 | 15.5 | 82.9 | 3.8 | 959.2 | 56.8 | 0.0 | 4.2 | 39.0 | 2.6 | 0.5 | 5.6 | 14.6 | 3.3 | 0.4 | 0.4 | |
Academician Ridge, background area | |||||||||||||||||
6 | 5–15 | 2.3 | 19.0 | 79.9 | 7.3 | 1 472.3 | 72.3 | 0.2 | 5.1 | 22.3 | 1.1 | 0.5 | 4.3 | 4.8 | 2.6 | 2.2 | 0.3 |
95–105 | 2.0 | 19.1 | 79.4 | 6.2 | 2 168.3 | 69.3 | 0.3 | 6.5 | 24.0 | 0.9 | 0.5 | 4.6 | 3.9 | 2.7 | 1.6 | 0.4 | |
Gorevoy Utes, oil seepage | |||||||||||||||||
7 | 10–20 | 30.9 | 52.1 | 45.2 | 1.2 | 1 066.6 | 16.6 | 1.9 | 18.4 | 63.0 | 1.6 | 0.8 | 1.7 | 3.4 | 1.4 | 0.0 | 1.2 |
100–120 | 75.2 | 50.8 | 46.1 | 4.6 | 801.2 | 5.7 | 0.9 | 8.9 | 84.5 | 3.2 | 0.6 | 0.5 | 0.1 | 1.4 | 0.0 | 1.3 | |
8 | 0–15 | 87.2 | 57.9 | 36.5 | 1.2 | 3 610.1 | 33.2 | 2.4 | 48.2 | 16.2 | 0.0 | 1.5 | 0.4 | 5.6 | 1.3 | 0.0 | 0.3 |
50–60 | 12.0 | 64.7 | 33.8 | 2.0 | 10 976.8 | 51.0 | 2.0 | 44.4 | 2.6 | 0.0 | 1.9 | 0.8 | 16.5 | 2.0 | 0.0 | 0.3 | |
60–70 | 20.7 | 67.6 | 29.8 | 1.6 | 2 475.9 | 14.4 | 3.5 | 69.9 | 12.2 | 2.2 | 2.1 | 0.7 | 1.4 | 2.1 | 2.3 | 0.0 | |
100–110 | 2.6 | 23.0 | 70.9 | 2.5 | 2 966.9 | 68.3 | 0.2 | 17.7 | 13.8 | 1.3 | 2.5 | 1.1 | 14.6 | 2.7 | 2.4 | 0.3 | |
190–200 | 5.9 | 27.4 | 69.6 | 2.3 | 3 797.5 | 71.4 | 0.4 | 17.8 | 10.4 | 1.6 | 3.0 | 1.0 | 11.7 | 2.6 | 0.6 | 0.3 | |
300–310 | 3.8 | 19.8 | 71.8 | 3.0 | 4 969.4 | 77.8 | 0.3 | 13.7 | 8.3 | 1.4 | 3.4 | 1.2 | 19.3 | 2.9 | 0.4 | 0.9 | |
Kitami, mud volcano | |||||||||||||||||
9 | 0–10 | 5.3 | 12.7 | 86.4 | 3.3 | 1 536.8 | 59.2 | 0.3 | 9.1 | 31.4 | 1.7 | 0.5 | 7.1 | 13.8 | 3.8 | 0.0 | 0.4 |
110–120 | 2.1 | 9.2 | 89.3 | 3.0 | 1 458.3 | 85.0 | 0.0 | 1.2 | 13.8 | 1.6 | 1.4 | 10.2 | 16.5 | 5.5 | 0.0 | 0.5 | |
Cape Tolsty, oil seepage | |||||||||||||||||
10 | 10–20 | 2.9 | 10.4 | 84.9 | 4.0 | 2 531.5 | 67.0 | 0.4 | 4.6 | 28.0 | 1.2 | 0.6 | 6.9 | 17.0 | 4.5 | 0.0 | 0.4 |
50–65 | 1.1 | 22.1 | 75.8 | 1.9 | 747.4 | 48.6 | 0.5 | 16.3 | 34.6 | 1.8 | 0.5 | 7.0 | 13.9 | 4.1 | 0.0 | 0.4 | |
Kukuy, mud volcano, gas hydrates, carbonates | |||||||||||||||||
11 | 0–15 | 2.6 | 10.1 | 87.6 | 5.3 | 7 826.2 | 89.2 | 0.0 | 2.3 | 8.5 | 1.4 | 1.0 | 8.2 | 41.8 | 4.0 | 0.3 | 0.5 |
30–40 | 4.0 | 12.6 | 85.8 | 10.3 | 8 116.5 | 94.6 | 0.0 | 2.4 | 3.0 | 1.8 | 1.1 | 8.6 | 26.9 | 4.0 | 1.5 | 0.5 | |
86–96 | 2.7 | 7.8 | 90.7 | 3.4 | 8 598.0 | 81.4 | 0.0 | 2.1 | 16.5 | 1.9 | 1.2 | 8.2 | 37.0 | 3.9 | 0.3 | 0.5 | |
Southern Baikal | |||||||||||||||||
Posolsky canyon-1, hydrate hill | |||||||||||||||||
12 | 5–15 | 2.1 | 8.3 | 87.5 | 4.0 | 1 896.3 | 65.5 | 0.3 | 4.4 | 29.8 | 1.7 | 0.6 | 7.1 | 14.7 | 4.2 | 3.1 | 0.4 |
20–30 | 1.8 | 9.0 | 89.7 | 4.0 | 6 962.4 | 98.0 | 0.0 | 0.2 | 1.8 | 1.2 | 1.0 | 7.6 | 41.7 | 4.0 | 1.5 | 0.3 | |
86–96 | 2.1 | 10.2 | 88.7 | 8.0 | 1 060.5 | 93.1 | 0.0 | 1.3 | 5.5 | 1.3 | 0.8 | 7.8 | 32.4 | 3.9 | 1.8 | 0.3 | |
100–110 | 1.7 | 9.2 | 89.6 | 4.5 | 954.2 | 82.6 | 0.0 | 4.8 | 12.7 | 1.4 | 0.6 | 7.2 | 20.7 | 4.3 | 2.3 | 0.4 | |
193–203 | 2.9 | 10.9 | 86.9 | 4.5 | 1 175.7 | 91.4 | 0.0 | 2.1 | 6.5 | 1.6 | 1.1 | 8.2 | 33.0 | 4.2 | 1.2 | 0.3 | |
Malenky, mud volcano | |||||||||||||||||
13 | 0–15 | 1.9 | 15.8 | 80.0 | 1.8 | 3 058.5 | 91.2 | 0.0 | 4.0 | 4.8 | 1.5 | 1.0 | 8.5 | 36.5 | 4.0 | 2.7 | 0.4 |
40–50 | 2.9 | 11.8 | 83.0 | 8.5 | 3 619.6 | 94.2 | 0.0 | 4.3 | 1.6 | 1.4 | 1.1 | 7.7 | 21.9 | 3.9 | 0.0 | 0.2 | |
80–90 | 3.8 | 23.3 | 72.7 | 2.5 | 292.4 | 14.0 | 0.0 | 0.0 | 86.0 | 0.9 | 1.3 | 3.2 | 7.1 | 1.8 | 0.0 | 0.3 | |
Kedr, mud volcano, gas hydrates, carbonates | |||||||||||||||||
14 | 10–20 | 2.3 | 12.3 | 83.9 | 2.0 | 3 783.0 | 75.6 | 0.4 | 14.9 | 9.1 | 1.1 | 0.8 | 7.1 | 11.2 | 3.7 | 1.5 | 0.7 |
75–85 | 2.3 | 8.8 | 81.9 | 2.6 | 6 350.8 | 77.5 | 0.0 | 17.0 | 5.4 | 1.9 | 1.0 | 7.8 | 17.5 | 4.4 | 1.5 | 0.6 | |
120–135 | 1.4 | 10.0 | 85.0 | 2.0 | 2 842.9 | 85.8 | 0.0 | 7.1 | 7.1 | 0.5 | 0.9 | 7.5 | 41.0 | 3.4 | 0.5 | 0.6 | |
15 | 0–10 | 2.4 | 24.8 | 67.4 | 1.5 | 785.6 | 84.8 | 0.0 | 12.8 | 2.4 | 0.9 | 0.7 | 7.1 | 16.8 | 3.6 | 1.6 | 0.3 |
20–30 | 1.3 | 12.9 | 78.2 | 2.5 | 271.1 | 82.6 | 0.0 | 12.7 | 4.8 | 0.8 | 0.6 | 9.9 | 11.8 | 4.6 | 1.5 | 0.4 | |
45–55 | 1.7 | 12.1 | 81.3 | 1.6 | 442.5 | 87.7 | 0.0 | 6.7 | 5.5 | 1.1 | 0.8 | 10.8 | 28.7 | 4.6 | 0.0 | 0.3 | |
95–105 | 1.4 | 19.2 | 73.1 | 3.0 | 766.5 | 93.1 | 0.0 | 5.6 | 1.3 | 1.1 | 0.8 | 10.1 | 18.4 | 4.1 | 0.0 | 0.3 | |
120–130 | 1.0 | 14.3 | 79.4 | 2.3 | 543.1 | 93.6 | 0.0 | 5.0 | 1.4 | 0.9 | 0.8 | 10.2 | 25.8 | 4.4 | 0.0 | 0.3 | |
166–174 | 1.0 | 16.2 | 76.5 | 2.3 | 579.2 | 94.1 | 0.0 | 4.4 | 1.5 | 0.9 | 0.8 | 9.0 | 22.9 | 3.8 | 0.0 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgunova, I.; Semenov, P.; Kursheva, A.; Litvinenko, I.; Malyshev, S.; Bukin, S.; Khlystov, O.; Pavlova, O.; Zemskaya, T.; Krylov, A.A. Molecular Indicators of Sources and Biodegradation of Organic Matter in Sediments of Fluid Discharge Zones of Lake Baikal. Geosciences 2022, 12, 72. https://doi.org/10.3390/geosciences12020072
Morgunova I, Semenov P, Kursheva A, Litvinenko I, Malyshev S, Bukin S, Khlystov O, Pavlova O, Zemskaya T, Krylov AA. Molecular Indicators of Sources and Biodegradation of Organic Matter in Sediments of Fluid Discharge Zones of Lake Baikal. Geosciences. 2022; 12(2):72. https://doi.org/10.3390/geosciences12020072
Chicago/Turabian StyleMorgunova, Inna, Petr Semenov, Anna Kursheva, Ivan Litvinenko, Sergey Malyshev, Sergey Bukin, Oleg Khlystov, Olga Pavlova, Tamara Zemskaya, and Alexey A. Krylov. 2022. "Molecular Indicators of Sources and Biodegradation of Organic Matter in Sediments of Fluid Discharge Zones of Lake Baikal" Geosciences 12, no. 2: 72. https://doi.org/10.3390/geosciences12020072
APA StyleMorgunova, I., Semenov, P., Kursheva, A., Litvinenko, I., Malyshev, S., Bukin, S., Khlystov, O., Pavlova, O., Zemskaya, T., & Krylov, A. A. (2022). Molecular Indicators of Sources and Biodegradation of Organic Matter in Sediments of Fluid Discharge Zones of Lake Baikal. Geosciences, 12(2), 72. https://doi.org/10.3390/geosciences12020072