Establishing a Provenance Framework for Sandstones in the Greenland–Norway Rift from the Composition of Moraine/Outwash Sediments
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Conventional Heavy Mineral Data
4.2. Heavy Mineral Ratios
4.3. Mineral Geochemistry
4.3.1. Amphibole
4.3.2. Garnet
4.3.3. Rutile
4.4. Single-Grain Dating
4.4.1. Zircon U–Pb
4.4.2. Amphibole Ar–Ar
5. Discussion
5.1. Sediment Source Regions
5.1.1. MN7
5.1.2. MN4i
5.1.3. MN2ii
5.1.4. MN2iii
5.1.5. MN6
5.1.6. Liverpool Land
5.2. Significance for the Fill of the Greenland–Norway Rift
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrews, S.D.; Morton, A.; Decou, A.; Frei, D. Reconstructing drainage pathways in the North Atlantic during the Triassic utilizing heavy minerals, mineral chemistry, and detrital zircon geochronology. Geosphere 2021, 17, 479–500. [Google Scholar] [CrossRef]
- Fonneland, H.C.; Lien, T.; Martinsen, O.J.; Pedersen, R.B.; Košler, J. Detrital zircon ages: A key to understanding the deposition of deep marine sandstones in the Norwegian Sea. Sediment. Geol. 2004, 164, 147–159. [Google Scholar] [CrossRef]
- Morton, A.C.; Whitham, A.G.; Fanning, C.M.; Claoué-Long, J. The role of East Greenland as a source of sediment to the Voring Basin during the Late Cretaceous. In Onshore-Offshore Relationships on the North Atlantic Margin; Wandås, B.T.G., Eide, E.A., Gradstein, F., Nystuen, J.P., Eds.; NPF Special Publication: Oslo, Norway, 2005; pp. 83–110. [Google Scholar]
- Morton, A.; Whitham, A.; Fanning, C. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 2005, 182, 3–28. [Google Scholar] [CrossRef]
- Slama, J.; Walderhaug, O.; Fonneland, H.; Kosler, J.; Pedersen, R.B. Provenance of Neoproterozoic to upper Cretaceous sedimentary rocks, eastern Greenland: Implications for recognizing the sources of sediments in the Norwegian Sea. Sediment. Geol. 2011, 238, 254–267. [Google Scholar] [CrossRef]
- Vergara, L.; Wreglesworth, I.; Trayfoot, M.; Richardsen, G. The distribution of Cretaceous and Paleocene deep-water reservoirs in the Norwegian Sea basins. Pet. Geosci. 2001, 7, 395–408. [Google Scholar] [CrossRef]
- Morton, A.; Hallsworth, C.; Strogen, D.; Whitham, A.; Fanning, M. Evolution of provenance in the NE Atlantic rift: The Early–Middle Jurassic succession in the Heidrun Field, Halten Terrace, offshore Mid-Norway. Mar. Pet. Geol. 2009, 26, 1100–1117. [Google Scholar] [CrossRef]
- Gilotti, J.A.; Jones, K.A.; Elvevold, S. Caledonian metamorphic patterns in Greenland, In The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia; Higgins, A.K., Gilotti, J.A., Smith, M.P., Eds.; Geological Society of America Memoir: Boulder, CO, USA, 2008; pp. 201–206. [Google Scholar]
- Henriksen, N. The Caledonides of central East Greenland 70°–76° N. In The Caledonide Orogen—Scandinavia and Related Areas; Gee, D.G., Sturt, B.A., Eds.; Wiley: London, UK, 1985; pp. 1094–1113. [Google Scholar]
- Kalsbeek, F.; Nutman, A.; Taylor, P.N. Palaeoproterozoic basement province in the Caledonian fold belt of North-East Greenland. Precambrian Res. 1993, 63, 163–178. [Google Scholar] [CrossRef]
- Thrane, K. Relationships between Archaean and Palaeoproterozoic crystalline basement complexes in the southern part of the East Greenland Caledonides: An ion microprobe study. Precambrian Res. 2001, 113, 19–42. [Google Scholar] [CrossRef]
- Strachan, R.A.; Nutman, A.P.; Friderichsen, J.D. SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. J. Geol. Soc. 1995, 152, 779–784. [Google Scholar] [CrossRef]
- Watt, G.R.; Kinny, P.D.; Friderichsen, J.D. U–Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. J. Geol. Soc. 2000, 157, 1031–1048. [Google Scholar] [CrossRef]
- Watt, G.; Thrane, K. Early Neoproterozoic events in East Greenland. Precambrian Res. 2001, 110, 165–184. [Google Scholar] [CrossRef]
- Dhuime, B.; Bosch, D.; Bruguier, O.; Caby, R.; Pourtales, S. Age, provenance and post-deposition metamorphic overprint of detrital zircons from the Nathorst Land group (NE Greenland)—A LA-ICP-MS and SIMS study. Precambrian Res. 2007, 155, 24–46. [Google Scholar] [CrossRef]
- White, A.P.; Hodges, K.; Martin, M.W.; Andresen, A. Geologic constraints on middle-crustal behavior during broadly synorogenic extension in the central East Greenland Caledonides. Geol. Rundsch. 2002, 91, 187–208. [Google Scholar] [CrossRef]
- Henriksen, N.; Higgins, A.K.; Kalsbeek, F.; Pulvertaft, T.C.R. Greenland from Archaean to Quaternary. Geol. Greenl. Surv. Bull. 2000, 185, 2–93. [Google Scholar] [CrossRef]
- Sønderholm, M.; Tirsgaard, H. Lithostratigraphic framework of the Upper Proterozoic Eleonore Bay Supergroup of East and North-East Greenland. Bull. Grønlands Geol. Undersøgelse 1993, 167, 1–38. [Google Scholar] [CrossRef]
- Olierook, H.K.; Barham, M.; Kirkland, C.L.; Hollis, J.; Vass, A. Zircon fingerprint of the Neoproterozoic North Atlantic: Perspectives from East Greenland. Precambrian Res. 2020, 342, 105653. [Google Scholar] [CrossRef]
- Augland, L.E.; Andresen, A.; Corfu, F. Terrane transfer during the Caledonian orogeny: Baltican affinities of the Liverpool Land Eclogite Terrane in East Greenland. J. Geol. Soc. 2011, 168, 15–26. [Google Scholar] [CrossRef]
- Brueckner, H.K.; Medaris, L., Jr.; Belousova, E.; Johnston, S.; Griffin, W.; Hartz, E.; Hemming, S.; Ghent, E.; Bubbico, R. An orphaned baltic terrane in the Greenland Caledonides: A Sm-Nd and detrital zircon study of a high-pressure/ultrahigh-pressure complex in Liverpool Land. J. Geol. 2016, 124, 541–567. [Google Scholar] [CrossRef]
- Dawes, P.R. The bedrock geology under the Inland Ice: The next major challenge for Greenland mapping. GEUS Bull. 2009, 17, 57–60. [Google Scholar] [CrossRef]
- Cowton, T.; Nienow, P.; Bartholomew, I.; Sole, A.; Mair, D. Rapid erosion beneath the Greenland ice sheet. Geology 2012, 40, 343–346. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Hubert, J.F. A Zircon-Tourmaline-Rutile Maturity Index and the Interdependence of the Composition of Heavy Mineral Assemblages with the Gross Composition and Texture of Sandstones. J. Sediment. Res. 1962, 32, 440–450. [Google Scholar] [CrossRef]
- Meinhold, G.; Anders, B.; Kostopoulos, D.; Reischmann, T. Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece. Sediment. Geol. 2008, 203, 98–111. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Miner. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Mange, M.A.; Morton, A.C. Geochemistry of heavy minerals. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 345–391. [Google Scholar]
- Morton, A.; Hallsworth, C.; Chalton, B. Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance. Mar. Pet. Geol. 2004, 21, 393–410. [Google Scholar] [CrossRef]
- Jolley, D.W.; Morton, A.C. Understanding basin sedimentary provenance: Evidence from allied phytogeographic and heavy mineral analysis of the Palaeocene of the NE Atlantic. J. Geol. Soc. 2007, 164, 553–563. [Google Scholar] [CrossRef]
- Whitham, A.G.; Morton, A.C.; Fanning, C.M. Insights into Cretaceous–Palaeogene sediment transport paths and basin evolution in the North Atlantic from a heavy mineral study of sandstones from southern East Greenland. Pet. Geosci. 2004, 10, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Kalsbeek, F.; Austrheim, H.; Bridgwater, D.; Hansen, B.; Pedersen, S.; Taylor, P. Geochronology of Archaean and Proterozoic events in the Ammassalik area, South-East Greenland, and comparisons with the Lewisian of Scotland and the Nagssugtoqidian of West Greenland. Precambrian Res. 1993, 62, 239–270. [Google Scholar] [CrossRef]
- Nutman, A.; Kalsbeek, F. Search for Archaean basement in the Caledonian fold belt of North-East Greenland. Grønlands Geol. Undersøgelse Rapp. 1994, 162, 129–133. [Google Scholar] [CrossRef]
- Gower, C.F. The evolution of the Grenville Province in eastern Labrador, Canada. Geol. Soc. London Spéc. Publ. 1996, 112, 197–218. [Google Scholar] [CrossRef]
- Rivers, T. Lithotectonic elements of the Grenville Province: Review and tectonic implications. Precambrian Res. 1997, 86, 117–154. [Google Scholar] [CrossRef]
- Bingen, B.; Solli, A. Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: Synopsis for detrital zircon provenance studies. Nor. J. Geol. 2009, 89, 267–290. [Google Scholar]
- McDougall, I.; Harrison, T.M. Geochronology and Thermochronology by the 40Ar/39Ar Method; Oxford University Press on Demand: Oxford, UK, 1999. [Google Scholar]
- Morton, A.C.; Grant, S. Cretaceous Depositional Systems in the Norwegian Sea: Heavy Mineral Constraints. AAPG Bull. 1998, 82, 274–290. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.M.; Kylander-Clark, A.R. Discovery of an Eo-Meso-Neoarchean terrane in the East Greenland Caledonides. Precambrian Res. 2013, 235, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Barham, M.; Kirkland, C.L.; Hovikoski, J.; Alsen, P.; Hollis, J.; Tyrrell, S. Reduce or recycle? Revealing source to sink links through integrated zircon–feldspar provenance fingerprinting. Sedimentology 2020, 68, 531–556. [Google Scholar] [CrossRef]
- Wartes, M.A. Evaluation of stratigraphic continuity between the Fortress Mountain and Nanushuk formation in the central Brooks Range foothills—Are they partly correlative? In Preliminary Results of Recent Geological Field Investigations in the Brooks Range Foothills and North Slope, Alaska; PIR 2008-1C; Alaska Division of Geological & Geophysical Surveys: Fairbanks, AK, USA, 2008; pp. 25–39. [Google Scholar]
- Miller, E.L.; Soloviev, A.; Kuzmichev, A.; Gehrels, G.; Toro, J.; Tuchkova, M. Jurassic and Cretaceous foreland basin deposits of the Russian Arctic: Separated by birth of the Makarov Basin? Nor. J. Geol./Nor. Geol. Foren. 2008, 88, 201–226. [Google Scholar]
- Zhang, X.; Pease, V.; Skogseid, J.; Wohlgemuth-Ueberwasser, C.C. Reconstruction of tectonic events on the northern Eurasia margin of the Arctic, from U-Pb detrital zircon provenance investigations of late Paleozoic to Mesozoic sandstones in southern Taimyr Peninsula. GSA Bull. 2016, 128, 29–46. [Google Scholar] [CrossRef]
- Anfinson, O.A.; Embry, A.F.; Stockli, D.F. Geochronologic constraints on the Permian–Triassic northern source region of the Sverdrup Basin, Canadian Arctic Islands. Tectonophysics 2016, 691, 206–219. [Google Scholar] [CrossRef]
- Miller, E.L.; Soloviev, A.V.; Prokopiev, A.; Toro, J.; Harris, D.; Kuzmichev, A.B.; Gehrels, G.E. Triassic river systems and the paleo-Pacific margin of northwestern Pangea. Gondwana Res. 2013, 23, 1631–1645. [Google Scholar] [CrossRef]
- Dockman, D.; Pearson, D.; Heaman, L.; Gibson, S.; Sarkar, C. Timing and origin of magmatism in the Sverdrup Basin, Northern Canada—Implications for lithospheric evolution in the High Arctic Large Igneous Province (HALIP). Tectonophysics 2018, 742, 50–65. [Google Scholar] [CrossRef]
- Akinin, V.V.; Miller, E.L. Evolution of calc-alkaline magmas of the Okhotsk-Chukotka volcanic belt. Petrology 2011, 19, 237–277. [Google Scholar] [CrossRef]
Sample | Lat. | Long. | HM | Gnt | Ru. | Amph. | Zr. U-Pb | Amph. Ar-Ar | Sand Type |
---|---|---|---|---|---|---|---|---|---|
M6018 | 76.9183 | −20.1099 | ✓ | ✓ | ✓ | ✓ | ✓ | MN6 | |
M6017 | 76.8175 | −19.0203 | ✓ | ✓ | MN6 | ||||
M6016 | 77.0029 | −23.0862 | ✓ | ✓ | ✓ | ✓ | ✓ | MN2iii | |
M6015 | 76.7440 | −23.0189 | ✓ | MN2iii | |||||
M6014 | 76.5101 | −23.3978 | ✓ | ✓ | ✓ | MN2iii | |||
M6013 | 76.2923 | −24.1747 | ✓ | ✓ | ✓ | ✓ | MN2iii | ||
M6012 | 75.7961 | −22.3706 | ✓ | ✓ | ✓ | ✓ | ✓ | MN2iii | |
M6011 | 75.2545 | −20.9285 | ✓ | ✓ | ✓ | ✓ | ✓ | MN2iii | |
M6009 | 75.0067 | −22.1433 | ✓ | ✓ | MN2iii | ||||
M6010 | 74.7124 | −21.1639 | ✓ | MN2iii | |||||
M6008 | 74.6458 | −22.2178 | ✓ | MN2iii | |||||
M6007 | 74.1225 | −24.4744 | ✓ | ✓ | ✓ | ✓ | ✓ | MN2ii | |
M6006 | 73.8077 | −25.6163 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | MN2ii |
M6005 | 73.4791 | −25.1131 | ✓ | MN2ii | |||||
L1100 | 73.6773 | −28.1068 | ✓ | MN2ii | |||||
L1102 | 73.6688 | −28.2207 | ✓ | ✓ | ✓ | ✓ | ✓ | MN2ii | |
L1101 | 73.6385 | −27.8874 | ✓ | ✓ | ✓ | MN2ii | |||
L1103 | 73.4079 | −28.8197 | ✓ | ✓ | MN2ii | ||||
L1104 | 72.6852 | −28.0488 | ✓ | ✓ | MN2ii | ||||
L1105 | 72.6637 | −27.7568 | ✓ | ✓ | ✓ | ✓ | ✓ | MN2ii | |
M6004 | 72.5647 | −26.4984 | ✓ | ✓ | MN2ii | ||||
M6003 | 72.0691 | −26.4412 | ✓ | ✓ | MN2ii | ||||
M6002 | 71.9200 | −28.7397 | ✓ | ✓ | ✓ | ✓ | ✓ | MN2ii | |
M6001 | 71.5519 | −28.5470 | ✓ | ✓ | MN2ii | ||||
M6000 | 71.2446 | −27.7829 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | MN4i |
S_W5243 | 71.0840 | −27.7303 | ✓ | ✓ | MN4i | ||||
S_W5241 | 71.0226 | −27.6507 | ✓ | ✓ | ✓ | ✓ | ✓ | MN4i | |
S_W5237 | 70.9578 | −28.3164 | ✓ | MN4i | |||||
S_W5236 | 70.9396 | −28.3787 | ✓ | ✓ | ✓ | MN4i | |||
S_W5232 | 70.7528 | −28.0553 | ✓ | ✓ | ✓ | ✓ | MN4i | ||
S_W5217 | 70.5638 | −28.2401 | ✓ | ✓ | MN4i | ||||
S_W5249 | 70.4635 | −27.4603 | ✓ | MN4i | |||||
S_W5250 | 70.5239 | −26.9465 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | MN4i |
S_W5313 | 70.5581 | −25.8609 | ✓ | ✓ | MN4i | ||||
S_W5297 | 70.3036 | −26.5550 | ✓ | ✓ | MN4i | ||||
S_W5212 | 70.3508 | −28.1637 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | MN7 |
S_W5324 | 70.1058 | −28.4989 | ✓ | ✓ | ✓ | ✓ | MN7 | ||
S5261 | 71.1542 | −22.3197 | ✓ | ✓ | ? | ||||
S5262 | 70.9165 | −22.4234 | ✓ | ✓ | ✓ | ✓ | ✓ | ? | |
S5263 | 70.7301 | −22.4259 | ✓ | ✓ | ? | ||||
S5265 | 70.6194 | −22.3670 | ✓ | ✓ | ? | ||||
S5264 | 70.5225 | −22.0889 | ✓ | ✓ | ✓ | ✓ | ✓ | ? |
Sand Type | HM | RuZi | Garnet | Rutile Source | Rutile Grade | Zircon Ages (Ma) |
---|---|---|---|---|---|---|
MN2ii | Amphibole Epidote garnet | >40 | B | metapelitic | amphibolite/eclogite | ±2500–3000 1900–2000 900–2000 c. 1100 |
MN2iii | Amphibole epidote | <40 | B | metapelitic | amphibolite/eclogite | ±2500–3000 1900–2000 |
MN4i | garnet | >40 | A | metapelitic | granulite | 2500–3000 1800–2500 900–1800 400–500 |
MN6 | Amphibole epidote | <40 | C | metamafic | amphibolite/eclogite | 1900–2000 ±1700–1800 |
MN7 | Amphibolite Epidote Garnet clinopyroxene | <40 | B | _ | _ | >2500 |
Liverpool Land | Amphibolite Epidote Titanite ± garnet | <40 | B C D | metapelitic metamafic | amphibolite/eclogite | 1600–1700 400–500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, A.G.; Morton, A.C.; Whitham, A.G.; Hemming, S.R.; Thomson, S.N. Establishing a Provenance Framework for Sandstones in the Greenland–Norway Rift from the Composition of Moraine/Outwash Sediments. Geosciences 2022, 12, 73. https://doi.org/10.3390/geosciences12020073
Szulc AG, Morton AC, Whitham AG, Hemming SR, Thomson SN. Establishing a Provenance Framework for Sandstones in the Greenland–Norway Rift from the Composition of Moraine/Outwash Sediments. Geosciences. 2022; 12(2):73. https://doi.org/10.3390/geosciences12020073
Chicago/Turabian StyleSzulc, Adam G., Andrew C. Morton, Andrew G. Whitham, Sidney R. Hemming, and Stuart N. Thomson. 2022. "Establishing a Provenance Framework for Sandstones in the Greenland–Norway Rift from the Composition of Moraine/Outwash Sediments" Geosciences 12, no. 2: 73. https://doi.org/10.3390/geosciences12020073
APA StyleSzulc, A. G., Morton, A. C., Whitham, A. G., Hemming, S. R., & Thomson, S. N. (2022). Establishing a Provenance Framework for Sandstones in the Greenland–Norway Rift from the Composition of Moraine/Outwash Sediments. Geosciences, 12(2), 73. https://doi.org/10.3390/geosciences12020073