Interpretation of Trace Element Chemistry of Zircons from Bor and Cukaru Peki: Conventional Approach and Random Forest Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zircon Geochemistry
2.2. Machine Learning
3. Results
3.1. Geology of Bor and Cukaru Peki
3.2. Trace Element Composition of Zircons
3.3. Application of Machine Learning Algorithms to the Zircon Geochemistry Dataset from Timok Magmatic Complex
3.3.1. Exploratory Data Analysis
3.3.2. Workflow
3.3.3. Predictions
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janković, S.; Jelenković, R.; Koželj, D. The Bor Copper and Gold Deposit; QWERTY: Bor, Serbia, 2002. [Google Scholar]
- Jelenković, R.; Milovanović, D.; Koželj, D.; Banješević, M. The Mineral Resources of the Bor Metallogenic Zone: A Review. Geol. Croat. 2016, 69, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, F. The Ore Deposits of Jugoslavia and the Development of Its Mining Industry. Econ. Geol. 1954, 49, 451–492. [Google Scholar] [CrossRef]
- Baker, T. Gold ± copper Endowment and Deposit Diversity in the Western Tethyan Magmatic Belt, Southeast Europe: Implications for Exploration. Econ. Geol. 2019, 114, 1237–1250. [Google Scholar] [CrossRef]
- Tončić, T. Balance of Copper Reserves of the Bor Mine: Unpublished Reserve Statement of RTB Bor; 2018. [Google Scholar]
- Pittuck, M.; McGurk, T. NI43-101 Preliminary Economic Assessment of the Cukaru Peki Upper Zone Deposit, Serbia; Nevsun Resources, Ltd.: Vancouver, BC, Canada, 2016. [Google Scholar]
- Armstrong, R.; Kozelj, D.; Herrington, R. The Majdanpek Cu-Au Deposit of Eastern Serbia: A Review. In Super Porphyry Copper and Gold Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Linden Park, SA, Australia, 2005; Volume 2, pp. 453–466. [Google Scholar]
- Mioč, P. Osnovna Geološka Karta SFR Jugoslavije 1:10,0000; Savezni Geološki Zavod: Belgrade, Serbia, 1983. [Google Scholar]
- Đorđević, M.; Banješević, M. The Geology of the Southern Part of Timok Eruptive Area, the Interpreter Booklet and Geological Map 1:50,000; Savezno Ministarstvo za Privredu: Belgrade, Serbia, 1997. [Google Scholar]
- Starostin, V.I. Bor and Maidanpek Copper Deposits in Yugoslavia. Int. Geol. Rev. 1970, 12, 370–380. [Google Scholar] [CrossRef]
- Jelenkovic, R.; Kozelj, D.; Serafimovski, T. Some Genetic Aspects of the Bor Copper-Gold Deposit (Serbia). Geol. Maced. 2001, 15, 1–5. [Google Scholar]
- Koželj, D. Epithermal Gold Mineralization in the Bor Metallogenic Zone: Morphogenetic Types, Structural-Texture Varieties and Potentiality; Grafomed: Bor, Serbia, 2002. [Google Scholar]
- Drovenik, M.; Antonijević, I.; Mićić, I. New Reference on Magmatism and Geological Setting of the Timok Eruptive Area. Vesnik Geozavoda 1962, A 20, 67–79. [Google Scholar]
- Janković, S.; Terzić, M.; Aleksić, D.; Karamata, S.; Spasov, T.; Jovanović, M.; Miličić, M.; Mišković, V.; Grubić, A.; Antonijević, I. Metallogenic Features of Copper Deposits in the Volcano-Intrusive Complexes of the Bor District, Yugoslavia. In European Copper Deposits; Janković, S., Sillitoe, R.H., Eds.; SGA Special Publication: Lubbock, TX, USA, 1980; Volume 1, pp. 42–49. [Google Scholar]
- Janković, S.; Jovanović, M.; Karamata, S.; Lovrić, A. Isotopic Age of Some Rocks from the Timok Eruptive Area; Academy of Serbian Science and Arts, Natural Science and Mathematics: Belgrade, Serbia, 1981; Volume 48, pp. 87–94. [Google Scholar]
- Von Quadt, A.; Peytcheva, I.; Cvetkovic, V.; Banjesevic, M.; Kozelj, D. Geochronology, Geochemistry and Isotope Tracing of the Cretaceous Magmatism of East Serbia as Part of the Apuseni-Timok-Srednogorie Metallogenic Belt. Geol. Carpathia 2002, 53, 175–177. [Google Scholar]
- Clark, A.H.; Ullrich, T.D. 40Ar-39 Ar Age Data for Andesitic Magmatism and Hydrothermal Activity in the Timok Massif, Eastern Serbia: Implications for Metallogenetic Relationships in the Bor Copper-Gold Subprovince. Miner. Depos. 2004, 39, 256–262. [Google Scholar] [CrossRef]
- Zimmerman, A.; Stein, H.J.; Hannah, J.L.; Koželj, D.; Bogdanov, K.; Berza, T. Tectonic Configuration of the Apuseni-Banat-Timok-Srednogorie Belt, Balkans-South Carpathians, Constrained by High Precision Re-Os Molybdenite Ages. Miner. Depos. 2008, 43, 1–21. [Google Scholar] [CrossRef]
- Banješević, M. Upper Cretaceous Magmatic Suites of the Timok Magmatic Complex. Geol. Anal. Balk. Poluostrva 2010, 71, 13–22. [Google Scholar] [CrossRef]
- Kolb, M.; Von Quadt, A.; Peytcheva, I.; Heinrich, C.A.; Fowler, S.J.; Cvetkovic, V. Adakite-like and Normal Arc Magmas: Distinct Fractionation Paths in the East Serbian Segment of the Balkan-Carpathian Arc. J. Petrol. 2012, 54, 421–451. [Google Scholar] [CrossRef] [Green Version]
- Knaak, M.; Márton, I.; Tosdal, R.M.; van der Toorn, J.; Davidović, D.; Strmbanović, I.; Zdravkovic´, M.; Živanović, J.; Hasson, S. Geologic Setting and Tectonic Evolution of Porphyry Cu-Au, Polymetallic Replacement, and Sedimentary Rock-Hosted Au Deposits in the Northwest Area of the Timok Magmatic Complex, Serbia. In Tectonics and Metallogeny of the Tethyan Orogenic Belt; Richards, J.P., Ed.; Society of Economic Geologists Special Publication: Shaffer Parkway Littleton, CO, USA, 2016; Volume 19, pp. 1–28. [Google Scholar]
- Von Quadt, A.; Peytcheva, I.; Heinrich, C.; Cvetković, V.; Banjesević, M.; Andrew, C.J. Upper Cretaceous Magmatic Evolution and Related Cu–Au Mineralization in Bulgaria and Serbia; Irish Association for Economic Geology: Dublin, Ireland, 2007; pp. 861–864. [Google Scholar]
- Kolb, M. Geochronology and Isotope Geochemistry of Magmatic Rocks from Western Srednogorie (Bulgaria) and Timok Magmatic Complex (East Serbia). Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2011. [Google Scholar]
- Banješević, M.; Cvetković, V.; Von Quadt, A.; Ljubović Obradović, D.; Vasić, N.; Pačevski, A.; Peytcheva, I. New Constraints on the Main Mineralization Event Inferred from the Latest Discoveries in the Bor Metallogenetic Zone (BMZ, East Serbia). Minerals 2019, 9, 672. [Google Scholar] [CrossRef] [Green Version]
- Lips, A.L.; Herrington, R.J.; Stein, G.; Kozelj, D.; Popov, K.; Wijbrans, J.R. Refined Timing of Porphyry Copper Formation in the Serbian and Bulgarian Portions of the Cretaceous Carpatho-Balkan Belt. Econ. Geol. 2004, 99, 601–609. [Google Scholar] [CrossRef]
- Lerouge, C.; Bailly, L.; Béchu, E.; Fléhoc, C.; Genna, A.; Lescuyer, J.L.; Stein, G.; Gillot, P.Y.; Kozelj, D. Age and Origin of Advanced Argillic Alteration at the Bor Cu-Au Deposit, Serbia; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 41–44. [Google Scholar]
- Karamata, S.; Knežević, V.; Pecskay, Z.; Đorđević, M. Magmatism and Metallogeny of the Ridanj-Krepoljin Belt (Eastern Serbia) and Their Correlation with Northern and Eastern Analogues. Miner. Depos. 1997, 32, 452–458. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U–Pb Zircon Geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.V.; Von Quadt, A.; Roddick, J.C.; Spiegel, W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Kennedy, A.K.; Wotzlaw, J.F.; Schaltegger, U.; Crowley, J.L.; Schmitz, M. Eocene Zircon Reference Material for Microanalysis of U-Th-Pb Isotopes and Trace Elements. Can. Mineral. 2014, 52, 409–421. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N. Plešovice Zircon—A New Natural Reference Material for U–Pb and Hf Isotopic Microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A Free and Open Toolbox for Geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Gehrels, G.E.; Valencia, V.A.; Ruiz, J. Enhanced Precision, Accuracy, Efficiency, and Spatial Resolution of U-Pb Ages by Laser Ablation–Multicollector–Inductively Coupled Plasma–Mass Spectrometry. Geochem. Geophys. Geosyst. 2008, 9, Q03017. [Google Scholar] [CrossRef]
- Dilles, J.H.; Kent, A.J.; Wooden, J.L.; Tosdal, R.M.; Koleszar, A.; Lee, R.G.; Farmer, L.P. Zircon Compositional Evidence for Sulfur-Degassing from Ore-Forming Arc Magmas. Econ. Geol. 2015, 110, 241–251. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the Elements: Meteoritic and Solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Lee, R.G.; Dilles, J.H.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K. Magmatic Evolution of Granodiorite Intrusions at the El Salvador Porphyry Copper Deposit, Chile, Based on Trace Element Composition and U/Pb Age of Zircons. Econ. Geol. 2017, 112, 245–273. [Google Scholar] [CrossRef]
- Zou, S.; Chen, X.; Brzozowski, M.J.; Leng, C.-B.; Xu, D. Application of Machine Learning to Characterizing Magma Fertility in Porphyry Cu Deposits. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024584. [Google Scholar] [CrossRef]
- Asadi, H.H.; Porwal, A.; Fatehi, M.; Kianpouryan, S.; Lu, Y.-J. Exploration Feature Selection Applied to Hybrid Data Integration Modeling: Targeting Copper-Gold Potential in Central Iran. Ore Geol. Rev. 2015, 71, 819–838. [Google Scholar] [CrossRef]
- Zhang, S.E.; Bourdeau, J.E.; Nwaila, G.T.; Corrigan, D. Towards a Fully Data-Driven Prospectivity Mapping Methodology: A Case Study of the Southeastern Churchill Province, Québec and Labrador. Artif. Intell. Geosci. 2021, 2, 128–147. [Google Scholar] [CrossRef]
- Dangeti, P. Statistics for Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Lu, Y.J.; Loucks, R.R.; Fiorentini, M.L.; McCuaig, T.C.; Evans, N.J.; Yang, Z.M.; Hou, Z.Q.; Kirkland, C.L.; Parra-Avila, L.A.; Kobussen, A. Zircon Compositions as a Pathfinder for Porphyry Cu ± Mo ± Au Deposits; Society of Economic Geologists Special Publication: Shaffer Pkwy Littleton, CO, USA, 2016; Volume 19, pp. 329–347. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Jakubec, J.; Pittuck, M.; Samoukovic, M.; MacSporran, G.; Manojlovic, P.; Bunyard, M.; Duinker, R.; Sucharda, M. NI43-101 Technical Report—Pre-Feasibility Study for the Timok Project, Serbia; Nevsun Resources, Ltd.: Vancouver, BC, Canada, 2018. [Google Scholar]
- Velojić, M.; Jelenkovic, R.; Cvetkovic, V. Fluid Evolution of the Čukaru Peki Cu-Au Porphyry System (East Serbia) Inferred from a Fluid Inclusion Study. Geol. Croat. 2020, 73, 197–209. [Google Scholar] [CrossRef]
- Velojic, M.; Bertrandsson Erlandsson, V. Trace Elements in Different Veins in Chukaru Peki High Sulfidation Deposit, Serbia. In Proceedings of the 1st International Student Conference on Geochemistry and Mineral Deposits, Prague, Czech Republic, 8–9 November 2019. [Google Scholar]
- Ballard, J.R.; Palin, M.J.; Campbell, I.H. Relative Oxidation States of Magmas Inferred from Ce (IV)/Ce (III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Shen, P.; Hattori, K.; Pan, H.; Jackson, S.; Seitmuratova, E. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Econ. Geol. 2015, 110, 1861–1878. [Google Scholar] [CrossRef]
- Loader, M.A.; Nathwani, C.L.; Wilkinson, J.J.; Armstrong, R.N. Controls on the Magnitude of Ce Anomalies in Zircon. Geochim. Cosmochim. Acta 2022, 328, 242–257. [Google Scholar] [CrossRef]
- Hattori, K.; Wang, J.; Kobylinski, C.; Baumgartner, R.; Morfin, S.; Shen, P. Zircon Composition: Indicator of Fertile Igneous Rocks Related to Porphyry Copper Deposits. Soc. Geol. Appl. Miner. Depos. 2017, 2, 295–298. [Google Scholar]
- Loader, M.A.; Wilkinson, J.J.; Armstrong, R.N. The Effect of Titanite Crystallisation on Eu and Ce Anomalies in Zircon and Its Implications for the Assessment of Porphyry Cu Deposit Fertility. Earth Planet. Sci. Lett. 2017, 472, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, H.; Campos, E.; Bouzari, F.; Rousse, S.; Bissig, T.; Gregoire, M.; Riquelme, R. Porphyry Indicator Zircons (PIZs): Application to Exploration of Porphyry Copper Deposits. Ore Geol. Rev. 2020, 126, 103771. [Google Scholar] [CrossRef]
- Wang, J.; Hattori, K.; Yang, Y.; Yuan, H. Zircon Chemistry and Oxidation State of Magmas for the Duobaoshan-Tongshan Ore-Bearing Intrusions in the Northeastern Central Asian Orogenic Belt, NE China. Minerals 2021, 11, 503. [Google Scholar] [CrossRef]
- Stoykov, S.; Peytcheva, I.; von Quadt, A.; Moritz, R.; Frank, M.; Fontignie, D. Timing and Magma Evolution of the Chelopech Volcanic Complex (Bulgaria). Swiss Bull. Mineral. Petrol. 2004, 84, 101–117. [Google Scholar]
- Peytcheva, I.; von Quadt, A.; Neubauer, F.; Frank, M.; Nedialkov, R.; Heinrich, C.; Strashimirov, S. U–Pb Dating, Hf-Isotope Characteristics and Trace-REE-Patterns of Zircons from Medet Porphyry Copper Deposit, Bulgaria: Implications for Timing, Duration and Sources of Ore-Bearing Magmatism. Min. Pet. 2009, 96, 19. [Google Scholar] [CrossRef] [Green Version]
- Wotzlaw, J.F.; Schaltegger, U.; Frick, D.A.; Dungan, M.A.; Gerdes, A.; Günther, D. Tracking the Evolution of Large-Volume Silicic Magma Reservoirs from Assembly to Supereruption. Geology 2013, 41, 867–870. [Google Scholar] [CrossRef]
- Loucks, R.R. Distinctive Composition of Copper-Ore-Forming Arcmagmas. Aust. J. Earth Sci. 2014, 61, 5–16. [Google Scholar] [CrossRef]
- Loucks, R.R.; Fiorentini, M.L.; Henríquez, G.J. New Magmatic Oxybarometer Using Trace Elements in Zircon. J. Petrol. 2020, 61, egaa034. [Google Scholar] [CrossRef]
- Klimentyeva, D.; Driesner, T.; Von Quadt, A.; Tončić, T.; Heinrich, C. Silicate-Replacive High Sulfidation Massive Sulfide Orebodies in a Porphyry Cu-Au System: Bor, Serbia. Miner. Depos. 2020, 56, 1423–1448. [Google Scholar] [CrossRef]
Algorithm | Prediction of Deposit or Locality |
---|---|
Decision tree | 0.79 |
Random Forest | 0.85 |
With 10-Fold cross-validation | |
Decision tree | 0.8 |
Random forest | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimentyeva, D.; Velojic, M.; Von Quadt, A.; Hood, S. Interpretation of Trace Element Chemistry of Zircons from Bor and Cukaru Peki: Conventional Approach and Random Forest Classification. Geosciences 2022, 12, 396. https://doi.org/10.3390/geosciences12110396
Klimentyeva D, Velojic M, Von Quadt A, Hood S. Interpretation of Trace Element Chemistry of Zircons from Bor and Cukaru Peki: Conventional Approach and Random Forest Classification. Geosciences. 2022; 12(11):396. https://doi.org/10.3390/geosciences12110396
Chicago/Turabian StyleKlimentyeva, Dina, Milos Velojic, Albrecht Von Quadt, and Shawn Hood. 2022. "Interpretation of Trace Element Chemistry of Zircons from Bor and Cukaru Peki: Conventional Approach and Random Forest Classification" Geosciences 12, no. 11: 396. https://doi.org/10.3390/geosciences12110396
APA StyleKlimentyeva, D., Velojic, M., Von Quadt, A., & Hood, S. (2022). Interpretation of Trace Element Chemistry of Zircons from Bor and Cukaru Peki: Conventional Approach and Random Forest Classification. Geosciences, 12(11), 396. https://doi.org/10.3390/geosciences12110396