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Abstract: The deposits of Bor and Cukaru Peki are important contributors to the Apuseni–Banat–
Timok–Srednogorie (ABTS) belt’s metallogenic endowment. We use decision tree and random forest
algorithms applied to zircon geochemistry data from Bor, Cukaru Peki and a selection of other locali-
ties within the ABTS. The resulting predictions, supported by high scores on the test set predictions
for the random forest algorithm, suggest that it is possible to fingerprint the studied deposits and
localities from the ABTS belt based on zircon geochemistry. These results take into account the multi-
variate geochemical patterns and can be used in combination with a widely accepted Eu anomaly
indicator or assist in finding more subtle geochemical differences for systems where applying a single
cut-off value does not result in a good separation between barren and mineralized rocks.
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1. Introduction

The neighboring Bor and Cukaru Peki deposits are located in the Serbian segment of
the Apuseni–Banat–Timok–Srednogorie belt [1–3]. The Apuseni–Banat–Timok–Srednogorie
Late Cretaceous magmatic arc in the Carpathian–Balkan orogen (Figure 1) formed on the
European margin during the closure of the Neotethys Ocean. It was subsequently deformed
into a complex orogen by continental collisions. The Cu-Au mineralized arc consists of
geologically distinct segments: Apuseni (Romania), Banat (Romania and Serbia), Timok
(Serbia), Panagyurishte and Eastern Srednogorie segments (Bulgaria). Within this belt,
deposits with the most significant Cu and Au resources include Majdanpek with 1000 Mt
of ore containing 6 Mt Cu and 10.89 Moz Au, Elatzite with 350 Mt of ore containing 1.4 Mt
of Cu and 2.83 Moz Au, Assarel with 354 Mt of ore containing 1.6 Mt of Cu and 2.2 Moz Au
and Konak with 518 Mt of ore containing 1.2 Mt Cu and 1.12 Moz Au [4].

Measured and indicated resources of the Bor deposit amount to 5.8 Mt Cu and 260 t
Au, at a cut-off grade of 0.3% Cu [5]. Cukaru Peki Lower Zone resource estimate amounts
of 14.3 Mt Cu at 0.38% cut-off grade and 298.6 t Au [6]. The total amount of Cu and Au
extracted from Bor is difficult to estimate, as mining operations have been going on for
more than a hundred years. Still, the approximate level of production + reserves reaches a
total of 6.6–6.7 Mt with higher cut-off grades, namely at 0.6% Cu for the porphyry zone
and 1.5% Cu for the epithermal zone and a total of 290–302 t Au [1,2,4,7].

Geosciences 2022, 12, 396. https://doi.org/10.3390/geosciences12110396 https://www.mdpi.com/journal/geosciences

https://doi.org/10.3390/geosciences12110396
https://doi.org/10.3390/geosciences12110396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0002-9629-4802
https://doi.org/10.3390/geosciences12110396
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences12110396?type=check_update&version=1


Geosciences 2022, 12, 396 2 of 24Geosciences 2022, 12, x FOR PEER REVIEW 2 of 26 
 

 

 

Figure 1. Geological map of the South-Eastern Timok magmatic complex (TMC), with locations of 

Bor and Cukaru Peki deposits. Modified after [6,8,9]. Lines A—A’ and B—B’ mark the position of 

the deposit sections through Bor and Cukaru Peki in Figure 2. 

Bor and Cukaru Peki are hosted by Phase I andesites [1], which represent the early-

stage magmatism within the Timok magmatic complex. Dykes with dioritic composition 

were described at deep levels of the Bor porphyry deposit in early literature; one small, 

1.5 m core interval was identified as a diorite dyke, syn-to post-mineral, in the upper part 

of the Borska Reka porphyry. Upper andesite at Cukaru Peki is texturally similar to the 

host rock at Bor; however, no lithology at Bor can be correlated to the lower andesite of 

Cukaru Peki, possibly due to faulting at Bor which juxtaposes conglomerate and Bor ig-

neous rocks at depth (Figure 2). 

Figure 1. Geological map of the South-Eastern Timok magmatic complex (TMC), with locations of
Bor and Cukaru Peki deposits. Modified after [6,8,9]. Lines A—A’ and B—B’ mark the position of the
deposit sections through Bor and Cukaru Peki in Figure 2.

Bor and Cukaru Peki are hosted by Phase I andesites [1], which represent the early-
stage magmatism within the Timok magmatic complex. Dykes with dioritic composition
were described at deep levels of the Bor porphyry deposit in early literature; one small,
1.5 m core interval was identified as a diorite dyke, syn-to post-mineral, in the upper part of
the Borska Reka porphyry. Upper andesite at Cukaru Peki is texturally similar to the host
rock at Bor; however, no lithology at Bor can be correlated to the lower andesite of Cukaru
Peki, possibly due to faulting at Bor which juxtaposes conglomerate and Bor igneous rocks
at depth (Figure 2).
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chronology [1,2,10], with additions based on Bor and Cukaru Peki geologic documentation. 

The host rock, andesite, has experienced chlorite-sericite alteration with associated 

magnetite-chalcopyrite-quartz vein mineralization in the deep Borska Reka porphyry, 

which grades into a texture–destructive sericite-kaolinite alteration zone towards the shal-

low part of the Borska Reka porphyry, and is overlain by an anhydrite-kaolinite alteration 

zone with anhydrite-sulfide veins, referred to as Tilva Ros epithermal mineralization zone 

and surrounded by the massive sulfide lens-like orebodies, including recently mined-out 

T, T1 and historic Tilva Mika, Coka Dulkan, E, E 1 and others [1,11,12]. 
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events into three stages [13–21]. 
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elj at 86.29 ± 0.32 Ma [22]. A dacite sample from the vicinity of Bor is dated at 84.28 ± 0.86 
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of Srednogorie Cretaceous magmatism in Bulgaria. In comparison, shallow andesites are 

similar to the Phase I andesites from other locations and yield ages from 85.56 ± 0.53 Ma 

to 84.89 ± 0.75 Ma. 

Figure 2. Cross-sections of Bor and Cukaru Peki deposits and locations of samples for U-Pb
geochronology [1,2,10], with additions based on Bor and Cukaru Peki geologic documentation.

The host rock, andesite, has experienced chlorite-sericite alteration with associated
magnetite-chalcopyrite-quartz vein mineralization in the deep Borska Reka porphyry,
which grades into a texture–destructive sericite-kaolinite alteration zone towards the shal-
low part of the Borska Reka porphyry, and is overlain by an anhydrite-kaolinite alteration
zone with anhydrite-sulfide veins, referred to as Tilva Ros epithermal mineralization zone
and surrounded by the massive sulfide lens-like orebodies, including recently mined-out T,
T1 and historic Tilva Mika, Coka Dulkan, E, E 1 and others [1,11,12].

Existing geochronological data (Figure 3) differentiate all of Timok’s magmatic events
into three stages [13–21].

U-Pb zircon TIMS ages define the start of Phase I based on samples from Veliki
Krivelj at 86.29 ± 0.32 Ma [22]. A dacite sample from the vicinity of Bor is dated at
84.28 ± 0.86 Ma [23], and the termination of Phase I is defined at 84.66 ± 0.5 Ma [22].
New ages obtained by [24] from the Nikolicevo area nearby Cukaru Peki encompass an
interval from 90.97 ± 0.39 Ma to 89.49 ± 0.42 age for those samples from the deep drill-
holes, similar to the age of Srednogorie Cretaceous magmatism in Bulgaria. In comparison,
shallow andesites are similar to the Phase I andesites from other locations and yield ages
from 85.56 ± 0.53 Ma to 84.89 ± 0.75 Ma.
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Figure 3. Geochronology of the Bor and Cukaru Peki deposits in the context of the Timok magmatic
complex [15,18,20,22,24–26]. Start and end of Phase I, as well as end of Phase II are based on U/Pb
zircon analysis and field relationships; start of Phase II cannot be constrained [20,22].

Phase I samples from Veliki Krivelj are dated at 86.12 ± 0.29 Ma and 84.17 ± 0.86 Ma [23];
post-phase II trachyte from the vicinity of Bor is at 84.28 ± 0.86 Ma. Intrusive rocks in the
Western part of Timok are considered the concluding Phase III of the Timok’s magmatic
activity, with ages ranging from 83.6 ± 0.5 Ma for Coka Kuruga diorite to Valja Strz
monzonite with the age of 78.5 ± 1.3 [21] or 78.39 ± 0.22 Ma [23], and ages of Dumitru
Potok, Kraku Ridji and Valja Strz diorite porphyries falling in between 82.5 ± 0.4 and
80.8 ± 0.6 Ma [21].

Re-Os molybdenite ages date the time of mineralization; existing ages are 86.24 ± 0.5 Ma
and 85.94 ± 0.4 Ma for Bor and 87.88 ± 0.5 Ma for the nearby Veliki Krivelj [18]. These
ages reflect the ore-forming events and may not reflect the age of the host rock. Bor Re-Os
ages overlap with the early Phase I magmatic stage within uncertainties, but Veliki Krivelj
Re-Os age is at least 0.7 Ma older than the onset of Phase I magmatism, as defined by U-Pb
zircon ages [22].

K-Ar and Ar-Ar ages of hornblende and biotite from Phase I andesite cover a wide
range from 89 ± 0.6 Ma to 84.3 ± 1.7 Ma for Bor and from 85.5 ± 1.3 Ma to 83 ± 1 Ma
for Veliki Krivelj [17,25]. Hydrothermal minerals, such as white mica and alunite, cover
ages from 86.9 ± 1.1 Ma to 84.6 ± 1.2 Ma at Bor [25,26]. Interpretation of those ages is
complicated because the system remained partially open after crystallization; multiple
pulses of hydrothermal activity are manifested in reopening of quartz-pyrite veins, crack
seal and overgrowth of pyrite stockwork veins by anhydrite.

Mineralization at Bor could be contemporaneous with Phase I magmatism: Re-Os ages
of molybdenite overlap with the early Phase I, and the uncertainties of K-Ar ages of white
mica are larger than the span of the Phase I magmatism defined by U-Pb ID-TIMS of zircon,
and one Re-Os age of molybdenite from Veliki Krivelj pre-dates the suggested beginning
of Phase I, but post-dates the existing ages of the plagioclase–hornblende andesite from
Nikolicevo area East of Cukaru Peki, South-East of Bor (Figure 3). This controversy between
magmatic ages and mineralization ages calls for additional age determination and possibly
reconsideration of the onset of Phase I magmatism.
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2. Materials and Methods

Due to the intensive alteration overprint and the lack of well-defined magmatic
contacts, vein truncations and the alignment of phenocrysts along the contacts, we selected
samples for dating and geochemical analysis from the different levels of the deposit.
Phase I andesite, weakly altered and barren, overlies the Borska reka porphyry and Tilva
Ros epithermal orebodies, and represents the host rock (samples B67-363 and B67-507).
Silicified diorite dyke with anhydrite-kaolinite alterations from the shallow level of the
deposit represents a syn-to post-mineral phase, with small-scale disseminations of covellite.
Samples from the deep porphyry zone of Borska Reka (BGM3-312 and BGM1-314) are
heavily altered and mineralized, and could represent the more intensively altered variant
of the overlying andesite volcanics, with a decreased modal abundance of plagioclase due
to its alteration to sericite and kaolinite, and therefore, could be correlated to V1A and V1B
in andesite phases from Cukaru Peki [24].

2.1. Zircon Geochemistry

In order to elucidate the connection between Bor and Cukaru Peki, and to test whether
Bor and Cukaru Peki could have originated from the replenishment of the same magma
chamber, we compare the geochemistry of zircon grains from both deposits, as well as the
zircon composition of the Veliki Krivelj porphyry, located north of Bor. As an additional
check, we look at a diorite sample from a relatively small Valja Strz deposit, where Cu
and Au’s endowment amounts to 0.28 Mt and 97 t, respectively, [21,23] to see whether
geochemical signatures that are similar between Bor and Cukaru Peki would be distinctly
different for Valja Strz compared to the barren Ridan-Krepoljin samples, and to further
explore the difference between mineralized magmatic pulses and those which are weakly
mineralized, with potential implications of exploration criteria that could be applied to the
Timok Magmatic Complex. The Ridan-Krepoljin area is considered practically barren, with
a small prospect of Kucajna [27].

Drill core samples were cleaned, disaggregated with Selfrag and sieved. The fraction
of 100–250 µm was processed with Methylene Iodide, followed by electrostatic separation;
zircons were hand-picked under a binocular microscope; all grains were treated with one
step of the chemical annealing procedure, annealing with 900 ◦C during 48 h, embedded in
epoxy resin and polished.

In order to reveal the internal texture of the zircons and check for the presence of
inherited cores, epoxy mounts were carbon-coated and investigated on the JEOL JSM-6390
LA scanning electron microscope (SEM) equipped with a Deben Centaurus panchromatic
cathodoluminescence detector.

U-Pb ages and trace element contents in zircons were obtained by Laser Ablation-
Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) at ETH Zürich, with a
193 nm Resolution (S155) ArF excimer laser coupled to an Element sector-field ICP-MS;
30 µm spots were placed in the inclusion-free interior of the grains. Age and trace element
data were collected during the same run. A 5 Hz repetition rate was used and the blank
signal of 20 s was followed by the ablation signal of 30 s. On-sample fluence was around
2.5–3.5 J/cm2 for zircon measurements. LA-ICP-MS intensities were processed using
Iolite software to obtain the ages and trace element contents. The following standards
were measured after every set of 20 sample points: GJ-1 [28], 91500 [29], AUSZ-7 [30] and
Plesovice [31] for ages and NIST-612 glass standard for trace elements; zircon blank was
ablated together with the standards. Although cathodoluminescence imaging revealed
oscillatory zoning of the rims overgrowing the more homogeneous core, plotting the trace
elements of cores vs. rims did not show any significant difference in the core/rim trace
element zonation. Due to the small size of most zircons, placing the laser spot in the core
would inevitably result in a mixed core and rim signal.

ICP-MS signals were processed with Iolite software [32], and the IsoplotR tool was
used for plotting average ages [33]. We excluded zircon grains from the calculation if
the grains showed inherited components or younger ages and did not overlap within the
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uncertainty with the data cluster. Grains with younger ages than the obtained mean age
can be explained by recent Pb loss. For the uncertainty calculation of the average age, error
propagation of 1.5% was used, based on consideration of [34].

Eu anomaly is calculated according to the following formula [35]:

Eu ∗ n = 2
√

SmN ∗ GdN (1)

where Sm and Gd values are normalized to C1 chondrite from [36], multiplied by 1.3596
after [37].

2.2. Machine Learning

Machine learning tools are gaining wider acceptance as commonly used tools for prospec-
tivity and for statistically robust analysis of large mineral geochemistry datasets [38–40].

We test the application of several basic machine learning algorithms to zircon geo-
chemistry in order to predict rock types and their association with known mineral deposits
and barren occurrences. The tested algorithms include decision tree and random forest [41],
implemented in Python.

The decision tree algorithm [41] predicts the target variable in a tree-like sequence
of steps, with each of the steps, or nodes, representing the decision point. The simplest
explanation of a decision tree based on zircon geochemistry criteria can be shown on
the example in [42], suggesting that zircons with an Eu anomaly greater than 0.3 and
Ce/Nd ratio greater than 5 belong to mineralized rock suites (Figure 4). The random forest
algorithm takes into account multiple decision trees, using the majority vote for predicting
the classification label.
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Figure 4. Basic illustration of the decision tree algorithm applied to the zircon geochemistry.

Parameters of decision tree and random forest classifier were tuned with Grid search.
In order to estimate the quality of results produced by each algorithm, we use a

classification report comparing predicted and actual values from the test dataset. To
get a more detailed view of predictions, we use the confusion matrix which provides a
breakdown of correctly and incorrectly predicted values for each class or deposit, where
correctly classified data points lie on the diagonal of the matrix and indicate that a predicted
deposit coincides with the actual deposit label. As an additional insight, the confusion
matrix provides information about false positive and false negative predictions. For each
predicted class, false positive values are calculated as the sum of the off-diagonal values
along the column of the confusion matrix, while false negatives are the sum of the off-
diagonal values along the row.

To understand the importance of each variable for making the prediction, SHAP
(SHapley Additive exPlanations) values are calculated on the training set [43]. We focus on
comparing the feature importance for decision tree and random forest algorithms.
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3. Results
3.1. Geology of Bor and Cukaru Peki

Cukaru Peki is located 5 km south of Bor and is characterized by many similarities
to Bor, in terms of mineralization styles, host rock alteration and the presence of high-
sulfidation epithermal massive sulfides [2,44,45].

Representative rock types from Bor are shown in Figure 5. Samples of coherent Phase I
andesite with minimal alteration represent the host rock of the Bor deposit and are texturally
very similar to the VIA andesites characterized by [24], especially the least altered andesite
exemplified by sample B67-258. Down the interval the degree of alteration increases:
sample B67-363 is characterized by the sericite-kaolinite alteration and pyrite-anhydrite
veins (Figure 5a), with chalcopyrite inclusions hosted in pyrite. The deepest sample from
this drill hole located 507 m from the drill hole collar, B67-507, has experienced texture–
destructive anhydrite-kaolinite alteration. Quartz veins and chalcopyrite disseminations
are present in sample B67-507. All samples overly the main mineralized Borska Reka
porphyry and Tilva Ros epithermal zones.
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Figure 5. Samples selected for geochronology and zircon trace element analysis. (a) Altered Phase
I andesite overlying Borska Reka and Tilva Ros deposits, with pyrite-anhydrite veins; B67-373;
(b) Fine-grained diorite dyke from shallow levels of Borska Reka porphyry, with sinuous quartz
veins, disseminated covellite; BGM1-64; (c) Deep, heavily altered Phase I andesite from Borska Reka
porphyry, with quartz-pyrite-chalcopyrite veins and pyrite-anhydrite veinlets with chlorite-sericite
halos; BGM3-312; (d) Deep Borska Reka porphyry with prominent chalcopyrite-pyrite disseminations
and hairline pyrite stringers; BGM1-314; (e) P1 porphyry from Cukaru Peki, pervasively altered,
with anhydrite-pyrite vein crosscutting quartz-pyrite vein; TC160125B-1464.5; (f) P2 crowded diorite
porphyry from Cukaru Peki, with quartz-pyrite-chalcopyrite vein cross-cut by a gypsum vein;
FMTC1328-914.5; (g) Post-mineral fine-grained P10 diorite porphyry from Cukaru Peki; TC160125-
1360.4. Sample labels throughout contain the number of the drill hole (i.e., BGM1) followed by the
depth of the sample relative to the collar of the drill hole (i.e., 314 m).
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Although clear-cut magmatic contacts are absent, one diorite porphyry dyke was
logged in the core from the shallow medium-grade Borska Reka porphyry zone: sample
BGM1-64 (Figure 5b) is characterized by a conspicuously equigranular texture, with sinuous
quartz vein and hairline-thick magnetite veinlets.

Deep high-grade Borska Reka porphyry samples, namely BGM3-312 and BGM1-314
(Figure 5c,d), are altered to chlorite-sericite, with veins of quartz-pyrite-chalcopyrite ± anhydrite
cross-cut by tiny pyrite-anhydrite-covellite veins.

Early porphyry phases from Cukaru Peki are exemplified by intensely altered P1 and
P2 porphyries (Figure 5e,f); P10 post-mineral dyke is unaltered and barren (Figure 5g).

Porphyry-style mineralization is present in deeper parts of the deposit, with quartz, an-
hydrite, magnetite and chalcopyrite veins and chalcopyrite disseminations (Figure 6a); the
top of this porphyry zone is outlined at 1000 m below the surface [45]. For comparison, the
top of the porphyry-style magnetite-chalcopyrite vein mineralization (Figure 6b) at Borska
reka is located at approximately 800 m depth. The transitional zone at Cukaru Peki overlies
the porphyry zone, with covellite and enargite replacing chalcopyrite (Figure 6d,g); anhy-
drite, calcite and gypsum veins with pyrite and covellite being the prevalent vein types [46].
Epithermal veins with covellite, anhydrite and enargite cross-cut quartz-chalcopyrite-pyrite
veins at Bor (Figure 6f). High-grade massive sulfides at Cukaru Peki (Figure 6i), as well
as pyrite-covellite veins (Figure 6h) and hydrothermal breccias represent the shallow part
of the deposit and are found at depths from 400 to 1000 m below the surface; at Bor, re-
cently mined T and T1 massive sulfide orebodies (Figure 6j) are located at depth of 500
m below the surface, and historic Coka Dulkan and Tilva Mika were outcropping at the
pre-mining surface.

The paragenetic sequence of the porphyry-style ore is very similar for Bor and Cukaru
Peki (Figures 7 and 8) [45]. There are similarities in the textural position of anhedral
chalcopyrite and euhedral pyrite, both in the quartz-magnetite-chalcopyrite veins and as
disseminations (Figure 8). Magnetite and hematite textures differ slightly: at Bor, hematite
replaces magnetite at the rims, but also overgrows magnetite grains as laths, while at
Cukaru Peki the magnetite-hematite texture is more typically martitic, with hematite pseu-
domorphs forming after euhedral magnetite crystals (Figure 7a,b). Comparison between
anhydrite veins shows that chalcocite, while being present only as sub-micron grains in the
anhydrite-sulfide veins at Cukaru Peki, is significant at Bor; pyrite textures are very similar,
with inclusion- and pore-rich cores overgrown by inclusion-poor rims (Figure 7c,d). Pyrite
is cracked, deformed and overgrown by covellite and chalcocite at Bor, and mostly by
covellite at Cukaru Peki. Massive sulfide textures are very similar, too, with covellite being
the prevalent Cu sulfide in the massive sulfide ore and enargite pre-dating Cu sulfides
(Figure 7e,f). Rutile occurs throughout all the lithologies and mineralization styles: as
inclusions in pyrite from the porphyry-style veins, along former parting planes of mag-
netite, along cleavage planes of amphibole, intergrown with quartz from the vuggy quartz
overlying massive sulfides and as inclusions in residual quartz in high-grade massive
sulfide ore.

Gold is present in massive sulfides in both deposits; while porphyry at Bor is char-
acterized by elevated gold contents, no visible gold was found in the porphyry ore from
Bor. On the contrary, at Cukaru Peki, gold is present as small inclusions of native gold and
electrum in porphyry-style ore in porphyry-style ore but is only observed as trace elements
in the massive sulfide ore (Figure 8).

3.2. Trace Element Composition of Zircons

Despite the wide usage of the Ce anomaly in previous studies [47–49], it has been
recently shown that the magnitude of Ce anomaly can evolve from high to low values
as an effect of a temperature decrease at constant oxygen fugacity [50]; this calls for a
revised estimation of magma oxidation state, which in combination with Eu anomaly could
represent a potential fertility discriminator [51–54].
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Both Bor and Cukaru Peki are characterized by EuN/Eu*N values greater than
0.4 (Figure 9), which shows that they conform to the widely accepted criteria of europium
anomaly greater than 0.3 that is typical of fertile magmas [42]; notably, late low-grade
diorite at Bor and post-mineral dyke at Cukaru Peki are both characterized by Eu anomaly
greater than 0.3. Samples from Ridan-Krepoljin area have notably smaller Eu anomaly, but
indicate partial overlap with Bor, Nikolicevo and Cukaru Peki samples. The data from
Valja Strz are clustered into two groups: one overlaps with Bor and Cukaru Peki in terms
of europium anomaly, and the second cluster plots distinctly below the value of 0.3. The
mean value of both clusters from Valja Strz is distinctly below the mean values of all rocks
from Bor and Cukaru Peki. The mean values of normalized europium anomaly for Bor
and Cukaru Peki rocks are all between 0.6 and 0.7, without any distinction between host
rock volcanics and porphyries; however, both P10 from Cukaru Peki and late weakly min-
eralized porphyry from Bor are characterized by a wider spread of Eu anomaly values. In
terms of Eu anomaly vs. Hf, re-calculated Eu anomaly values of published zircon analyses
from Bulgaria [55,56] are closest to the values of late low-grade porphyry from Bor.
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Figure 6. Mineralization styles at Bor and Cukaru Peki. (a) Quartz-magnetite-pyrite veins, wallrock
with chlorite-sericite alteration, from deep Borska Reka porphyry zone; BGM7-316; (b) Magnetite-
quartz veins from Cukaru Peki, deformed and cross-cut by pyrite veins; (c) Pyrite-chalcopyrite
veins with minor quartz from below the T1 massive sulfide orebody, level of -245 m; (d) Pyrite-
chalcopyrite veins with prominent sericite halo from Cukaru Peki; (e) Anhydrite-covellite vein in a
wallrock with kaolinite-sericite alteration, transitional zone between Borska Reka porphyry and Tilva
Ros epithermal zone; BGM1-195; (f) Covellite-pyrite veins crosscutting quartz-pyrite vein from the
vicinity of the Tilva Ros orebody, level of -70 m; (g,h) Pyrite-covellite vein with solid sulfur and a
prominent anhydrite-kaolinite halo from Cukaru Peki; (i) Massive sulfide from Cukaru Peki, with
enargite overgrown by pyrite and covellite; (j) Massive sulfide from the central part of the T orebody,
dominantly covellite and pyrite, residual quartz, BB3-23. Scale bar = 1 cm.
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Figure 7. Ore textures from Bor and Cukaru Peki. (a) Deep porphyry style magnetite-chalcopyrite-
pyrite-quartz veins, Bor; (b) magnetite-chalcopyrite-quartz vein from Cukaru Peki; (c) Epithermal
anhydrite-sulfide veins, Bor; (d) Quartz-pyrite-covellite vein from transitional zone of Cukaru Peki;
(e) Bor massive sulfide, fragmented pyrite in the matrix of chalcocite and covellite; (f) Collomorph
pyrite overgrown by covellite, massive sulfide from Cukaru Peki.
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Figure 9. EuN/Eu*N vs. Hf of zircons; data and 95% confidence ellipses, showing very close
resemblance between Bor deep Borska reka andesites and Cukaru Peki porphyries, as well as an
overlap between Nikolicevo, Cukaru Peki and Bor porphyries, and potentially, a lower degree of
fractionation for Bor andesites. Due to large scatter of Valja Strz samples, no confidence ellipses are
plotted for this sample.
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Zircons from Bor host-rock andesite are characterized by distinctly greater Hf values,
and they are also characterized by ages that are by 1 to 2 Ma older than the rocks from the
deep Borska Reka porphyry zone. Figure 9 shows the widely accepted fertility discrimina-
tors of Eu anomaly vs. Hf [42]. In addition to data plots, 95% confidence ellipses with a
diameter of 2 sigma are plotted for all samples except Valja Strz.

A total of 10,000*(EuN/Eu*N)/Y vs. GdN of zircons (Figure 10) shows the difference
in the slope of the confidence ellipses for mineralized samples (steep slope) and weakly
mineralized or barren samples (flat slope).
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Figure 10. 10,000*(EuN/Eu*N)/Y vs. GdN of zircons, showing the difference in the slope of the
confidence ellipses for mineralized samples (steep slope) and weakly mineralized or barren samples
(flat slope).

Dy/Yb (Figure 11) in zircon potentially records the melt fraction [57] and can serve as
another fertility discriminator, with fertile suits typically characterized by Dy/Yb below
0.3 [42]. For our sample set, the mean values of Dy/Yb for zircons from Cukaru Peki
and Bor are lower than the mean values of Valja Strz zircons. However, all samples are
characterized by a large spread of Dy/Yb values. Host rock andesite at Bor show elevated
Dy/Yb ratios compared to deeper Borska Reka rocks, but a relatively constant trend in Eu
anomaly with decreasing Dy/Yb. Samples from Medet [56] tend to show higher Dy/Yb
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than most of the mineralized rocks from this study, while Chelopech samples overlap with
Bor porphyries and andesites, Nikolicevo and Cukaru Peki [55].
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Figure 11. EuN/Eu*N vs. Dy/Yb of zircons, showing somewhat elevated Dy/Yb for weakly
mineralized Valja Strz rocks and partial overlap with widely spread values of Dy/Yb of Bor and
Cukaru Peki; however, the barren Ridan-Krepoljin signature is clearly different.

Oxidation state of magmas is a potentially important fertility factor for porphyry
Cu mineralization [42,51,58]. We use recent method of [59] for estimating fO2 of each
sample (Figure 12), assuming the activity of SiO2 of 0.7 for quartz-undersaturated andesitic
melts and TiO2 activity of 1, based on petrographic evidence of rutile being present in Bor
andesites [60]; however, the magmatic nature of rutile cannot be established with certainty
for hydrothermally altered rocks. Furthermore, we test if the usage of the fO2 variable
can potentially contribute to further improving the separation between data points from
different deposits.
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Figure 12. Eu anomaly and calculated oxidation state of magmas according to [59]. Mineralized rocks
are characterized by higher Eu anomaly values than barren and weakly mineralized ones.

Yb/Gd vs. Ce/Sm ratios (Figure 13) can discriminate between the role of apatite,
hornblende and titanite fractionation [37]. Bor and Veliki Krivelj partly overlap and are
characterized by higher Yb/Gd ratios and a steeper slope of the trend line. Veliki Krivelj
shows the flattening of the trend line for samples with Ce/Sm larger than 6. Cukaru Peki
shows a relatively constant flat trend.
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Figure 13. Normalized Yb/Gd vs. Ce/Sm of zircons, showing separation between Bor, Cukaru
Peki and Nikolicevo V1B, on one side, and Valja Strz, Ridan Krepoljin and Nikolicevo V1A. Crystal
fractionation vectors from [37].

Figure 14 shows the plot of Yb/Gd vs. Th/U that is used to tell apart the effects
of magma mixing and crystal fractionation. The Bor host rock, andesite, overlaps with
the Borska Reka porphyry samples, but overall, is characterized by a concentration of
most points around Yb/Gd value of 40 to 50. Borska Reka porphyry and Bor late, low-
grade porphyry display the continuous fractionation trend from high Th/U, low Yb/Gd
to low Th/U and high Yb/Gd. Cukaru Peki and Veliki Krivelj samples deviate from the
fractionation trend of Bor and are characterized by higher Th/U ratios for comparable
Yb/Gd values, and an overlap with Bor samples in the region of Yb/Gd from 40 to 50.
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Figure 14. Yb/Gd vs. Th/U diagram, showing the fractionation trend for Bor and the evidence of
magma mixing for Cukaru Peki, and the separation between mineralized and barren samples.

3.3. Application of Machine Learning Algorithms to the Zircon Geochemistry Dataset from Timok
Magmatic Complex

The purpose of this exercise is to see whether the zircons can be correctly grouped
according to their origin based on their geochemical signatures (Python code in digital
Supplementary Material S2). The dataset contains 798 data points, each representing
geochemical data for a concordant zircon grain. Samples in this dataset include regional
Timok samples, Bor, Cukaru Peki porphyries, Veliki Krivelj, weakly mineralized Valja Strz
and barren Ridan-Krepoljin zone; the last two groups are from the study of [23], reanalyzed
for trace elements by LA-ICP-MS; samples from the vicinity of Cukaru Peki, Nikolicevo,
were included in the dataset [24]. Three outliers were removed from the dataset: one with
elevated Ba content of 320 ppm, and two with elevated Ti content of 130 and 271 ppm. Ba
values over 10 were identified as outilers (one data point from Bor andesite and two from
Nikolicevo), as well as La values over 5 ppm (one data point from Nikolicevo, one from
Valja Strz and two from Ridan-Krepoljin). Four data points with extremely high Th were
excluded, all from Valja Strz. One high-U data point from Ridan-Krepoljin was excluded.
Zircon geochemistry dataset is in the digital appendix (Supplementary Material S1).
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As one would expect from basic geochemistry, the correlation matrix (Figure 15) shows
that light REE are characterized by weak correlation, while HREE are strongly correlated
to each other and are significantly correlated to Y. Pb is strongly correlated with U and, to
a lesser degree, with Th, indicating minimal common Pb in the zircons. Normalized Eu
anomaly is not correlated with any other element, while calculated fO2 shows significant
correlation with Ce (0.73) and Th (0.77).
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The dataset structure is not balanced, with prevalence of certain sample groups among
others. Figure 16 shows the total number of measurements for each sample and deposit.



Geosciences 2022, 12, 396 18 of 24

Geosciences 2022, 12, x FOR PEER REVIEW 20 of 26 
 

 

The dataset structure is not balanced, with prevalence of certain sample groups 

among others. Figure 16 shows the total number of measurements for each sample and 

deposit. 

Figure 16. Number of data points for each sample and deposit. 

3.3.1. Exploratory Data Analysis 

Several iterations of plotting and outlier detection and removal were performed. 

First, a pairplot for all of the elements was used to see if there is a good separation between 

the samples from different deposits (reduced version of this histogram with only four el-

ements in Figures 17–19 imply that there is relatively good separation for Hf and P when 

using deposits as sample groups). 

Figure 16. Number of data points for each sample and deposit.

3.3.1. Exploratory Data Analysis

Several iterations of plotting and outlier detection and removal were performed. First,
a pairplot for all of the elements was used to see if there is a good separation between the
samples from different deposits (reduced version of this histogram with only four elements
in Figures 17–19 imply that there is relatively good separation for Hf and P when using
deposits as sample groups).

We tested the decision tree and random forest algorithms implemented in Python to
see whether the zircons can be correctly linked to their location based on their geochemical
signatures (Python code in Supplementary Material S2). The dataset contains 869 analyses
of zircons from Timok area.

3.3.2. Workflow

Seventy percent of the dataset was used to train the decision tree algorithm, and 30%
was used for testing the accuracy of prediction of the deposits or occurrences. We used all
the geochemical analyses, as well as Eu and log fO2 calculated after [59] for each sample as
the input, and deposit or locality name as the target label.

We calculated precision on the test dataset as the main validation metric, compared
the results from different algorithms and plotted the confusion matrix to see how well the
prediction works and what samples are misclassified.

3.3.3. Predictions

Figure 18 shows the confusion matrix for predicting the deposit or area based on
zircon geochemistry. Generally, similar deposits get confused (for example, Nikolicevo and
Cukaru Peki). The main diagonal represents correctly predicted deposits or localities, with
the number of samples in each correctly predicted category.

The accuracy of prediction for the test set for different algorithms is shown in Table 1.
Taking into account the lack of balance between the different sample groups, we used both
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the ordinary train/test split and the 10-fold cross-validation to split the dataset into training
and test set.
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Table 1. Comparison of prediction accuracy for deposit and the mineralized/weakly mineral-
ized/barren rock type, testing whether 10-fold cross-validation will change the accuracy.

Algorithm Prediction of Deposit or Locality

Decision tree 0.79

Random Forest 0.85

With 10-Fold cross-validation

Decision tree 0.8

Random forest 0.89

We used trace element data and Eu anomaly as input variables for the decision tree
and random forest classifiers. Adding log fO2, calculated after [59], did not change the
accuracy of the prediction.

The feature importance plots (Figure 19) illustrate that Ba and P are the most important
features contributing to the prediction of deposits, closely followed by U, Ce, Hf and Th.
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4. Discussion and Conclusions

We have obtained geochemical data for zircons from Bor and Cukaru Peki, and
performed a benchmark comparison to a weakly mineralized younger intrusion of Valja
Strz and the barren Ridan-Krepoljin zone. The results provided the following insights into
the development of magmatic systems of these deposits.

Eu anomaly vs. Hf shows that andesites at Bor are distinctly higher in Hf and plot
above 0.3 in terms of Eu anomaly, while approximately half of Valja Strz zircons are charac-
terized by lower Eu anomaly, which could reflect that Bor andesite was evolving towards
suppressed plagioclase crystallization under higher oxygen fugacity conditions [35,37].
Higher Hf of older host rock volcanics at Bor can mean that the host rock andesites were
emplaced before the replenishment of the magma chamber and represent evolved melts be-
fore mixing; alternatively, deep Borska Reka porphyries might represent a totally unrelated
magmatic event. Generally speaking, most of the zircons from this study, as well as from
the larger dataset from the Timok area [23], plot above 0.3 in terms of Eu anomaly. The
comparison of Bor, Cukaru Peki, Veliki Krivelj samples to weakly mineralized Valja Strz
and barren Ridanj Krepoljin suggests that the cut-off value for magmas that are capable of
producing deposits with significant Cu endowment would be around 0.6 in terms of Eu
anomaly in the Timok area.

Based on Th/U vs. Yb/Gd, we suggest that magma mixing was important for Cukaru
Peki, while Bor rocks followed the normal fractionation trend to a greater degree.

Fractionation trends controlled by apatite, hornblende, zircon and garnet [37] in
Yb/Gd vs. Ce/Sm coordinates show that in addition to different starting compositions,
the role of apatite crystallization was more pronounced at Bor than at Cukaru Peki. Late
low-grade porphyry at Bor is influenced by garnet crystallization, which is expressed in
lower Yb/Gd at similar Ce/Sm values compared to Bor host-rock andesites; Cukaru Peki
porphyries, both early mineral and late post-mineral are influenced by garnet fractionation
trend to a greater degree compared to any rock types from Bor.

We have demonstrated the salient similarities and differences between Bor and Cukaru
Peki and compared the geochemistry of Bor and Cukaru Peki zircons to weakly mineralized
Valja Strz rocks.

Based on the dataset collected during this study and the earlier studies of [23] and [24],
we demonstrate the possibility of fingerprinting the deposit or locality based on the geo-
chemical characteristics of zircon, and prediction of mineralization potential of the mag-
matic rocks from the Timok region taking into account not only widely-accepted indicators
like Eu value, but a more complex pattern that considers all the measured elements.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/geosciences12110396/s1, Supplementary Material S1: zircon geochemistry data, Supplementary
Material S2: Python code.
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Deposits; Janković, S., Sillitoe, R.H., Eds.; SGA Special Publication: Lubbock, TX, USA, 1980; Volume 1, pp. 42–49.
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