Coarse-Clast Storm Deposit and Solitary Boulders on the Island of Mana (NP Kornati, Central Adriatic, Croatia)
Abstract
:1. Introduction
2. Geographical and Geological Setting
3. Materials and Methods
3.1. Basic Field Observations
3.2. UAS Photogrammetry and 3D Modeling
3.3. Fragment Size Distribution Analysis from UAS Photogrammetry
3.4. Atmosphere-Ocean-Wave Modeling during the 29 October 2018 Vaia Storm
4. Results
4.1. Limestone Bedrock and Fracture System
4.2. Mana Coarse-Clast Deposit
4.3. Recent Displacements of the Solitary Boulders
4.4. Surface Fragment Size and Distribution within the Mana Deposit
4.5. Wave Modeling during the 29 October 2018 Vaia Storm
5. Discussion
5.1. Bedrock Conditions and the Origin of the Clasts
5.2. Fragment Size Distribution
5.3. Wave Modeling and Boulders Movements
5.4. Transport Mechanism
5.5. Boulder Dynamics and the Age of the Deposit
5.6. Future Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suanez, S.; Fichaut, B.; Magne, R. Cliff-top storm deposits on Banneg Island, Brittany, France: Effects of giant waves in the Eastern Atlantic Ocean. Sediment. Geol. 2009, 220, 12–28. [Google Scholar] [CrossRef]
- Etienne, S.; Paris, R. Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland). Geomorphology 2020, 114, 55–70. [Google Scholar] [CrossRef]
- Fichaut, B.; Suanez, S. Quarrying, transport and deposition of cliff-top storm deposits during extreme events: Banneg Island, Brittany. Mar. Geol. 2011, 283, 36–55. [Google Scholar] [CrossRef]
- Goto, K.; Miyagi, K.; Kawana, T.; Takahashi, J.; Imamura, F. Emplacement and movement of boulders by known storm waves—Field evidence from the Okinawa Islands, Japan. Mar. Geol. 2011, 283, 66–78. [Google Scholar] [CrossRef]
- Cox, R.; Zentner, D.B.; Kirchner, B.J.; Cook, M.S. Boulder ridges on the Aran Islands (Ireland): Recent movements caused by storm waves, not tsunamis. J. Geol. 2012, 120, 249–272. [Google Scholar] [CrossRef]
- Cox, R.; Jahn, K.L.; Watkins, O.G.; Cox, P. Extraordinary boulder transport by storm waves, and criteria for analysing coastal boulder deposits. Earth-Sci. Rev. 2018, 177, 623–636. [Google Scholar] [CrossRef]
- Cox, R. Very large boulders were moved by storm waves on the west coast of Ireland in winter 2013–2014. Mar. Geol. 2019, 412, 217–219. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Pignatelli, C.; Sansò, P.; Selleri, G. Boulder accumulations produced by the 20th February, 1743 tsunami along the coast of Southeastern Salento (Apulia region, Italy). Mar. Geol. 2007, 242, 191–205. [Google Scholar] [CrossRef]
- Williams, D.M.; Hall, A.M. Cliff-top megaclast deposits of Ireland, a record of extreme waves in the North Atlantic—storms or tsunamis? Mar. Geol. 2004, 206, 101–117. [Google Scholar] [CrossRef]
- Richmond, B.M.; Watt, S.; Buckley, M.; Jaffe, B.E.; Gelfenbaum, G.; Morton, R.A. Recent storm and tsunami coarse-clast deposit characteristics, southeast Hawai’i. Mar. Geol. 2011, 283, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Prizomwala, S.P.; Gandhi, D.; Ukey, V.M.; Bhatt, N.; Rastogi, B.K. Coastal boulders as evidences of high-energy marine events from Diu Island, west coast of India: Storm or palaeotsunami? Nat. Hazards 2015, 75, 1187–1203. [Google Scholar] [CrossRef]
- Cox, R.; Ardhuin, F.; Dias, F.; Autret, R.; Beisiegel, N.; Earlie, C.S.; Herterich, J.G.; Kennedy, A.; Paris, R.; Raby, A.; et al. Systematic Review Shows That Work Done by Storm Waves Can Be Misinterpreted as Tsunami-Related Because Commonly Used Hydrodynamic Equations Are Flawed. Front. Mar. Sci. 2020, 7, 4. [Google Scholar] [CrossRef]
- Biolchi, S.; Furlani, S.; Devoto, S.; Scicchitano, G.; Korbar, T.; Vilibić, I.; Šepić, J. The origin and dynamics of coastal boulders in a semi-enclosed shallow basin: A northern Adriatic case study. Mar. Geol. 2019, 411, 62–77. [Google Scholar] [CrossRef]
- Hall, A.M.; Hansom, J.D.; Williams, D.M.; Jarvis, J. Distribution, geomorphology and lithofacies of cliff-top storm deposits: Examples from the high-energy coasts of Scotland and Ireland. Mar. Geol. 2006, 232, 131–155. [Google Scholar] [CrossRef]
- Naylor, L.A.; Stephenson, W.J.; Smith, H.C.M.; Way, O.; Mendelssohn, J.; Cowley, A. Geomorphological control on boulder transport and coastal erosion before, during and after an extreme extra-tropical cyclone. Earth Surf. Processes Landf. 2016, 41, 685–700. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Scotto, M.G.; Barbosa, S.; de Andrade, C.F.; da Conceição Freitas, M. Morphological controls and statistical modelling of boulder transport by extreme storms. Mar. Geol. 2020, 426, 106216. [Google Scholar] [CrossRef]
- Biolchi, S.; Furlani, S.; Antonioli, F.; Baldassini, N.; Deguara, J.C.; Devoto, S.; Stefano, A.D.; Evans, J.; Gambin, T.; Gauci, R.; et al. Boulder accumulations related to extreme wave events on the eastern coast of Malta. Nat. Hazards Earth Syst. Sci. 2016, 16, 719–756. [Google Scholar] [CrossRef]
- Paulatto, M.; Pinat, T.; Romanelli, F. Tsunami hazard scenarios in the Adriatic Sea domain. Nat. Hazards Earth Syst. Sci. 2007, 7, 309–325. [Google Scholar] [CrossRef]
- Pasarić, M.; Brizuela, B.; Graziani, L.; Maramai, A.; Orlić, M. Historical tsunamis in the Adriatic Sea. Nat. Hazards 2012, 61, 281–316. [Google Scholar] [CrossRef]
- Leder, N.; Smirčić, A.; Vilibić, I. Extreme values of surface wave heights in the northern Adriatic. Geofizika 1999, 15, 1–13. [Google Scholar]
- Pomaro, A.; Cavaleri, L.; Lionello, P. Climatology and trends of the Adriatic Sea wind waves: Analysis of a 37-year long instrumental data set. Int. J. Clim. 2017, 37, 4237–4250. [Google Scholar] [CrossRef]
- Denamiel, C.; Pranić, P.; Quentin, F.; Mihanović, H.; Vilibić, I. Pseudo-global warming projections of extreme wave storms in complex coastal regions: The case of the Adriatic Sea. Clim. Dyn. 2020, 55, 2483–2509. [Google Scholar] [CrossRef]
- Vlahović, I.; Tišljar, J.; Velić, I.; Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 333–360. [Google Scholar] [CrossRef]
- Korbar, T. Orogenic evolution of the External Dinarides in the NE Adriatic region: A model constrained by tectonostratigraphy of Upper Cretaceous to Palaeogene carbonates. Earth-Sci. Rev. 2009, 96, 296–312. [Google Scholar] [CrossRef]
- Pikelj, K.; Juračić, M. Eastern Adriatic coast (EAC): Geomorphology and coastal vulnerability of a karstic coast. J. Coast. Res. 2013, 29, 944–957. [Google Scholar] [CrossRef]
- Biolchi, S.; Denamiel, C.; Devoto, S.; Korbar, T.; Macovaz, V.; Scicchitano, G.; Vilibić, I.; Furlani, S. Impact of the October 2018 Storm Vaia on Coastal Boulders in the Northern Adriatic Sea. Water 2019, 11, 2229. [Google Scholar] [CrossRef]
- Rosin, P.; Rammler, E. Laws governing the fineness of powdered coal. J. Inst. Fuel 1933, 7, 89–105. [Google Scholar]
- Turcotte, D.L. Fractals and fragmentation. J. Geophys. Res. 1986, 91, 1921–1926. [Google Scholar] [CrossRef]
- Grady, D.E.; Kipp, M.E. Dynamic rock fragmentation. In Fracture Mechanics of Rocks, Atkinson, B.K., Ed.; Elsevier: New York, NY, USA, 1987; pp. 429–475. [Google Scholar]
- Hartmann, W.K. Terrestrial, lunar, and interplanetary rock fragmentation. Icarus 1969, 10, 201–213. [Google Scholar] [CrossRef]
- Lu, P.; Jefferson, I.F.; Rosenbaum, M.S.; Smalley, I.J. Fractal characteristics of loess formation: Evidence from laboratory experiments. Eng. Geol. 2003, 69, 287–293. [Google Scholar] [CrossRef]
- Crosta, G.B.; Frattini, P.; Fusi, N. Fragmentation in the Val Pola rock avalanche, Italian Alps. J. Geophys. Res.-Earth 2007, 112, F01006. [Google Scholar] [CrossRef]
- Brčić, V.; Korbar, T.; Fuček, L.; Palenik, D.; Belić, N.; Mišur, I.; Wacha, L. Osnovna Geološka Karta Republike Hrvatske (Basic Geological Map of the Republic of Croatia) Mjerila (Scale) 1:50,000—NP KORNATI; Zavod za Geologiju (Department of Geology), Hrvatski Geološki Institute (Croatian Geological Survey): Zagreb, Croatia, 2019; ISBN 978-953-6907-72-4.
- Cavaleri, L.; Bajo, M.; Barbariol, F.; Bastianini, M.; Benetazzo, A.; Bertotti, L.; Chiggiato, J.; Davolio, S.; Ferrarin, C.; Magnusson, L.; et al. The 29 October 2018 storm in Northern Italy—An exceptional event and its modeling. Prog. Oceanogr. 2019, 178, 102178. [Google Scholar] [CrossRef]
- Davolio, S.; Della Fera, S.; Laviola, S.; Miglietta, M.M.; Levizzani, V. Heavy precipitation over Italy from the Mediterranean storm “Vaia” in October 2018: Assessing the role of an atmospheric river. Mon. Weather Rev. 2020, 148, 3571–3588. [Google Scholar] [CrossRef]
- Korbar, T.; Surić, M.; Fuček, L.; Mihelčić, V.; Veseli, V.; Drobne, K. Geologija kornatskog otočja (Geology of Kornati archipelago). In Vodič Ekskurzija (Excursion Guidebook), 4. Hrvatski Geološki Kongres (4th Croatian Geological Congress); Horvat, M., Ed.; Hrvatski Geološki Institut (Croatian Geological Survey): Zagreb, Croatia, 2010; Excursion B1; pp. 130–142. [Google Scholar]
- Surić, M.; Juračić, M.; Horvatinčić, N.; Krajcar Bronić, I. Late Pleistocene—Holocene sea-level rise and the pattern of coastal karst inundation: Records from submerged speleothems along the Eastern Adriatic Coast (Croatia). Mar. Geol. 2005, 214, 163–175. [Google Scholar] [CrossRef]
- Benjamin, J.; Rovere, A.; Fontana, A.; Furlani, S.; Vacchi, M.; Inglis, R.H.; Galili, E.; Antonioli, F.; Sivan, D.; Miko, S.; et al. late Quaternary Sea-Level Changes and Early Human Societies in the Central and Eastern Mediterranean Basin: An Interdisciplinary Review. Quat. Int. 2017, 449, 29–57. [Google Scholar] [CrossRef]
- Kordić, B.; Lužar-Oberiter, B.; Pikelj, K.; Matoš, B.; Vlastelica, G. Integration of terrestrial laser ccanning and UAS photogrammetry in geological studies: Examples from Croatia. Period. Polytech. Civ. Eng. 2019, 63, 989–1003. [Google Scholar]
- Aleshin, I.M.; Ivanov, S.D.; Koryagin, V.N.; Matveev, M.A.; Morozov, Y.A.; Perederin, F.V.; Kholodkov, K.I. Review on the use of light unmanned aerial vehicles in geological and geophysical research. Seism. Instrum. 2020, 56, 509–515. [Google Scholar] [CrossRef]
- Martelet, G.; Gloaguen, E.; Døssing, A.; Lima Simoes da Silva, E.; Linde, J.; Rasmussen, T.M. Airborne/UAV Multisensor surveys enhance the geological mapping and 3D model of a pseudo-skarn deposit in Ploumanac’h, French Brittany. Minerals 2021, 11, 1259. [Google Scholar] [CrossRef]
- Kordić, B.; Gašparović, M.; Oberiter, B.L.; Đapo, A.; Vlastelica, G. Spatial data performance test of mid-cost UAS with direct georeferencing. Period. Polytech. Civ. Eng. 2020, 64, 859–868. [Google Scholar] [CrossRef]
- Ochterlony, F. The Swebrec © function: Linking fragmentation by blasting and crushing. Trans. Inst. Min. Metall. Sect. A Min. Technol. 2005, 114, A29–A44. [Google Scholar] [CrossRef]
- Denamiel, C.; Šepić, J.; Ivanković, D.; Vilibić, I. The Adriatic Sea and Coast modeling suite: Evaluation of the meteotsunami forecast component. Ocean Model. 2019, 135, 71–93. [Google Scholar] [CrossRef]
- Denamiel, C.; Pranić, P.; Ivanković, D.; Tojčić, I.; Vilibić, I. Performance of the Adriatic Sea and Coast (AdriSC) climate component—A COAWST V3.3-based coupled atmosphere–ocean modeling suite: Atmospheric dataset. Geosci. Model Dev. 2021, 14, 3995–4017. [Google Scholar] [CrossRef]
- Pranić, P.; Denamiel, C.; Vilibić, I. Performance of the Adriatic Sea and Coast (AdriSC) climate component—A COAWST V3.3-based coupled atmosphere-ocean modeling suite: Ocean part. Geosci. Model Dev. 2021, 14, 5927–5955. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A description of the advanced research WRF version 2. In NCAR Technical Note NCAR/TN; University Corporation for Atmospheric Research: Boulder, CO, USA, 2005; p. 468. [Google Scholar]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system”. J. Comput. Phys. 2009, 228, 8985–9000. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L. A third-generation wave model for coastal regions: Model description and validation. J. Geophys. Res. Atmos. 1997, 104, 7649–7656. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Tanaka, S.; Westerink, J.J.; Dawson, C.N.; Luettich, R.A.; Zijlema, M.; Holthuijsen, L.H.; Smith, J.M.; Westerink, L.G.; Westerink, H.J. Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge. J. Sci. Comput. 2012, 52, 468–497. [Google Scholar] [CrossRef]
- Tojčić, I.; Denamiel, C.; Vilibić, I. Performance of the Adriatic early warning system during the multi-meteotsunami event of 11–19 May 2020: An assessment using energy banners. Nat. Hazards Earth Syst. Sci. 2021, 21, 2427–2446. [Google Scholar] [CrossRef]
- Denamiel, C.; Tojčić, I.; Vilibić, I. Far future climate (2060–2100) of the northern Adriatic air–sea heat transfers associated with extreme bora events. Clim. Dyn. 2020, 55, 3043–3066. [Google Scholar] [CrossRef]
- Denamiel, C.; Tojčić, I.; Vilibić, I. Balancing accuracy and efficiency of atmospheric models in the northern Adriatic during severe bora events. J. Geophys. Res. Atmos. 2021, 126, e2020JD033516. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef]
- Pinardi, N.; Allen, I.; Demirov, E.; De Mey, P.; Korres, G.; Lascaratos, A.; Le Traon, P.Y.; Maillard, C.; Manzella, G.; Tziavos, C. Mediterranean Ocean Forecasting System: First phase of implementation (1998–2001). Ann. Geophys. 2003, 21, 3–20. [Google Scholar] [CrossRef]
- Ravdas, M.; Zacharioudaki, A.; Korres, G. Implementation and validation of a new operational wave forecasting system of the Mediterranean Monitoring and Forecasting Centre in the framework of the Copernicus Marine Environment Monitoring Service. Nat. Hazards Earth Syst. Sci. 2018, 18, 2675–2695. [Google Scholar] [CrossRef] [Green Version]
- Sunamura, T.; Horikawa, K. Two-Dimensional Beach Transformation due to Waves. Coast. Eng. Proc. 1974, 1, 920–938. [Google Scholar]
- Crnković, B.; Jovičić, D. Dimension stone deposit in Croatia. Rud.-Geološko-Naft. Zb. 1993, 5, 139–163. [Google Scholar]
- Noormets, R.; Crook, K.A.W.; Felton, E.A. Sedimentology of rocky shorelines: 3. Hydrodynamics of megaclast emplacement and transport on a shore platform, Oahu, Hawaii. Sediment. Geol. 2004, 172, 41–65. [Google Scholar] [CrossRef]
- Bujan, N.; Cox, R. Maximal Heights of Nearshore Storm Waves and Resultant Onshore Flow Velocities. Front. Mar. Sci. 2020, 7, 309. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Paris, R.; Tanaka, N. Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol. 2011, 281, 70–84. [Google Scholar] [CrossRef]
- Pudjaprasetya, S.R.; Risriani, V.M. Iryanto. Numerical Simulation of Propagation and Run-Up of Long Waves in U-Shaped Bays. Fluids 2021, 6, 146. [Google Scholar] [CrossRef]
- Roelvink, J.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.S.M.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Roelvink, J.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.S.M.; Lescinski, J.; McCall, R. XBeach Model Description and Manual. Technical Report, Unescio-IHE. Deltares and Delft University of Technology: Delft, The Netherlands, 2010. [Google Scholar]
- Farkas, A.; Degiuli, N.; Martić, I. Assessment of offshore wave energy potential in the Croatian part of the Adriatic Sea and comparison with wind energy potential. Energies 2019, 2, 2357. [Google Scholar] [CrossRef]
- Furlani, S.; Cucchi, F.; Forti, F.; Rossi, A. Comparison between coastal and inland Karst limestone lowering rates in the northeastern Adriatic Region (Italy and Croatia). Geomorphology 2009, 104, 73–81. [Google Scholar] [CrossRef]
- Krklec, K.; Domínguez-Villar, D.; Braucher, R.; Perica, D.; Mrak, I. Morphometric comparison of weathering features on side by side carbonate rock surfaces with different exposure ages—A case from the Croatian coast. Quat. Int. 2018, 494, 275–285. [Google Scholar] [CrossRef]
- Furlani, S.; Vaccher, V.; Antonioli, F.; Agate, M.; Biolchi, S.; Boccali, C.; Busetti, A.; Caldareri, F.; Canziani, F.; Chemello, R.; et al. Preservation of MIS 5.5 erosional landforms and biological structures to be used as sea level change markers: A matter of luck. Water 2021, 13, 2127. [Google Scholar] [CrossRef]
- Lambeck, K.; Purcell, A. Sea-level change in Mediterranean Sea since the LGM: Model predictions for tectonically stable areas. Quat. Sci Rev. 2005, 24, 1969–1988. [Google Scholar] [CrossRef]
- Faivre, S.; Bakran-Petricioli, T.; Horvatinčić, N.; Sironić, A. Distinct phases of relative sea level changes in the central Adriatic during the last 1500 years—Influence of climatic variations? Palaeogeogr. Palaeoclim. Palaeocl. 2013, 369, 163–174. [Google Scholar] [CrossRef]
- Surić, M.; Korbar, T.; Juračić, M. Tectonic constraints on the late Pleistocene-Holocene relative sea-level change along the north-eastern Adriatic coast (Croatia). Geomorphology 2014, 220, 93–103. [Google Scholar] [CrossRef]
- Rixhon, G.; May, S.M.; Engel, M.; Mechernich, S.; Schroeder-Ritzrau, A.; Frank, N.; Fohlmeister, J.; Boulvain, F.; Dunai, T.; Brückner, H. Multiple dating approach (14C, 230Th/U and 36Cl) of tsunami-transported reef-top boulders on Bonaire (Leeward Antilles)—Current achievements and challenges. Mar. Geol. 2018, 396, 100–113. [Google Scholar] [CrossRef]
- Scardino, G.; Scicchitano, G.; Chirivì, M.; Costa, P.J.M.; Luparelli, A.; Mastronuzzi, G. Convolutional Neural network and Optical Flow for the Assessment of Wave and Tide Parameters from Video Analysis (LEUCOTEA): An Innovative Tool for Coastal Monitoring. Remote Sens. 2022, 14, 2994. [Google Scholar] [CrossRef]
MANA BOULDER N° | Distance from Inlet Tip (m) | Altitude a.s.l. (m) | Longer Axis “a” (m) | Shorter Axis “b” (m) | Thickness Axis “c” (m) | Plan Surface (m2) | Imbrication (Direction/Angle) | Volume Approx. (m3) | Density Average # (t/m3) | Mass (t) |
---|---|---|---|---|---|---|---|---|---|---|
MB-1 | 32 | 3.0 | 2.7 | 1.7 | 0.55 | 4.3 | 130/30 | 2.36 | 2.5 | 5.9 |
MB-2 | 40 | 4.0 | 2.7 | 1.5 | 0.50 | 3.7 | 140/25 | 1.85 | 2.5 | 4.6 |
MB-3 | 42 | 4.8 | 3.6 | 1.0 | 0.90 | 3.6 | - | 3.24 | 2.5 | 8.1 |
MB-4 | 43 | 4.5 | 2.2 | 1.7 | 0.50 | 3.6 | - | 1.80 | 2.5 | 4.5 |
MB-5 | 44 | 4.0 | 2.4 | 1.5 | 0.40 | 3.2 | - | 1.28 | 2.5 | 3.2 |
MB-6 * | 14 | 1.6 | 1.6 | 1.6 | 0.50 | 2.4 | 135/45 | 1.62 | 2.5 | 4.0 |
MB-7 * | 20 | 2.0 | 1.7 | 1.2 | 0.50 | 1.9 | 138/48 | 0.95 | 2.5 | 2.4 |
MB-8 * | 19 | 2.4 | 3.7 | 2.0 | 0.90 | 6.2 | - | 5.58 | 2.5 | 13.9 |
MB-9 * | 34 | 2.6 | 2.1 | 1.3 | 0.40 | 2.2 | 220/15 | 0.88 | 2.5 | 2.2 |
MB-10 * | 36 | 2.8 | 1.3 | 0.7 | 0.50 | 0.8 | - | 0.40 | 2.5 | 1.0 |
others | 8–92 | 1.0–7.0 | <2 | <1 | <0.5 | <2 | 130–135/ 15–35 | <1 | 2.5 | <2.5 |
Mana deposit in general | 24–93 | 1.3–7.0 | 60 | 75 | 0.0–2.0 | 3892.0 | - | ~3000 | - | >6000 |
Mana Coarse-Clast Deposit (parts) | Shape Parameter N (Fragmenter Software, 3GSM GmbH) | Shape Parameter N (Linear Relationship ln(-ln(1-Y)) vs. ln (x)) | Fractal Dimension D = 3-N (Fragmenter Software, 3GSM GmbH) | Fractal Dimension D = 3-N (Linear Relationship ln(-ln(1-Y)) vs. ln (x)) |
---|---|---|---|---|
Mana (full area) | 1.061 | 1.051 | 1.939 | 1.949 |
Mana (SE part) | 1.143 | 1.141 | 1.857 | 1.859 |
Mana (NW part) | 1.030 | 0.903 | 2.097 | 2.097 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korbar, T.; Navratil, D.; Denamiel, C.; Kordić, B.; Biolchi, S.; Vilibić, I.; Furlani, S. Coarse-Clast Storm Deposit and Solitary Boulders on the Island of Mana (NP Kornati, Central Adriatic, Croatia). Geosciences 2022, 12, 355. https://doi.org/10.3390/geosciences12100355
Korbar T, Navratil D, Denamiel C, Kordić B, Biolchi S, Vilibić I, Furlani S. Coarse-Clast Storm Deposit and Solitary Boulders on the Island of Mana (NP Kornati, Central Adriatic, Croatia). Geosciences. 2022; 12(10):355. https://doi.org/10.3390/geosciences12100355
Chicago/Turabian StyleKorbar, Tvrtko, Dražen Navratil, Cléa Denamiel, Branko Kordić, Sara Biolchi, Ivica Vilibić, and Stefano Furlani. 2022. "Coarse-Clast Storm Deposit and Solitary Boulders on the Island of Mana (NP Kornati, Central Adriatic, Croatia)" Geosciences 12, no. 10: 355. https://doi.org/10.3390/geosciences12100355
APA StyleKorbar, T., Navratil, D., Denamiel, C., Kordić, B., Biolchi, S., Vilibić, I., & Furlani, S. (2022). Coarse-Clast Storm Deposit and Solitary Boulders on the Island of Mana (NP Kornati, Central Adriatic, Croatia). Geosciences, 12(10), 355. https://doi.org/10.3390/geosciences12100355