An Age Scale for the First Shallow (Sub-)Antarctic Ice Core from Young Island, Northwest Ross Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ice Core Drilling and Processing
2.2. Ice Core Discrete Chemistry
2.3. Ice Core Continuous Flow Analysis Data
2.4. Microparticle Analysis
2.5. Meteorological Data
3. Results
3.1. Meteorological Conditions
3.2. Data for Ice Core Dating
3.2.1. Physical Characteristics of the Ice Core
3.2.2. Stable Water Isotopes (δ18O)
3.2.3. Major Ion Concentration Records
3.2.4. Dust
3.2.5. Hydrogen Peroxide Record
3.3. Dating Approaches
3.3.1. Dating Approach A—Based on δ18O
3.3.2. Dating Approach B—Based on NO3− Record
3.3.3. Dating Approach—Based on Marine Species and Large Melt Layers
3.3.4. Dating Approach D—Based on nssSO42−:ssNa+ Ratio and MSA− Concentration
3.4. Summary of Age Scales
3.5. Tie Point of the Age Scale
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakke, J.; Paasche, Ø.; Schaefer, J.M.; Timmermann, A. Long-term demise of sub-Antarctic glaciers modulated by the Southern Hemisphere Westerlies. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.R.; Gacitúa, G.; Pedro, J.B.; King, A.C.F.; Markle, B.; Potocki, M.; Moser, D.E. Physical properties of shallow ice cores from Antarctic and sub-Antarctic islands. Cryosphere 2021, 15, 1173–1186. [Google Scholar] [CrossRef]
- Strother, S.L.; Salzmann, U.; Roberts, S.J.; Hodgson, D.A.; Woodward, J.; van Nieuwenhuyze, W.; Verleyen, E.; Vyverman, W.; Moreton, S. Changes in Holocene climate and the intensity of Southern Hemisphere Westerly winds based on a high-resolution palynological record from sub-Antarctic South Georgia. Holocene 2015, 25, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Adams, N. Climate trends at Macquarie Island and expectations of future climate change in the sub-Antarctic. In Papers and Proceedings of the Royal Society of Tasmania; The Royal Society of Tasmania: Hobart, Australia, 2009; Volume 143, pp. 1–8. [Google Scholar]
- PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 2017, 4, 170088. [Google Scholar] [CrossRef]
- King, A.C.F.; Thomas, E.R.; Pedro, J.B.; Markle, B.; Potocki, M.; Jackson, S.L.; Wolff, E.; Kalberer, M. Organic compounds in a sub-Antarctic ice core: A potential suite of sea ice markers. Geophys. Res. Lett. 2019, 46, 9930–9939. [Google Scholar] [CrossRef] [Green Version]
- Hatherton, T.; Dawson, E.W.; Kinsky, F.C. Balleny Islands reconnaissance expedition, 1964. N. Zealand, J. Geol. Geophys. 1965, 8, 164–179. [Google Scholar] [CrossRef]
- USGS Geographic Names Information System: Young Island. Available online: https://geonames.usgs.gov/apex/f?p=gnispq:5:0::NO::P5_ANTAR_ID:16891 (accessed on 28 April 2020).
- Johnson, G.L.; Kyle, P.R.; Vanney, J.R.; Campsie, J. Geology of Scott and Balleny Islands, Ross Sea, Antarctica, and morphology of adjacent seafloor. N. Z. J. Geol. Geophys. 1982, 25, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Mawson, D. Basaltic Lavas of the Balleny Islands. ANARE Report. Trans. R. Soc. S. Aust. 1950, 73, 223–231. [Google Scholar]
- Martin, S.; Steffen, K.; Comiso, J.; Cavalieri, D.; Drinkwater, M.R.; Holt, B.; Carsey, F.D. Microwave remote sensing of polynyas. In Extreme Events; American Geophysical Union (AGU): Washington DC, USA, 1992; Volume 68, pp. 303–311. [Google Scholar]
- Naval Oceanography Command. Sea Ice Climatic Atlas; US Department of the Navy, Oceanographic Office: Washington, DC, USA, 1985; Volume 1, Antarctica (NAVAIR 50–1C–540). [Google Scholar]
- Ballard, G.; Toniolo, V.; Ainley, D.G.; Parkinson, C.L.; Arrigo, K.R.; Trathan, P.N. Responding to climate change: Adélie Penguins confront astronomical and ocean boundaries. Ecology 2010, 91, 2056–2069. [Google Scholar] [CrossRef] [Green Version]
- Winstrup, M.; Svensson, A.M.; Rasmussen, S.O.; Winther, O.; Steig, E.J.; Axelrod, A.E. An automated approach for annual layer counting in ice cores. Clim. Past 2012, 8, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Svensson, A.; Andersen, K.K.; Bigler, M.; Clausen, H.B.; Dahl-Jensen, D.; Davies, S.M.; Johnsen, S.J.; Muscheler, R.; Parrenin, F.; Rasmussen, S.O.; et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 2008, 4, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Hou, S.; Ekaykin, A.; Jouzel, J.; Aristarain, A.; Bernardo, R.T.; Bromwich, D.; Cattani, O.; Delmotte, M.; Falourd, S.; et al. A review of Antarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modeling. J. Clim. 2008, 21, 3359–3387. [Google Scholar] [CrossRef] [Green Version]
- Stenni, B.; Curran, M.A.J.; Abram, N.J.; Orsi, A.; Goursaud, S.; Masson-Delmotte, V.; Neukom, R.; Goosse, H.; Divine, D.; van Ommen, T.; et al. Antarctic climate variability on regional and continental scales over the last 2000 years. Clim. Past 2017, 13, 1609–1634. [Google Scholar] [CrossRef] [Green Version]
- Abram, N.; Wolff, E.; Curran, M.A. A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev. 2013, 79, 168–183. [Google Scholar] [CrossRef]
- Wolff, E.; Barbante, C.; Becagli, S.; Bigler, M.; Boutron, C.; Castellano, E.; de Angelis, M.; Federer, U.; Fischer, H.; Fundel, F.; et al. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat. Sci. Rev. 2010, 29, 285–295. [Google Scholar] [CrossRef]
- Frey, M.M.; Norris, S.J.; Brooks, I.M.; Anderson, P.S.; Nishimura, K.; Yang, X.; Jones, A.E.; Mastromonaco, M.G.N.; Jones, D.H.; Wolff, E.W. First direct observation of sea salt aerosol production from blowing snow above sea ice. Atmos. Chem. Phys. Discuss. 2020, 20, 2549–2578. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, N.N.; Earnshaw, A. The halogens: Fluorine, chlorine, bromine, iodine and astatine. In Chemistry of the Elements; Butterworth-Heinemann: Amsterdam, The Netherlands, 2012; pp. 789–887. [Google Scholar]
- Spolaor, A.; Vallelonga, P.; Plane, J.M.C.; Kehrwald, N.; Gabrieli, J.; Varin, C.; Turetta, C.; Cozzi, G.; Kumar, R.; Boutron, C.; et al. Halogen species record Antarctic sea ice extent over glacial—Interglacial periods. Atmos. Chem. Phys. Discuss. 2013, 13, 6623–6635. [Google Scholar] [CrossRef] [Green Version]
- Wagenbach, D.; Görlach, U.; Moser, K.; Münnich, K.O. Coastal Antarctic aerosol: The seasonal pattern of its chemical composition and radionuclide content. Tellus B Chem. Phys. Meteorol. 1988, 40, 426–436. [Google Scholar] [CrossRef]
- Shaw, G.E. Antarctic aerosols: A review. Rev. Geophys. 1988, 26, 89–112. [Google Scholar] [CrossRef]
- Wolff, E.W. Ice sheets and nitrogen. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130127. [Google Scholar] [CrossRef] [Green Version]
- Legrand, M.R.; Kirchner, S. Origins and variations of nitrate in south polar precipitation. J. Geophys. Res. Space Phys. 1990, 95, 3493–3507. [Google Scholar] [CrossRef]
- Wolff, E.W. Nitrate in polar ice. In Ice Core Studies of Global Biogeochemical Cycles. NATO ASI Series (Series I: Global Environmental Change); Delmas, R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 30, pp. 195–224. [Google Scholar] [CrossRef]
- Röthlisberger, R.; Hutterli, M.A.; Sommer, S.; Wolff, E.W.; Mulvaney, R. Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core. J. Geophys. Res. Space Phys. 2000, 105, 20565–20572. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.M.; Bales, R.C.; McConnell, J.R. Climate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica. J. Geophys. Res. Space Phys. 2006, 111, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sigg, A.; Neftel, A. Seasonal variations in hydrogen peroxide in polar ice cores. Ann. Glaciol. 1988, 10, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Tetzner, D.; Thomas, E.R.; Allen, C.S.; Wolff, E.W. A Refined method to analyze insoluble particulate matter in ice cores, and its application to diatom sampling in the Antarctic Peninsula. Front. Earth Sci. 2021, 9. [Google Scholar] [CrossRef]
- Delmonte, B.; Winton, H.; Baroni, M.; Baccolo, G.; Hansson, M.; Andersson, P.; Baroni, C.; Salvatore, M.C.; Lanci, L.; Maggi, V. Holocene dust in East Antarctica: Provenance and variability in time and space. Holocene 2019, 30, 546–558. [Google Scholar] [CrossRef]
- Lambert, F.R.; Delmonte, B.; Petit, J.-R.; Bigler, M.; Kaufmann, P.R.; Hutterli, M.A.; Stocker, T.F.; Ruth, U.; Steffensen, J.P.; Maggi, V. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 2008, 452, 616–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neff, P.; Bertler, N. Trajectory modeling of modern dust transport to the Southern Ocean and Antarctica. J. Geophys. Res. Atmos. 2015, 120, 9303–9322. [Google Scholar] [CrossRef] [Green Version]
- Moser, D.E. Climate Proxies in a Shallow (sub-)Antarctic Ice Core from Young Island. Master’s Thesis, University of Muenster, Münster, Germany, 2020; pp. 1–111, Unpublished work. [Google Scholar]
- Gupta, P.; Noone, D.; Galewsky, J.; Sweeney, C.; Vaughn, B. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun. Mass Spectrom. 2009, 23, 2534–2542. [Google Scholar] [CrossRef]
- Gkinis, V.; Popp, T.J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S.J. Water isotopic ratios from a continuously melted ice core sample. Atmos. Meas. Tech. 2011, 4, 2531–2542. [Google Scholar] [CrossRef] [Green Version]
- Piel, C.; Weller, R.; Huke, M.; Wagenbach, D. Atmospheric methane sulfonate and non-sea-salt sulfate records at the European Project for Ice Coring in Antarctica (EPICA) deep-drilling site in Dronning Maud Land, Antarctica. J. Geophys. Res. Space Phys. 2006, 111, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bowen, H.J.M. Environmental Chemistry of the Elements; Academic Press: London, UK, 1979. [Google Scholar]
- Hoffmann, K.; Fernandoy, F.; Meyer, H.; Thomas, E.R.; Aliaga, M.; Tetzner, D.; Freitag, J.; Opel, T.; Arigony-Neto, J.; Göbel, C.F.; et al. Stable water isotopes and accumulation rates in the Union Glacier region, Ellsworth Mountains, West Antarctica, over the last 35 years. Cryosphere 2020, 14, 881–904. [Google Scholar] [CrossRef] [Green Version]
- Bigler, M.; Svensson, A.; Kettner, E.; Vallelonga, P.; Nielsen, M.E.; Steffensen, J.P. Optimization of high-resolution continuous flow analysis for transient climate signals in ice cores. Environ. Sci. Technol. 2011, 45, 4483–4489. [Google Scholar] [CrossRef]
- Lazrus, A.L.; Kok, G.L.; Lind, J.A.; Gitlin, S.N.; Heikes, B.G.; Shetter, R.E. Automated fluorometric method for hydrogen peroxide in air. Anal. Chem. 1986, 58, 594–597. [Google Scholar] [CrossRef]
- Grieman, M.M.; Hoffmann, H.M.; Humby, J.D.; Mulvaney, R.; Nehrbass-Ahles, C.; Rix, J.; Thomas, E.R.; Tuckwell, R.; Wolff, E.W. Continuous flow analysis methods for sodium, magnesium and calcium detection in the Skytrain ice core. J. Glaciol. 2021, 1–11. [Google Scholar] [CrossRef]
- Tetzner, D.; Thomas, E.R.; Allen, C.S.; Piermattei, A. Evidence of recent active volcanism in the Balleny Islands (Antarctica) from ice core records. Earth Sp. Sci. Open Arch. 2021, 1–31. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wakahama, G. The role of meltwater in densification processes of snow and firn percolation of meltwater into a snow cover. Int. Assoc. Hydrol. Sci. Publ. 1975, 114, 66–72. [Google Scholar]
- Goursaud, S.; Masson-Delmotte, V.; Favier, V.; Preunkert, S.; Fily, M.; Gallée, H.; Jourdain, B.; Legrand, M.; Magand, O.; Minster, B.; et al. A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica. Cryosphere 2017, 11, 343–362. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, S.J. Stable isotope homogenization of polar firn and ice. In Isotopes and Impurities in Snow and Ice. Proceedings of the Grenoble Symposium 1975; International Association of Hydrological Sciences Publications: Grenoble, France, 1977; Volume 118, pp. 210–219. [Google Scholar]
- Turekian, K.K. Oceans; Foundations of Earth Science Series; Prentice-Hall: Englewood, NJ, USA, 1968. [Google Scholar]
- Sigg, A.; Neftel, A. Evidence for a 50% increase in H2O2 over the past 200 years from a Greenland ice core. Nature 1991, 351, 557–559. [Google Scholar] [CrossRef]
- Neftel, A.; Jacob, P.; Klockow, D. Long-term record of H2O2 in polar ice cores. Tellus B Chem. Phys. Meteorol. 1986, 38, 262–270. [Google Scholar] [CrossRef]
- Turner, J.; Phillips, T.; Thamban, M.; Rahaman, W.; Marshall, G.J.; Wille, J.D.; Favier, V.; Winton, V.; Thomas, E.; Wang, Z.; et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 2019, 46, 3502–3511. [Google Scholar] [CrossRef] [Green Version]
- Servettaz, A.P.M.; Orsi, A.J.; Curran, M.A.J.; Moy, A.D.; Landais, A.; Agosta, C.; Winton, V.H.L.; Touzeau, A.; McConnell, J.R.; Werner, M.; et al. Snowfall and water stable isotope variability in East Antarctica controlled by warm synoptic events. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Pasteris, D.R.; McConnell, J.R.; Das, S.B.; Criscitiello, A.S.; Evans, M.J.; Maselli, O.J.; Sigl, M.; Layman, L. Seasonally resolved ice core records from West Antarctica indicate a sea ice source of sea-salt aerosol and a biomass burning source of ammonium. J. Geophys. Res. Atmos. 2014, 119, 9168–9182. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.M.; Savarino, J.; Morin, S.; Erbland, J.; Martins, J.M.F. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmos. Chem. Phys. Discuss. 2009, 9, 8681–8696. [Google Scholar] [CrossRef] [Green Version]
- Röthlisberger, R.; Hutterli, M.A.; Wolff, E.W.; Mulvaney, R.; Fischer, H.; Bigler, M.; Goto-Azuma, K.; Hansson, M.E.; Ruth, U.; Siggaard-Andersen, M.-L.; et al. Nitrate in Greenland and Antarctic ice cores: A detailed description of post-depositional processes. Ann. Glaciol. 2002, 35, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Zatko, M.; Geng, L.; Alexander, B.; Sofen, E.; Klein, K. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model. Atmos. Chem. Phys. Discuss. 2016, 16, 2819–2842. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.R.; Abram, N.J. Ice core reconstruction of sea ice change in the Amundsen-Ross Seas since 1702 A.D. Geophys. Res. Lett. 2016, 43, 5309–5317. [Google Scholar] [CrossRef] [Green Version]
- Stammerjohn, S.E.; Scambos, T.A. Warming reaches the South Pole. Nat. Clim. Chang. 2020, 10, 710–711. [Google Scholar] [CrossRef]
- Abram, N.J.; Mulvaney, R.; Wolff, E.W.; Triest, J.; Kipfstuhl, S.; Trusel, L.D.; Vimeux, F.; Fleet, L.; Arrowsmith, C. Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat. Geosci. 2013, 6, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Koffman, B.G.; Kreutz, K.J.; Kurbatov, A.; Dunbar, N. Impact of known local and tropical volcanic eruptions of the past millennium on the WAIS Divide microparticle record. Geophys. Res. Lett. 2013, 40, 4712–4716. [Google Scholar] [CrossRef]
- Büttner, R.; Dellino, P.; Zimanowski, B. Identifying magma—Water interaction from the surface features of ash particles. Nature 1999, 401, 688–690. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction, National Weather Service/NOAA/U.S., Department of Commerce. NCEP/NCAR Global Reanalysis Products, 1948-continuing, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 1994. Available online: https://rda.ucar.edu/datasets/ds090.0/ (accessed on 17 August 2021).
- Winski, D.; Osterberg, E.; Kreutz, K.; Wake, C.; Ferris, D.; Campbell, S.; Baum, M.; Bailey, A.; Birkel, S.; Introne, D.; et al. A 400-year ice core melt layer record of summertime warming in the Alaska range. J. Geophys. Res. Atmos. 2018, 123, 3594–3611. [Google Scholar] [CrossRef]
- Tetzner, D.; Thomas, E.; Allen, C. A validation of ERA5 reanalysis data in the Southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies. Geoscience 2019, 9, 289. [Google Scholar] [CrossRef] [Green Version]
Dating Approach | Based on | Proposed Bottom Age | Uncertainty |
---|---|---|---|
Thomas et al. (2021) | Herron-Langway densification model driven by the annual average precipitation from ERA5 | 2002 | ±4 |
A | d18O troughs (winter) | 1989 | ±6 |
B | NO3− peaks (summer) | 1988 | ±6 |
C | Marine species MSA−, SO42−, NO3−, and Br− peaks plus melt layers >10 cm (summer) | 1995/94 | ±2 |
D | nssSO42−:ssNa+ ratio and MSA− troughs (winter) | 1993 | ±1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moser, D.E.; Jackson, S.; Kjær, H.A.; Markle, B.; Ngoumtsa, E.; Pedro, J.B.; Segato, D.; Spolaor, A.; Tetzner, D.; Vallelonga, P.; et al. An Age Scale for the First Shallow (Sub-)Antarctic Ice Core from Young Island, Northwest Ross Sea. Geosciences 2021, 11, 368. https://doi.org/10.3390/geosciences11090368
Moser DE, Jackson S, Kjær HA, Markle B, Ngoumtsa E, Pedro JB, Segato D, Spolaor A, Tetzner D, Vallelonga P, et al. An Age Scale for the First Shallow (Sub-)Antarctic Ice Core from Young Island, Northwest Ross Sea. Geosciences. 2021; 11(9):368. https://doi.org/10.3390/geosciences11090368
Chicago/Turabian StyleMoser, Dorothea Elisabeth, Sarah Jackson, Helle Astrid Kjær, Bradley Markle, Estelle Ngoumtsa, Joel B. Pedro, Delia Segato, Andrea Spolaor, Dieter Tetzner, Paul Vallelonga, and et al. 2021. "An Age Scale for the First Shallow (Sub-)Antarctic Ice Core from Young Island, Northwest Ross Sea" Geosciences 11, no. 9: 368. https://doi.org/10.3390/geosciences11090368
APA StyleMoser, D. E., Jackson, S., Kjær, H. A., Markle, B., Ngoumtsa, E., Pedro, J. B., Segato, D., Spolaor, A., Tetzner, D., Vallelonga, P., & Thomas, E. R. (2021). An Age Scale for the First Shallow (Sub-)Antarctic Ice Core from Young Island, Northwest Ross Sea. Geosciences, 11(9), 368. https://doi.org/10.3390/geosciences11090368