Modelling of Nutrient Pollution Dynamics in River Basins: A Review with a Perspective of a Distributed Modelling Approach
Abstract
:1. Background
2. The Review of Existing Models
2.1. Nonpoint Source (NPS) Models at the Plot Scale
2.2. The River Water Quality Models
2.3. Basin-Scale Integrated Models
2.3.1. Conceptual Models at Basin Scale
2.3.2. Process-Based Models at Basin Scale
3. Research Gap Analysis over Basin-Scale Modelling
4. Applicability of a Distributed Modelling Approach within IISDHM
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name of Model | Type | Land Surface Process | Ground Water Process | Temporal Scale | Output | Reference |
---|---|---|---|---|---|---|
PLOAD | Conceptual | Export coefficient | - | Annual | TN and TP | [34] |
LEACHM | Process based | Soil and crop model | Unsaturated zone model | Variable time | N and P | [40,137] |
SOILN/SOILNDB | Process based | Soil and crop model | Lumped | Annual | N | [17,38,109,138] |
EPIC | Process based | Soil and crop model | - | Annual | N and P | [123] |
ANIMO | Process based | Soil layer model | Leaching | Variable time step | N species | [99,123] |
CREAMS/GLEAMS | Physics | Soil and crop | Root zone | Event based | N and P | [35,36,96,97] |
RZWQM | Process based | Soil and crop model | Lumped | Subdaily | NO3-N | [46] |
DAISY | Process based | Soil and crop model | Leaching | Variable time | NO3-N | [41,42,43] |
Name of Model | Type | Land Surface Process | In-Stream Process | Ground Water Process | Spatial Scale | Temporal Scale | Output | Reference |
---|---|---|---|---|---|---|---|---|
QUAL2K/ QUAL2E | Process based | Time series input | Network model | - | River reach | Diel time scale | N and P species | [49,50,51] |
MIKE 11 | Process based | Time series input | Network model | - | Node and link | Variable time step | N and P species | [139] |
RWQM1; CalHidra 2.0 | Process based | Exist | Exist | - | Node and link | Not available | N and P | [54] |
INCA-N | Process based | Semidistributed | Reach based | Semidistributed | River reach | Weekly | NO3-N level | [30,31] |
INCA-P | Process based | Semidistributed | Reach based | Semidistributed | River reach | Daily | Organic and inorganic P levels | [85] |
RIVERSTRAHHLER | Process based | - | River network model | - | River reach | Variable time | Nitrate, phosphates, and silica | [86] |
Name of Model | Type | Land Surface Process | In-Stream Process | Ground Water Process | Spatial Scale | Temporal Scale | Output | Reference |
---|---|---|---|---|---|---|---|---|
CatStream | Conceptual | Subcatchment | River network | - | Subcatchment based | Daily | TSS, TN, and TP | [82,83] |
AGNPS | Physics | Rate based | - | - | Grid based—can be used up to 200 km2 size watershed | Single event | N and P | [55] |
ANSWERS | Physically based | Sediment and runoff based | Exist | Exist | Hydrologic response unit (HRU) (200 km2) | Single event | N and P | [61,62] |
CatchMODS | Conceptual | Time series by IHACRES | Network model | Leaching estimates | Subcatchment based | Annual | TN and TP loads | [67] |
CMSS | Conceptual | Export coefficient | - | - | Subcatchment based | Daily | TN and TP loads | [76] |
EMSS | Conceptual | Event mean concentration | - | - | Subcatchment based | Daily | TN and TP loads | [70] |
E2 | Conceptual | Event mean concentration | - | - | Subcatchment based | Daily | TN and TP loads | [77] |
SWRRB | Physics based | CREAMS | - | GLEAMS | Basin scale (600–800 km2) | Single event | [119] | |
PolFlow | Conceptual | Lumped | Lumped | Lumped | 1 km grid | 5 year | TN and TP loads | [92] |
MONERIS | Conceptual | Rate based emission from different sources | - | Lumped as a source | 1 km grid | Annual | TN and TP emission | [71] |
SPARROW | Regression model | Landscape delivery ratio | Network model | Lumped | River reach with catchment input | Annual | TN | [73] |
DNMT | Process based | SOILN model | Unit Nitrograph (UNG) method for transport to waterways | Lumped with soil nutrient process model (SOILN) | Subcatchment based | Multiple steps | NO3-N | [32] |
SWAT | Process based | Lumped soil and aquifer process | QUAL2E | Lumped with surface process | Semidistributed variable storage routing method | Variable steps | N | [94,95,140] |
MATSALU | Same as SWAT | Elementary Areas of Pollution (EAP) based | Daily | N | [105] | |||
SWIM | Same as SWAT | Mesoscale watershed | Daily | N | [66] | |||
ISSM | Process based | SWAT | QUAL2E | MODFLOW-MT3DMS | - | Daily | N and P | [106] |
WATFLOOD | Process based | Group response unit (GRU) approach; CREAM and AGNPS approach | - | Lumped to estimate leaching using extraction coefficient | Grid based | Hourly | N and P | [93,121] |
TNT2 | Process based | Soil–ground water and surface interaction | - | Exist | Grid based | Variable steps | N | [140] |
SHETRAN | Process based | EPIC model | Exist | Exist | Grid based | Variable steps | NO3-N | [107,108,110] |
MIKESHE/ DAISY | Process based | DAISY | - | Solute transport process | Grid based | Variable steps | NO3-N | [13,41,42,43,107,108] |
IISDHM | Process based | Flow capacity based | Dynamic | Lumped | Grid based | Run in 1 s time step with hourly interval output | N and P species | [131,132,133,134,135,136] |
References
- DEFRA. Mapping the Problem Risks of Diffuse Water Pollution from Agriculture; Department for Environment, Food and Rural Affairs: London, UK, 2004.
- Lu, F.-H.; Ni, H.-G.; Liu, F.; Zeng, E.Y. Occurrence of nutrients in riverine runoff of the Pearl River Delta, South China. J. Hydrol. 2009, 376, 107–115. [Google Scholar] [CrossRef]
- Croke, J. Managing Phosphorus in Catchment. In River Landscapes; Fact Sheet11; Land & Water: Canberra, Australia, 2002. [Google Scholar]
- Bennett, E.M.; Carpenter, S.R.; Caraco, N.F. Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience 2001, 51, 227–234. [Google Scholar] [CrossRef]
- Boyer, E.W.; Howarth, R.W.; Galloway, J.N.; Dentener, F.J.; Green, P.A.; Vörösmarty, C.J. Riverine nitrogen export from the continents to the coasts. Glob. Biogeochem. Cycles 2006, 20, GB1S91. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 1982, 282, 401–405. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Du, P. An inventory analysis of rural pollution loads in China. Water Sci. Technol. 2006, 54, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Hannam, P. World of Hurt’: Toxic Blooms Take over Lower Darling River as Dam Debate Ramps up, the Sydney Morning Herald, Published on 25 February 2021. Lower Darling River Taken over by Toxic Cyanobacterial Blooms as Dam Debate Ramps up. Available online: smh.com.au (accessed on 26 February 2021).
- OECD. Highlights of the OECD Environmental Outlook; OECD Publications: Paris, France, 2001. [Google Scholar]
- IPCC. Climate Change and Water; Technical Report VI; Inter Governmental Panel on Climate Change (IPCC), IPCC Secretariat: Geneva, Switzerland, 2008; p. 210. ISBN 978-92-9169-123-4. [Google Scholar]
- Dewalle, D.R.; Buda, A.R.; Eismeier, J.E.; Sharpe, W.E.; Swistock, B.R.; Craig, P.L.; O’ Driscoll, M.A. Nitrogen cycling on five headwater forested catchments in Mid- ppalachians of Pennsylvania. Dynamics and Biogeochemistry of River Corridors and Wetlands. In Proceedings of the Seventh IAHS Scientific Assembly, Foz do Iguaçu, Brazil, 3–9 April 2005. [Google Scholar]
- Hertel, O.; Skjøth, C.A.; Løfstrøm, P.; Geels, C.; Frohn, L.M.; Ellermann, T.; Madsen, P.V. Modelling Nitrogen Deposition on a Local Scale—A Review of the Current State of the Art. Environ. Chem. 2006, 3, 317–337. [Google Scholar] [CrossRef]
- Aber, J.D.; Goodale, C.L.; Ollinger, S.V.; Smith, M.L.; Magill, A.H.; Martin, M.E.; Hallett, R.A.; Stoddard, J.L. Is Nitrogen Deposition Altering the Nitrogen Status of Northeastern Forests? BioScience 2003, 53, 375–389. [Google Scholar] [CrossRef] [Green Version]
- Harris, G.P. Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers and estuaries: Effects of land use and flow regulation and comparisons with global patterns. Marine Freshw. Res. 2001, 52, 139–149. [Google Scholar] [CrossRef]
- Tiller, D.; Newall, P. Preliminary Nutrient Guideline for Victorian Inland Streams; Publication 478; Environment Protection Authority, Government of Victoria: Melbourne, Australia, 1995. Available online: http://www.epa.vic.gov.au (accessed on 5 February 2010).
- Laniak, G.F.; Olchin, G.; Goodall, J.; Voinov, A.; Hill, M.; Glynn, P.; Whelan, G.; Geller, G.; Quinn, N.; Blind, M.; et al. Integrated environmental modeling: A vision and roadmap for the future. Environ. Model. Softw. 2013, 39, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wolanski, E.; Chen, Z. Suspended particulate matter affects the nutrient budget of turbid estuaries: Modification of the LOICZ model and application to the Yangtze Estuary. Estuar. Coast. Shelf Sci. 2013, 127, 59–62. [Google Scholar] [CrossRef]
- Hirt, U.; Venohr, M.; Kreins, P.; Behrendt, H. Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser river basin, Germany. Water Sci. Technol. 2008, 58, 2251–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, B. National Eutrophication Management Program: Highlights 1995–2001. "RipRap", River and Riparian Lands Management Newsletter; Land & Water: Canberra, Australia, 2001; Volume 20, pp. 23–26. [Google Scholar]
- Croke, J.; Young, B. River Contaminants: What are river contaminants and how can we effectively manage them for riverine and ecosystem protection? In “RipRap”, River and Riparian Lands Management Newsletter; Land & Water: Canberra, Australia, 2001; Volume 20, pp. 1–6. [Google Scholar]
- Blind, M.W.; Moore, R.V.; Scholten, H.M.; Refsgaard, J.C.; Borowski, I.; Giupponi, C.; Estrela, M.; Vanrolleghem, P.A. Current Results of the EC-Sponsored Catchment Modelling (CatchMod) Cluster: Part 1: “Cross-Cutting Issues”, IWA 2005; Watershed & River Basin Management Specialist Group Conference: Calgary, AB, Canada, 2005. [Google Scholar]
- Blind, M.W.; Borgvang, S.A.; George, D.G.; Froebrich, J.; Zsuffa, I.; Vanrolleghem, P.; Jørgensen, L.F.; de Lange, W.J. Current Results of the EC-Sponsored Catchment Modelling (CatchMod) Cluster: Part 2: “Water Topics and Synthesis” IWA 2005; Watershed & River Basin Management Specialist Group Conference: Calgary, AB, Canada, 2005. [Google Scholar]
- European Commission. Directive of the European Parliament and of the Council 2000/60/EC Establishing a Framework for Community Action in the Field of Water Policy. In Official Journal 2000 L 327/1; European Commission: Brussels, Belgium, 2000; p. 73. [Google Scholar]
- ICSU (International Council for Science). Regional Environmental Change: Human Action and Adaptation; International Council for Science: Paris, France, 2010. [Google Scholar]
- Schellekens, J.; Veldhuizen, A.A.; Manders, A.M.M.; Winsemius, H.C.M.; van Verseveld, W.J.; te Linde, A.H.; van Ulft, L.H.; van Meijgaard, E.; Schaap, M.; Barendregt, A.; et al. KKK-Model Platform Coupling. Summary Report KKF01b. Deltares, TNO, Alterra, VU Amsterdam, Universiteit Utrecht; KNMI: De Bilt, The Netherlands, 2011; Final Report KFC/038A/2011; ISBN 978-94-90070-00-7. [Google Scholar]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint source pollution models: Review of mathmatical bases. Trans. ASAE 2003, 46, 1553–1566. [Google Scholar] [CrossRef] [Green Version]
- Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Fu, B.; Merritt, W.S.; Croke, B.F.W.; Weber, T.R.; Jakeman, A.J. A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environ. Model. Softw. 2019, 114, 75–97, ISSN 1364–8152. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilson, E.J.; Butterfield, D. A semi-distributed integrated nitrogen model for multiple source assessment in catchment. Part I. Model structure and process equations. Sci. Total Environ. 1998, 210–211, 547–558. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilson, E.J.; Butterfield, D.; Seed, K. A Semi-Distributed Integrated Flow and Nitrogen Model for Multiple Source Assessment in Catchments (Inca): Part II—Application to Large River Basins in South Wales and Eastern England. Sci. Total Environ. 1998, 210–211, 559–583. [Google Scholar] [CrossRef]
- Liu, S.; Tucker, P.; Mansell, M.; Hursthouse, A. Development and application of acatchment scale diffuse nitrate modelling tool. Hydrol. Process. 2005, 19, 2625–2639. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, J.; Du, P.; He, W. An integrated system for nonpoint source pollution modelling and management. Water Sci. Technol. 2006, 54, 101–109. [Google Scholar] [CrossRef]
- EPA. PLOAD Version 3.0; An ArcVIew GIS Tool to Calculate Nonpoint Sources of Pollution in Watershed and Stormwater Projects. User’s Manual; United States Environmental Protection Agency: Washington, DC, USA, 2001.
- Foster, G.R.; Lane, L.J.; Nowlin, J.D.; Laflen, J.M.; Young, R.A. Estimating erosion and sediment yield on field-sized areas. Trans. Am. Soc. Agric. Eng. 1981, 24, 1253–1263. [Google Scholar] [CrossRef]
- Leonard, R.A.; Knisel, W.G.; Still, D.A. GLEAMS: Groundwater loading effects of agricultural management systems. Trans. ASAE 1987, 30, 1403–1418. [Google Scholar] [CrossRef]
- Bergstrom, L.; Johnsson, H.; Torstensson, G. Simulation of soil nitrogen dynamics using the SOILN model. Fertil. Res. 1991, 27, 181–188. [Google Scholar] [CrossRef]
- Johnsson, H.; Bergstorm, L.; Jansson, P.-E.; Paustian, K. Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric. Ecosyst. Environ. 1987, 18, 333–356. [Google Scholar] [CrossRef]
- Kyllmar, K.; Martensson, K.; Johnsson, H. Model-based coefficient method for calculation of N leaching from agricultural fields applied to small catchments and the effects of leaching reducing measures. J. Hydrol. 2005, 304, 343–354. [Google Scholar] [CrossRef]
- Jabro, J.D.; Jabro, A.D.; Fox, R.H. Accuracy and performance of three water quality models for simulating nitrate nitrogen losses under corn. J Environ Qual. 2006, 35, 1227–1236. [Google Scholar] [CrossRef]
- Abrahamsen, P.; Hansen, S. Daisy: An open soil-crop-atmosphere system model. Environ. Model. Softw. 2000, 15, 313–330. [Google Scholar] [CrossRef]
- Hansen, S.; Jensen, H.E.; Nielson, N.E.; Svendson, H. DAISY. A Soil Plant System Model. Danish Simulation Model for Transformation and Transport of Energy and Matter in the Soil Plant Atmosphere System. NPO-Research Report A 10; The National Agency of Environmental Protection: Copenhagen, Denmark, 1990. [Google Scholar]
- Hansen, S.; Jensen, H.E.; Nielsen, N.E.; Svendsen, H. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model. Daisy Fert. Res. 1990, 27, 245–259. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Rojas, K.W.; Hanson, J.D.; Shaffer, M.J.; Ma, L. Root Zone Water Quality Model. Modeling Management Effects on Water Quality and Crop Production; Water Resource Publication: Highlands Ranch, CO, USA, 2000. [Google Scholar]
- Ahuja, L.R.; Ma, Q.L.; Rojas, K.W.; Boeston, J.T.I.; Farahani, H.J. A field test of Root Zone Water Quality Model- Pesticide and bromide behaviour. Pesti. Sci. 1996, 48, 101–108. [Google Scholar] [CrossRef]
- DeCoursey, D.G.; Ahuja, L.R.; Hanson, J.; Shaffer, M.; Nash, R.; Rojas, K.W.; Hebson, C.; Hodges, T.; Ma, Q.; Johssen, J.E.; et al. Root Zone Water Quality Model, Technical Documentation; Version 1.0; United States Department of Agriculture, Agricultural Research Service, Great Plains Systems Research Unit: Fort Collins, CO, USA, 1992. [Google Scholar]
- Rojas, K.W.; Hebson, C.S.; Decoursey, D.G. Modelling agricultural management subject to sub surface water quality constraints. In Proceedings of the International Symposium Modelling Agriculture, Forest and Hydrology ASAE Winter Meeting, Chicago, IL, USA, 12–13 December 1988; ASAE: St. Joseph, MI, USA, 1988; pp. 108–116. [Google Scholar]
- Schwartz, L.; Shuman, L.M. Predicting Runoff and Associated Nitrogen Losses from Turfgrass using the Root Zone Water Quality Model (RZWQM). Environ. Qual. 2005, 34, 350–358. [Google Scholar] [CrossRef]
- Chapra, S.C.; Pelletier, G.J.; Tao, H. QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality, Version 2.04. In Documentation and Users Manual; Civil and Environmental Engineering Dept, Tufts University: Medford, MA, USA, 2006. [Google Scholar]
- Brown, L.C.; Barnwell, T.O. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS, EPA/600/3–87–007; US Environmental Protection Agency: Athens, GA, USA, 1987; p. 189. [Google Scholar]
- Chapra, S.C. Surface-Water Quality Modelling; WCB McGraw Hill: Columbus, OH, USA, 1997. [Google Scholar]
- Radwan, M.; Willems, P.; El-Sadek, A.; Berlamont, J. Modelling of dissolved oxygen and biochemical oxygen demand in river water using a detailed and a simplified model. River Basin Manag. 2003, 1, 97–103. [Google Scholar] [CrossRef]
- Brevé, M.; Skaggs, R.; Kandil, H.; Parsons, J.; Gilliam, J. DRAINMOD-N, a Nitrogen Model for Artificially Drained Soils. Trans. ASAE 1997, 40, 1067–1075. [Google Scholar] [CrossRef]
- Martin, C.; Cardona, C.M.; Martin, D.S.; Salterain, A.; Ayesa, E. Dynamic simulation of the water quality in rivers based on the IWA RWQM1. Application of the new simulator CalHidra 2.0 to the Tajo River. Water Sci. Technol. 2006, 54, 75–83. [Google Scholar] [CrossRef]
- Young, R.A.; Onstad, C.A.; Bosch, D.D.; Anderson, W.P. AGNPS: A non point source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 1989, 44, 168–173. [Google Scholar]
- Foerster, J.; Milne-Home, W.A. Application of AGNPS to model nutrient gereneration rates under diferent farming management practices at the Gunnedah Research Centre catchment. Aust. J. Exp. Agric. 1995, 35, 961–967. [Google Scholar] [CrossRef]
- Bosch, D.D.; Theurer, F.D.; Bingner, R.L.; Felton, G.; Chaubey, I. Evaluation of AnnAGNPS Water Quality Model, ASAE Paper No.982195. In Proceedings of the ASAE Annual International Meeting, Orlando, FL, USA, 12–16 July 1998. [Google Scholar]
- Cronshey, R.G.; Theurer, F.D. AnnAGNPS—Non-point pollutant loading model. In Proceedings of the First Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 19–23 April 1998; pp. 1–16. [Google Scholar]
- Theurer, D.F.; Cronshey, R.G. AnnAGNPS—Reach routing processes. In Proceedings of the First Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 19–23 April 1998; pp. 1–32. [Google Scholar]
- Shrestha, S.; Babel, M.S.; Gupta, A.D.; Kazama, F. Evaluation of annualised agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal. Environ. Model. Softw. 2006, 21, 961–975. [Google Scholar] [CrossRef]
- Beasley, D.B.; Huggins, L.F.; Monke, E.J. ANWERS: A model for watershed planning. Trans. ASAE 1980, 23, 938–944. [Google Scholar] [CrossRef]
- Beasley, D.B.; Huggins, L.F.; Monke, E.J. Modeling sediment yield from agricultural watersheds. J. Soil Water Conserv. 1982, 37, 113–117. [Google Scholar]
- De Roo, A.P.J.; Hazelhoff, I.; Burroh, P.A. Soil erosion modeling using ANSWERS and GIS. Earth Surf. Proc. Land 1989, 14, 517–532. [Google Scholar] [CrossRef]
- Rewerts, C.C.; Engel, B.A. ANSWERS on GRASS: Integrating watershed simulation with a GIS. In ASAE Paper No. 91–2621; ASAE: St. Joseph, MI, USA, 1991. [Google Scholar]
- Singh, R.; Tiwari, K.N.; Mal, B.C. Hydrological studies for small watershed in India using the ANSWERS model. J. Hydrol. 2006, 318, 184–199. [Google Scholar] [CrossRef]
- Krysanova, V.; Mueller-Wohlfeil, D.-I.; Becker, A. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol. Model. 1998, 106, 261–289. [Google Scholar] [CrossRef]
- Newham, L.T.H.; Letcher, R.A.; Jakeman, A.J.; Kobayashi, T. A framework for integrated hydrologic, sediment and nutrient export modelling for catchment-scale management. Environ. Model. Softw. 2004, 19, 1029–1038. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Littlewood, I.G.; Whitehead, P.G. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. J. Hydrol. 1990, 117, 275–300. [Google Scholar] [CrossRef]
- Prosser, I.P.; Rustomji, P.; Young, W.J.; Moran, C.; Hughes, A. Constructing River Basin Sediment. Budgets for the National Land and Water Resources Audit; CSIRO Land and Water: Canberra, Australia, 2001. [Google Scholar]
- Newham, L.T.H.; Drewry, J.J. Modelling catchment-scale nutrient generation. In Technical Report 28/05, National River Contaminants Program of Land and Water Australia; CSIRO Land and Water: Canberra, Australia, 2006. [Google Scholar]
- Behrendt, H.; Kornmilch, M.; Opitz, D.; Schmoll, O.; Scholz, G. Estimation of the nutrient inputs into river systems—Experiences from German rivers. Reg. Environ. Chang. 2002, 3, 107–117. [Google Scholar] [CrossRef]
- Venohr, M.; Behrendt, H.; Kluge, W. The effects of different input data and their spatial resolution on the results obtained from a conceptual nutrient emissions model: The River Stor case study. Hydrol. Process. 2005, 19, 3501–3515. [Google Scholar] [CrossRef]
- Hoos, A.B.; McMahon, G. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks. Hydrol. Process. 2009. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Cuddy, S.; Marston, F.; Simmons, B.; Davis, R.; Farley, T. Applying CMSS in the Hawkesbury-Nepean Basin; CSIRO Division of Water Resources: Canberra, Australia, 1994; Volume 1. [Google Scholar]
- Argent, R.M.; Perraud, J.M.; Rahman, J.M.; Grayson, R.B.; Podger, G.M. A new approach to water quality modelling and environmental decision support systems. Environ. Model. Softw. 2009, 24, 809–818. [Google Scholar] [CrossRef]
- Donnelly, T.H.; Barnes, C.J.; Wasson, R.J.; Murray, A.S.; Short, D.L. Catchment phosphorus sources and algal blooms—an interpretative review. In CSIRO Land and Water Technical Report 18/98; CSIRO Land and Water: Canberra, Australia, 1998. [Google Scholar]
- Baginska, B.; Pritchard, T.; Krogh, M. Roles of land use resolution and unit-area load rates in assessment of diffuse nutrient emissions. J. Environ. Manag. 2003, 69, 39–46. [Google Scholar] [CrossRef]
- Cuddy, S.M.; Rahman, J.M.; Marston, F.M.; Seaton, S.P.; Vertessy, R.A. Alternative approaches to incorporating management options into water quality modelling. In Proceedings of the Third Stream Management Conference: The Value of Healthy Streams; Rutherfurd, I., Sheldon, F., Brierley, G., Kenyon, C., Eds.; Cooperative Research Centre for Catchment Hydrology, Melbourne: Brisbane, Australia, 2001; pp. 169–174. [Google Scholar]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Hossain, I.; Imteaz, M.A.; Arulrajah, A.; Hossain, M.I. Continuous simulation of suspended sediment through a stream section. Int. J. Water 2013, 7, 206–222. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Arulrajah, A.; Hossain, I.; Hossain, M.I. Estimation of Build and wash off models parameters for an East Australian cacthement. Int. J. Water 2014, 8, 48–62. [Google Scholar] [CrossRef]
- Hewett, C.J.M.; Quinn, P.F.; Whitehead, P.G.; Heathwaite, A.L.; Flynn, N.J. Towards a nutrient export risk matrix approach to managing agricultural pollution at source. Hydrol. Earth Syst. Sci. 2004, 8, 834–845. [Google Scholar] [CrossRef] [Green Version]
- Wade, A.J.; Whitehead, P.G.; Butterfield, D. The integrated catchments model of phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: Model structure and equations. Hydrol. Earth Syst. Sci. 2002, 6, 583–606. [Google Scholar] [CrossRef] [Green Version]
- Billen, G.; Garnier, J.; Hanset, P. Modelling phytoplankton development in whole drainage network: The RIVERSTRAHLER Model applied to the Seine river system. Hydrobiologia 1994, 289, 119–137. [Google Scholar] [CrossRef]
- Garnier, J.; Billen, G.; Coste, M. Seasonal succession of diatoms and chlorophyceae in the drainage network of the Seine river: Observations and modelling. Limnol. Oceanogr. 1995, 40, 750–765. [Google Scholar]
- Garnier, J.; Ne´mery, J.; Billen, G.; Théry, S. Nutrient dynamics and control of eutrophication in the Marne River system: Modelling the role of exchangeable phosphorus. J. Hydrol. 2005, 304, 397–412. [Google Scholar] [CrossRef]
- Garnier, J.; Billen, G.; Hannon, E.; Fonbonne, S.; Videnina, Y.; Soulie, M. Modeling transfer and retention of nutrients in the drainage network of the Danube river. Estuar Coast. Shelf Sci. 2002, 54, 285–308. [Google Scholar] [CrossRef]
- Garnier, J.; Billen, G.; Palfner, L. Understanding the oxygen budget of the Mosel drainage network with the concept of heterotrophic/autotrophic sequences: The Riverstrahler approach. J. Hydrobiol. 1999, 410, 151–166. [Google Scholar] [CrossRef]
- Garnier, J.; Leporcq, B.; Sanchez, N.; Philippon, X. Biogeochemical budgets in three large reservoirs of the seine basin (Marne, Seine and Aube reservoirs). J. Biogeochem. 1999, 47, 119–146. [Google Scholar]
- De Wit, M.J.M. Nutrient fluxes at the river basin scale I: The PolFlow model. Hydrol. Process. 2001, 15, 743–759. [Google Scholar] [CrossRef]
- Leon, L.F.; Soulis, E.D.; Kouwen, N.; Farquhar, G.J. Nonpoint source pollution: A distributed water quality modelling approach. Water Res. 2001, 35, 997–1007. [Google Scholar] [CrossRef]
- Arnold, J.D.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modelling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Knisel, W.G. A Field-Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems; Research Report 26; USDA: Washington, DC, USA, 1980; p. 640. [Google Scholar]
- Knisel, W.G.; Williams, J.R. Hydrology component of CREAMS and GLEAMS models. In Computer Models of Watershed Hydrology; Singh, V., Ed.; Water Resources Publication: Denver, CO, USA, 1995. [Google Scholar]
- Izaurralde, R.C.; Williams, J.R.; McGill Rosenberg, W.B.; Quirogas, N.J.; Jakas, M.C. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecol. Model. 2006, 192, 362–384. [Google Scholar] [CrossRef]
- Williams, J.R.; Renard, K.G.; Dyke, P.T. EPIC—A new model for assessing erosion’s effect on soil productivity. J. Soil Water Conserv. 1984, 38, 381–383. [Google Scholar]
- Arnold, J.G.; Williams, J.R. Validation of SWRRB: Simulator for water resources in rural basins. J. Water Resour. Plan. Manag. 1987, 113, 243–256. [Google Scholar] [CrossRef]
- Behera, S.; Panda, R. Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process based model. Agric. Ecosyst. Environ. 2006, 113, 62–72. [Google Scholar] [CrossRef]
- Yang, S.; Dong, G.; Zheng, D.; Xiao, H.; Gao, Y.; Lang, Y. Coupling Xinanjiang model and SWAT to simulate agricultural nonpoint source pollution in Songtao watershed of Hainan, China. Ecol. Model. 2011, 222, 3701–3717. [Google Scholar] [CrossRef]
- Beven, K.J.; Wood, E.F.; Sivapalan, M. On hydrological heterogeneity–catchment morphology and catchment response. J. Hydrol. 1988, 100, 353–375. [Google Scholar] [CrossRef]
- Krysanova, V.; Luik, H. Simulation Modelling of a System Watershed-River-Sea Bay; Valgus: Tallinn, Estonia, 1989; p. 428. (In Russian) [Google Scholar]
- Krysanova, V.; Meiner, A.; Roosaare, J.; Vasilyev, A. Simulation modeling of the coastal waters pollution from agricultural watershed. Ecol. Modell. 1989, 49, 7–29. [Google Scholar] [CrossRef]
- Galbiati, L.; Bouraoui, F.; Elorza, F.J.; Bidoglio, G. Modelling diffuse pollution into a Mediterranean lagoon: Development and application of an integrated surface–subsurface model tool. Ecol. Model. 2006, 193, 4–18. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, ‘SHE’, 1: History and philosophy of a physically based modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, ‘SHE’, 2: Structure of a physically based distributed modelling system. J. Hydrol. 1986, 87, 67–77. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; Ewen, J. Nitrogen transformation component for SHETRAN catchment nitrate transport modelling. J. Hydrol. 2000, 230, 1–17. [Google Scholar] [CrossRef]
- Ewen, J. Contaminant transport component of the catchment modelling system SHETRAN. In Solute Modelling in Catchment Systems; Trudgill, S.T., Ed.; John Wiley & Sons: Chichester, UK, 1995; pp. 417–441. [Google Scholar]
- Jones, C.A.; Dyke, P.T.; Williams, J.R.; Kiniry, J.R.; Benson, V.W.; Griggs, R.H. EPIC: An operational model for the evaluation of agricultural sustainability. Agric. Syst. 1991, 37, 341–350. [Google Scholar] [CrossRef]
- Lunn, R.J.; Adams, R.; Dunn, S.M. Development and application of a nitrogen modelling system for large catchments. Hydrology 1996, 174, 285–304. [Google Scholar] [CrossRef]
- Christiansen, J.S.; Thorsen, M.; Clausen, T.; Hansen, S.; Refsgaard, J.C. Modelling of macropore flow and transport processes at catchment scale. J. Hydrol. 2004, 299, 136–158. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Thorsen, M.; Jensen, J.B.; Kleeschulte, S.; Hansen, S. Large scale modelling of groundwater contamination from nitrate leaching. J. Hydrol. 1999, 211, 117–140. [Google Scholar] [CrossRef]
- Styczen, M.; Storm, B. Modelling of N-movements on catchment scale—A tool for analysis and decision making. 1. Model description. Fert. Res. 1993, 36, 1–6. [Google Scholar] [CrossRef]
- Styczen, M.; Storm, B. Modelling of N-movements on catchment scale—A tool for analysis and decision making. 2. A case study. Fert. Res. 1993, 36, 7–17. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process Land Form 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E.; Folley, A.J.V. The European Soil Erosion Model. (EUROSEM): Documentation and User Guide; Version 3.6; Silsoe College, Cranfield University: Cranfield, UK, 1998. [Google Scholar]
- Arnold, J.G.; Williams, J.R.; Nicks, A.D.; Sammons, N.B. SWRRB—A Basin Scale Simulation Model for Soil and Water Resources Management; Texas A&M University Press: College Station, TX, USA, 1990; p. 255. [Google Scholar]
- Arnold, J.G.; Allen, P.M.; Bernhardt, G. A comprehensive surface-groundwater flow model. J. Hydrol. 1993, 142, 47–69. [Google Scholar] [CrossRef]
- Kouwen, N. WATFLOOD/SPL8 Flood Forecasting System, Documentation and User Manual; Civil Engineering, University of Waterloo: Waterloo, ON, Canada, 1999. [Google Scholar]
- Chen, E.; Mackay, D.S. Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source pollution model. Hydrology 2004, 295, 211–224. [Google Scholar] [CrossRef]
- Rijtema, P.E.; Kroes, G.J. Some results of nitrogen simulations with the model ANIMO. Fertil. Res. 1991, 27, 189–198. [Google Scholar] [CrossRef]
- Everbecq, E.; Gosselain, V.; Viroux, L.; Descy, J.P. Potamon: A dynamic model for predicting phytoplankton composition and biomass in lowland rivers. Water Res. 2001, 35, 901–912. [Google Scholar] [CrossRef]
- Krysanova, V.; Becker, A. Integrated Modelling of Hydrological Process and Nutrient Dynamics at the River Basin Scale. Hydrobiologia 1999, 410, 131–138. [Google Scholar] [CrossRef]
- Sferratore, A.; Billen, G.; Garnier, J.; Thery, S. Modelling Nutrient (N,P,Si) Budget in the Seine Watershed: Application of the Riverstrahler Model Using Data from Local to Global Scale Resolution. Glob. Biogechem. Cycles 2005, 19, GB4S07. [Google Scholar]
- Thouvenot, M.; Billen, G.; Garnier, J. Modelling Nutrient Exchange at the Sediment Water Interface of River Systems. Hydrology 2007, 341, 55–78. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, P.G.; Battarbee, R.W.; Crossman, J.; Elliott, J.A.; Wilby, R. A climate change report card for water Working Technical Paper 9. In River and Lake Water Quality−Future Trends; NERC Centre for Ecology & Hydrology: Lancaster, UK, 2013; pp. 1–39. [Google Scholar]
- Uktag. River Flow for Good Ecological Potential Final Recommendations. 2013. Available online: www.wfduk.org (accessed on 10 August 2021).
- Dutta, D.; Nakayama, K. Effects of spatial grid resolution on river flow and surface inundation simulation by physically based distributed modeling approach. Hydrol. Process. 2009, 23, 534–545. [Google Scholar] [CrossRef]
- Dutta, D.; Herath, S.; Musiake, K. Flood inundation simulation in a river basin using a physically based distributed hydrologic model. Hydrol. Process. 2000, 14, 497–519. [Google Scholar] [CrossRef]
- Jha, R.; Herath, S.; Musiake, K. River network solution for a distributed hydrological model and applications. Hydrol. Process. 2000, 14, 575–592. [Google Scholar] [CrossRef]
- Alam, M.J.; Dutta, D. Predicting climate change impact on nutrient pollution in waterways: A case study in the upper catchment of the Latrobe River, Australia. Ecohydrology 2013, 6, 73–82. [Google Scholar] [CrossRef]
- Alam, M.J.; Dutta, D. A process-based and distributed model for nutrient dynamics in river basin: Development, testing and applications. Ecol. Model. 2012, 247, 112–124. [Google Scholar] [CrossRef]
- Alam, M.J.; Dutta, D. A sub-catchment-based approach for modelling nutrient dynamics and transport at a river basin scale. Water Resour. Manag. 2016, 30, 5455–5478. [Google Scholar] [CrossRef] [Green Version]
- Wagenet, R.J.; Huston, J.A. LEACHM: Leaching Estimation and Chemistry Model—A Process Based Model of Water and Solute Movement, Transformations, Plant Uptake and Chemical Reactions in the Unsaturated Zone; Version 2; Centre for Environmental Research, Department of Agronomy, Cornell University: Ithaca, NY, USA, 1989; p. 148. [Google Scholar]
- Johnsson, H.; Larsson, M.; Martensson, K.; Hoffmann, M. SOILNDB: A decision support tool for assessing N leaching losses from arable land. Environ. Model. Softw. 2002, 17, 505–517. [Google Scholar] [CrossRef]
- DHI. MIKE11: A Modelling System for Rivers and Channels’, Reference Manual; DHI Water & Environment: Hørsholm, Denmark, 2002. [Google Scholar]
- Ferrant, S.; Oehler, F.; Durand, P.; Ruiz, L.; Salmon-Monviola, J.; Justes, E.; Dugast, P.; Probst, A.; Probst, J.-L.; Sanchez-Perez, J.-M. Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches. Hydrology 2011, 406, 1–15. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.J.; Dutta, D. Modelling of Nutrient Pollution Dynamics in River Basins: A Review with a Perspective of a Distributed Modelling Approach. Geosciences 2021, 11, 369. https://doi.org/10.3390/geosciences11090369
Alam MJ, Dutta D. Modelling of Nutrient Pollution Dynamics in River Basins: A Review with a Perspective of a Distributed Modelling Approach. Geosciences. 2021; 11(9):369. https://doi.org/10.3390/geosciences11090369
Chicago/Turabian StyleAlam, Md Jahangir, and Dushmanta Dutta. 2021. "Modelling of Nutrient Pollution Dynamics in River Basins: A Review with a Perspective of a Distributed Modelling Approach" Geosciences 11, no. 9: 369. https://doi.org/10.3390/geosciences11090369
APA StyleAlam, M. J., & Dutta, D. (2021). Modelling of Nutrient Pollution Dynamics in River Basins: A Review with a Perspective of a Distributed Modelling Approach. Geosciences, 11(9), 369. https://doi.org/10.3390/geosciences11090369