Hydrochemistry and Diatom Assemblages on the Humpata Plateau, Southwestern Angola
Abstract
:1. Introduction
- Record modern diatom assemblages at five sites in southwestern Angola.
- Determine which hydrochemical variables diatom communities can estimate for local water bodies.
- Identify potential human impact on water through differences in water quality and diatom assemblages.
2. Geologic and Climatic Setting
2.1. Geography and Geology
2.2. Seasonality and Climate
2.3. Hydrological Setting
3. Materials and Methods
3.1. Sample Collection
3.2. Diatom Preparation and Identification
3.3. Analytical Methods
4. Results
4.1. Hydrochemical Results
4.2. Diatom Assemblage Results
- Cascatinha da Zootécnica, Achnanthidium macrocephalum (Hustedt) Round & Bukhtiyarova (all communities), Encyonema neogracile Krammer (epipelic), Eunotia cf. minor (Kützing) Grunow (epiphytic), E. rhomboidea Hustedt (epipelic and epiphytic), and Navicula cryptocephala Kützing (epilithic and epipelic)
- Nandimba Tchivinguiro, Achnanthidium minutissimum (Kützing) Czarnecki (epilithic and epiphytic), Grunowia solgensis (A. Cleve) Aboal (episammic), Geissleria sp. 1 and Sellaphora cf. atomoides (Grunow) Wetzel & Van de Vijver (episammic), Navicula erifuga (OF Müller) Bory (epilithic), Nitzschia amphibia Grunow (all communities), N. frustulum (Kützing) Grunow (episammic), and Platessa hustedtii (Krasske) Lange-Bertalot (epiphytic)
- Umbutu, A. minutissimum (all communities), Gomphonema parvulum (Kützing) Kützing (all communities), Navicula cryptotenella Lange-Bertalot (epilithic), and Sellaphora pupula (Kützing) Mereschkowsky (epipelic and epiphytic)
- Leba 1, A. minutissimum (all communities), Navicula radiosa Kützing (all communities), and Ulnaria cf. biceps (Kützing) Lange-Bertalot (epilithic)
- Leba 2, A. macrocephalum (epililthic, epipelic, and episammic), Ulnaria cf. contracta (GS West) (epiphytic), G. parvulum (epilithic), and Navicula cf. zanonii Hustedt (all communities)
5. Discussion
5.1. Hydrochemistry
5.2. Diatoms as Indicators
5.2.1. Conductivity
5.2.2. pH
5.2.3. Temperature
5.2.4. Alkalinity and Ionic Species
5.2.5. Trophic Levels and Pollution
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lapworth, D.J.; Nkhuwa, D.C.W.; Okotto-Okotto, J.; Pedley, S.; Stuart, M.E.; Tijani, M.N.; Wright, J. Urban Groundwater Quality in Sub-Saharan Africa: Current Status and Implications for Water Security and Public Health. Hydrogeol. J. 2017, 25, 1093–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paca, J.M.; Santos, F.M.; Pires, J.C.M.; Leitão, A.; Boaventura, R.A.R. Quality Assessment of Water Intended for Human Consumption from Kwanza, Dande and Bengo Rivers (Angola). Environ. Pollut. 2019, 254, 113037. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.; Gomes, E.M.C.; Isaías, M.; Azevedo, J.M.M.; Zeferino, B. Spatial and Seasonal Variations of Surface and Groundwater Quality in a Fast-Growing City: Lubango, Angola. Environ. Earth Sci. 2017, 76, 1–17. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Godfrey, S.; Obika, A. Improved Community Participation: Lessons from Water Supply Programmes in Angola. Commun. Dev. J. 2004, 39, 156–165. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Funk, C.; Fink, A.H. Rainfall Over the African Continent from the 19th through the 21st Century. Glob. Planet. Chang. 2018, 165, 114–127. [Google Scholar] [CrossRef]
- Gasse, F. Hydrological Changes in the African Tropics since the Last Glacial Maximum. Quat. Sci. Rev. 2000, 19, 189–211. [Google Scholar] [CrossRef]
- Battarbee, R.W.; Jones, V.J.; Flower, R.J.; Cameron, N.G.; Bennion, H.; Carvalho, L.; Juggins, S. Diatoms. In Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators; Smol, J.P., Birks, H.J.B., Last, W.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Fritz, S.C.; Cumming, B.F.; Gasse, F.; Laird, K.R. Diatoms as indicators of hydrologic and climatic change in saline lakes. In The Diatoms: Applications for the Environmental and Earth Sciences; Stoermer, E.F., Smol, J.P., Eds.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Cocquyt, C.; Ndjombo, E.L.; Tsamemba, S.T.; wa Malale, H.N.S. Freshwater Diatoms in the Democratic Republic of the Congo: A Historical Overview of the Research and Publications. Phytokeys 2019, 136, 107. [Google Scholar] [CrossRef] [Green Version]
- Birks, B.; John, H. Strengths and Weaknesses of Quantitative Climate Reconstructions Based on Late-Quaternary Biological Proxies. Quat. Int. 2010. [Google Scholar] [CrossRef] [Green Version]
- Juggins, S. Quantitative Reconstructions in Palaeolimnology: New Paradigm Or Sick Science? Quat. Sci. Rev. 2013, 64, 20–32. [Google Scholar] [CrossRef]
- Gasse, F.; Juggins, S.; Khelifa, L.B. Diatom-Based Transfer Functions for Inferring Past Hydrochemical Characteristics of African Lakes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 117, 31–54. [Google Scholar] [CrossRef]
- Vanormelingen, P.; Verleyen, E.; Vyverman, W. The diversity and distribution of diatoms: From cosmopolitanism to narrow endemism. Biodivers. Conserv. 2008, 17, 393–405. [Google Scholar] [CrossRef]
- Soininen, J.; Teittinen, A. Fifteen important questions in the spatial ecology of diatoms. Freshw. Biol. 2019, 64, 2071–2083. [Google Scholar] [CrossRef] [Green Version]
- Huntley, B.J.; Russo, V.; Lages, F.; Ferrand, N. Biodiversity of Angola; Springer Cham: Basel, Switzerland, 2019. [Google Scholar] [CrossRef] [Green Version]
- Lopes, F.C.; Pereira, A.J.; Mantas, V.M.; Mpengo, H.K. Morphostructural Characterization of the Western Edge of the Huila Plateau (SW Angola), Based on Remote Sensing Techniques. J. Afr. Earth Sci. 2016, 117, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Lopes, F.C.; Ramos, A.M.; Gomes, C.R.; Ussombo, C.C. The Geoheritage of Lubango-Tundavala Road Traverse in the Serra Da Leba (SW Angola): Outcrops Characterization and Numerical Assessment for Outdoor Educational Activities and Geoconservation Purpose. J. Afr. Earth Sci. 2019, 157, 103510. [Google Scholar] [CrossRef]
- Correia, H. Sobre a existência de rochas vulcanoclásticas na Formação da Chela (Região do Planalto da Humpata). Ciênc. Geol. 1973, 1, 27–32. [Google Scholar]
- Correia, H. O Grupo da Chela e Formação da Leba como novas unidades litoestratigráficas resultantes da redefinição da Formação da Chela na região do Planalto da Humpata (Sudoeste de Angola). Bol. Soc. Geol. 1976, 20, 65–130. [Google Scholar]
- Pereira, E.; Tassinari, C.C.G.; Rodrigues, J.F.; Van-Dúnem, M.V. New data on the deposition age of the volcano-sedimentary Chela Group and its Eburnean basement: Implications to post-Eburnean crustal evolution of the SW of Angola. Comun. Geol. 2011, 98, 29–40. [Google Scholar]
- de Matos, D.; Martin, A.C.; Senna-Martinez, J.C.; Pinto, I.; Coelho, A.G.; Ferreira, S.S.; Oosterbeek, L. Review of Archaeological Research in Angola. Afr. Archaeol. Rev. 2021. [Google Scholar] [CrossRef]
- Pombo, S.; de Oliveira, R.P. Evaluation of Extreme Precipitation Estimates from TRMM in Angola. J. Hydrol. 2015, 523, 663–679. [Google Scholar] [CrossRef]
- SASSCAL WeatherNet-Monthly Values. Available online: www.sasscalweathernet.org/weatherstat_monthly_AO_we.php (accessed on 10 October 2020).
- CCKP. Climate Change Knowledge Portal. 2021. Available online: https://climateknowledgeportal.worldbank.org/download-data (accessed on 14 April 2021).
- Tyson, P.D.; Preston-Whyte, R.A. The Weather and Climate of Southern Africa; Oxford University Press Southern Africa: Cape Town, South Africa, 2000. [Google Scholar]
- Tyson, P.D. Climatic Change and Variability in Southern Africa; Oxford University Press: Cape Town, South Africa, 1986. [Google Scholar]
- Chase, B.M.; Niedermeyer, E.M.; Boom, A.; Carr, A.S.; Chevalier, M.; He, F.; Meadows, M.E.; Ogle, N.; Reimer, P.J. Orbital Controls on Namib Desert Hydroclimate Over the Past 50,000 Years. Geology 2019, 47, 867–871. [Google Scholar] [CrossRef]
- Meissner, R. Interaction and existing constraints in international river Basins. In International Waters in Southern Africa; Nakayama, M., Ed.; United Nations University Press: Tokyo, Japan, 2003; pp. 249–273. [Google Scholar]
- Heyns, P. Water Resource Management in Southern Africa. In International Waters in Southern Africa; Nakayama, M., Ed.; United Nations University Press: Tokyo, Japan, 2003; pp. 5–37. [Google Scholar]
- Lindenmaier, F.; Miller, R.; Fenner, J.; Christelis, G.; Dill, H.G.; Himmelsbach, T.; Kaufhold, S.; Lohe, C.; Quinger, M.; Schildknecht, F.; et al. Structure and Genesis of the Cubango Megafan in Northern Namibia: Implications for its Hydrogeology. Hydrogeol. J. 2014, 22, 1307–1328. [Google Scholar] [CrossRef]
- Wellington, J.H. The Kunene River and the Etosha Plain. S. Afr. Geogr. J. 1938, 20, 21–32. [Google Scholar] [CrossRef]
- Kelly, M.G.; Adams, C.; Graves, A.C.; Jamieson, J.; Krokowski, J.; Lycett, E.B.; Murray-Bligh, J.; Prichard, S.; Wilkins, C. The Trophic Diatom Index: A User’s Manual; Environmental Agency: Bristol, UK, 2001.
- Battarbee, R.W. Diatom Analysis. In Handbook of Holocene Palaeoecology & Palaeohydrology; Berglund, B.E., Ed.; The Blackburn Press: Caldwell, NJ, USA, 1986; pp. 527–570. [Google Scholar]
- Gasse, F. East African Diatoms: Taxonomy, Ecological Distribution. Bibl. Diatomol. 1986, 11, 201. [Google Scholar]
- Cocquyt, C. Diatoms from the Northern Basin of Lake Tanganyika. Bibl. Diatomol. 1998, 39, 1–274. [Google Scholar]
- Taylor, J.C.; Harding, W.R.; Archibald, C.G.M. An Illustrated Guide to Some Common Diatom Species from South Africa; Water Research Commission: Pretoria, South Africa, 2007. [Google Scholar]
- Spaulding, S.A.; Bishop, I.W.; Edlund, M.B.; Lee, S.; Furey, P.; Jovanovska, E.; Potapova, M. Diatoms of North America. Available online: https://diatoms.org/species (accessed on 26 August 2019).
- Eby, G. Chapter 6: Carbon Chemistry. In Principles of Environmental Geochemistry; Waveland Press, Inc.: Long Grove, IL, USA, 2016; pp. 129–161. [Google Scholar]
- Bartos, T.T.; Ogle, K.M. Water Quality and Environmental Isotopic Analyses of Ground-Water Samples Collected from the Wasatch and Fort Union Formations in Areas of Coalbed Methane Development—Implications to Recharge and Ground-Water Flow, Eastern Powder River Basin, Wyoming. Available online: https://pubs.usgs.gov/wri/wri024045/htms/report2.htm (accessed on 10 December 2020).
- Benzecri, J.-P. Correspondence Analysis Handbook; Marcel Dekker Inc.: New York, NY, USA, 1992. [Google Scholar]
- Kassambara, A. Practical Guide to Principal Component Methods in R. 2017. Available online: http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/ (accessed on 15 February 2021).
- Sonneman, J.A.; Sincock, A.; Fluin, J.; Reid, M.; Newall, P.; Tibby, J.; Gell, P. An Illustrated Guide to Common Stream Diatom Species from Temperate Australia; Cooperative Research Centre for Freshwater Ecology Identification Guide No 33; Adalaide University: Adalaide, Australia, 2000. [Google Scholar]
- WorldPop. 2018. (www.worldpop.org-School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University. Global High Resolution Population Denominators Project-Funded by the Bill and Melinda Gates Foundation (OPP1134076). Available online: https://dx.doi.org/10.5258/SOTON/WP00660 (accessed on 16 March 2021).
- Conchedda, G.; Cinardi, G.; Steinfeld, H. Africa Ruminants Tropical Livestock Units (TLU). 2015. Available online: http://www.fao.org/geonetwork/srv/en/metadata.show?id=52752&currTab=simple (accessed on 16 March 2021).
- USGS. Metaluminous Granite. Available online: https://mrdata.usgs.gov/catalog/term-simple.php?term=4.4.2.2&thcode=4 (accessed on 16 December 2020).
- Owen, R.B.; Potts, R.; Behrensmeyer, A.K.; Ditchfield, P. Diatomaceous Sediments and Environmental Change in the Pleistocene Olorgesailie Formation, Southern Kenya Rift Valley. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 269, 17–37. [Google Scholar] [CrossRef]
- Potapova, M.; Hamilton, P.B. Morphological and Ecological Variation within the Achnanthidium Minutissimum (Bacillariophyceae) Species Complex. J. Phycol. 2007, 43, 561–575. [Google Scholar] [CrossRef]
- Taylor, J.C.; Cocquyt, C. Diatoms from the Congo and Zambezi Basins—Methodologies and Identification of the Genera. Afr. J. Aquat. Sci. 2019. [Google Scholar] [CrossRef]
- Kilham, P.; Kilham, S.S.; Hecky, R.E. Hypothesized Resource Relationships among African Planktonic Diatoms. Limnol. Oceanogr. 1986, 31, 1169–1181. [Google Scholar] [CrossRef] [Green Version]
- Descy, J.-P.; Sarmento, H. Microorganisms of the East African Great Lakes and their Response to Environmental Changes. Freshw. Rev. 2008, 1, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Abassi, T.; Abassi, S.A. Water Quality Indices; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Bellinger, B.J.; Cocquyt, C.; O’Reilly, C.M. Benthic Diatoms as Indicators of Eutrophication in Tropical Streams. Hydrobiologia 2006, 573, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.C.; van Vuuren, M.S.J.; Pieterse, A.J.H. The Application and Testing of Diatom-Based Indices in the Vaal and Wilge Rivers, South Africa. Water SA 2007, 33. [Google Scholar] [CrossRef] [Green Version]
- Dalu, T.; Bere, T.; Froneman, P.W. Assessment of Water Quality Based on Diatom Indices in a Small Temperate River System, Kowie River, South Africa. Water SA 2016, 42, 183. [Google Scholar] [CrossRef] [Green Version]
Sites | Lat. (° S) | Long. (° E) | Elevation (m) | Water Body Type | Water Type | Temp. ( °C) | pH | Cond. (µS/cm) | * Alk. (mg/L sol’n as CaCO3) | TDS (ppm) | ||||
Cascatinha da Zootécnica 1 | 14.9166 | 13.3114 | 1670 | Waterfall Pool | Na-Cl | 14.22 | 8.26 | 17 | 1 | 8 | ||||
Nandimba Tchivinguiro 1 | 15.1675 | 13.3207 | 1677 | Cold Spring | Mg-HCO3 | 22.12 | 7.35 | 186 | 147 | 186 | ||||
Umbutu 1 | 15.1263 | 13.3815 | 1806 | Cold Spring | Mg/Ca-HCO3 | 22.18 | 7.16 | 1035 | 47 | 520 | ||||
Leba 1 | 15.0704 | 13.2240 | 1689 | River | Ca/Mg-HCO3 | 14.84 | 7.92 | 95 | 16 | 40 | ||||
Leba 2 | 15.0749 | 13.2868 | 1730 | River | Na/Ca-HCO3/Cl | 17.80 | 7.75 | 34 | 2 | 13 | ||||
Sites | Li+ (mg/L) | Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | Sr2+ (mg/L) | * HCO3− (mg/L) | F− (mg/L) | Cl− (mg/L) | Br− (mg/L) | NO3− (mg/L) | PO43− (mg/L) | SO42− (mg/L) | I− (mg/L) |
Cascatinha da Zootécnica 1 | 0.00 | 0.60 | 0.25 | 0.11 | 0.06 | 0.00 | 0.83 | 0.01 | 0.64 | 0.01 | 0.16 | 0.01 | 0.06 | 0.01 |
Nandimba Tchivinguiro 1 | 0.00 | 2.20 | 1.40 | 28.00 | 19.00 | 0.00 | 176.20 | 0.22 | 4.20 | 0.03 | 0.89 | 0.06 | 0.71 | 0.01 |
Umbutu 1 | 0.00 | 1.30 | 0.90 | 9.20 | 5.60 | 0.00 | 57.47 | 0.08 | 1.00 | 0.01 | 0.89 | 0.20 | 0.34 | 0.06 |
Leba 1 | 0.01 | 2.10 | 0.48 | 3.10 | 1.50 | 0.07 | 19.64 | 0.02 | 1.70 | 0.00 | 0.01 | 0.01 | 0.53 | 0.01 |
Leba 2 | 0.00 | 0.87 | 0.51 | 0.35 | 0.13 | 0.00 | 1.96 | 0.01 | 1.10 | 0.00 | 0.49 | 0.01 | 0.34 | 0.01 |
Site | Sample Type | Achnanthidium exiguum | Achnanthidium macrocephalum | Achnanthidium minutissimum | Achnanthidium saprophilum | Achnanthidium spp. | Amphora pediculus | Brachysira neoexilis | Cymbella affinis | Encyonema neogracile | Eunotia cf. minor | Eunotia pectinalis var. undulata | Eunotia rhomboidea | Eunotia spp. | Fragilaria capucina | Fragilaria spp. | Frustulia crassinervia | Geissleria sp 1 and Sellaphora cf. atomoides | Gomphonema acumnatum | Gomphonema gracile sl | Gomphonema parvulum | ||
Cascatinha da Zootécnica 1 | Epithlithic | 12.9 | 9.7 | 3.2 | 6.5 | 9.7 | 6.5 | 3.2 | |||||||||||||||
Epipelic | 11.6 | 0.2 | 2.9 | 4.3 | 3.4 | 0.2 | 10.9 | 6.3 | 4.8 | 15.6 | 0.2 | 0.9 | 2.7 | 2.3 | |||||||||
Epiphytic | 15.1 | 2.1 | 9.9 | 7.7 | 1.0 | 5.4 | 11.6 | 3.1 | 11.8 | 0.8 | 7.2 | 4.8 | |||||||||||
Nandimba Tchivinguiro 1 | Epilithic | 0.2 | 12.1 | 0.7 | 3.6 | 1.3 | 1.3 | 1.1 | 0.2 | 0.2 | 0.9 | 0.2 | 0.9 | 3.4 | |||||||||
Epipelic | 0.2 | 2.2 | 0.9 | 0.8 | 1.1 | 0.8 | 4.2 | 0.2 | 0.3 | ||||||||||||||
Epiphytic | 12.7 | 5.3 | 0.4 | 0.6 | 5.9 | 2.9 | 0.2 | 6.4 | |||||||||||||||
Episammic | 0.1 | 2.8 | 2.0 | 26.1 | |||||||||||||||||||
Umbutu 1 | Epithlithic | 0.5 | 24.2 | 1.9 | 23.0 | 3.4 | 3.4 | 24.0 | |||||||||||||||
Epipelic | 2.6 | 20.8 | 2.6 | 1.8 | 5.1 | 2.8 | 0.5 | 0.3 | 0.5 | 4.6 | 0.5 | 7.2 | 10.5 | ||||||||||
Epiphytic | 0.5 | 10.6 | 2.7 | 6.9 | 9.4 | 0.7 | 0.2 | 0.2 | 6.7 | 18.2 | |||||||||||||
Leba 1 | Epilithic | 33.2 | 1.7 | 5.9 | 0.4 | 0.4 | 0.8 | 4.2 | 2.1 | 3.8 | |||||||||||||
Epipelic | 0.8 | 2.5 | 29.9 | 1.3 | 11.2 | 0.2 | 0.2 | 0.2 | 1.5 | 1.5 | 0.2 | 0.2 | 1.9 | 0.4 | 2.1 | ||||||||
Epiphytic | 0.9 | 40.3 | 14.6 | 1.1 | 0.5 | 0.5 | 0.9 | 1.8 | 0.7 | 0.9 | 2.3 | ||||||||||||
Episammic | 3.8 | 26.4 | 6.4 | 0.4 | 2.0 | 0.2 | 0.4 | 0.4 | 1.1 | 0.4 | 0.4 | 2.2 | 0.2 | 0.2 | 2.9 | ||||||||
Leba 2 | Epilithic | 11.4 | 2.6 | 4.0 | 0.4 | 4.4 | 0.7 | 2.6 | 19.3 | ||||||||||||||
Epipelic | 15.6 | 2.0 | 1.6 | 0.4 | 1.4 | 0.8 | 2.8 | 0.8 | 2.2 | 0.4 | 1.8 | ||||||||||||
Epiphytic | 0.2 | 8.0 | 0.5 | 9.0 | 7.1 | 3.1 | 6.1 | 0.2 | 6.8 | 7.1 | 5.7 | 0.2 | 2.6 | ||||||||||
Episammic | 25.4 | 8.8 | 14.0 | 3.6 | 0.5 | 0.2 | 1.2 | 1.7 | 6.7 | 2.6 | 2.6 | 1.0 | 2.1 | ||||||||||
Site | Sample Type | Gomphonema pseudosphaerophorum | Gomphonema venusta | Gomphonema spp. | Grunowia solgensis | Navicula cryptocephala | Navicula cryptotenella | Navicula angusta | Navicula erifuga | Navicula radiosa | Navicula cf. zanonii | Nitzschia amphibia | Nitzschia cf. frustulum | Nitzschia cf. palea | Pinnularia divergens | Platessa hustedtii | Punctastriata cf. mimetica | Sellaphora cf. nigri | Sellaphora pupula | Sellaphora cf. saugerressi and Geissleria sp 2 | Ulnaria cf. biceps | Ulnaria cf. contracta | Ulnaria cf. ulnabiseriata |
Cascatinha da Zootécnica 1 | Epithlithic | 9.7 | 6.5 | 19.4 | 6.5 | 6.5 | |||||||||||||||||
Epipelic | 3.6 | 21.5 | 0.5 | 2.5 | 0.2 | 0.2 | 0.2 | ||||||||||||||||
Epiphytic | 1.9 | 2.9 | 0.2 | 8.5 | 0.2 | 0.2 | 0.2 | 0.2 | |||||||||||||||
Nandimba Tchivinguiro 1 | Epilithic | 0.2 | 2.9 | 2.9 | 0.2 | 39.8 | 14.6 | 3.6 | 0.4 | 1.3 | 1.1 | 0.1 | 2.5 | 0.2 | |||||||||
Epipelic | 0.6 | 3.9 | 3.7 | 47.4 | 7.6 | 7.7 | 6.6 | 3.4 | 0.9 | 1.5 | 3.5 | 0.2 | 0.7 | ||||||||||
Epiphytic | 1.6 | 1.2 | 2.1 | 1.2 | 2.5 | 31.4 | 2.7 | 3.5 | 11.1 | 1.0 | 0.6 | 0.2 | 3.2 | 0.5 | |||||||||
Episammon | 0.1 | 23.3 | 1.8 | 0.7 | 12.2 | 12.2 | 0.9 | 1.8 | 0.3 | 5.1 | 9.5 | ||||||||||||
Umbutu 1 | Epithlithic | 1.7 | 11.3 | 0.2 | 2.9 | 0.7 | 0.2 | 1.7 | |||||||||||||||
Epipelic | 0.5 | 1.3 | 1.0 | 14.4 | 0.5 | 1.3 | 2.6 | 2.1 | 10.5 | 0.5 | 0.3 | ||||||||||||
Epiphytic | 4.7 | 6.4 | 2.2 | 11.8 | 2.0 | 1.0 | 10.3 | 0.4 | 0.2 | 0.4 | |||||||||||||
Leba 1 | Epilithic | 0.4 | 22.3 | 5.9 | 0.4 | 0.4 | 0.4 | 12.8 | 4.8 | ||||||||||||||
Epipelic | 1.5 | 1.7 | 36.9 | 0.6 | 0.1 | 1.2 | |||||||||||||||||
Epiphytic | 3.6 | 0.5 | 23.9 | 2.0 | 0.2 | 0.8 | 0.6 | ||||||||||||||||
Episammon | 5.3 | 0.2 | 0.2 | 40.2 | 0.4 | 0.2 | 1.1 | 0.7 | 1.0 | ||||||||||||||
Leba 2 | Epilithic | 2.6 | 20.0 | 4.4 | 17.8 | 0.4 | 0.2 | 0.2 | 0.7 | 6.2 | 0.9 | ||||||||||||
Epipelic | 0.8 | 0.6 | 0.8 | 6.4 | 49.1 | 0.2 | 0.4 | 8.0 | 0.5 | ||||||||||||||
Epiphytic | 0.9 | 1.9 | 1.4 | 0.2 | 1.9 | 17.0 | 0.2 | 0.1 | 17.2 | 0.2 | |||||||||||||
Episammon | 0.5 | 0.2 | 1.7 | 1.0 | 15.7 | 0.2 | 9.3 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robakiewicz, E.; de Matos, D.; Stone, J.R.; Junginger, A. Hydrochemistry and Diatom Assemblages on the Humpata Plateau, Southwestern Angola. Geosciences 2021, 11, 359. https://doi.org/10.3390/geosciences11090359
Robakiewicz E, de Matos D, Stone JR, Junginger A. Hydrochemistry and Diatom Assemblages on the Humpata Plateau, Southwestern Angola. Geosciences. 2021; 11(9):359. https://doi.org/10.3390/geosciences11090359
Chicago/Turabian StyleRobakiewicz, Elena, Daniela de Matos, Jeffery R. Stone, and Annett Junginger. 2021. "Hydrochemistry and Diatom Assemblages on the Humpata Plateau, Southwestern Angola" Geosciences 11, no. 9: 359. https://doi.org/10.3390/geosciences11090359
APA StyleRobakiewicz, E., de Matos, D., Stone, J. R., & Junginger, A. (2021). Hydrochemistry and Diatom Assemblages on the Humpata Plateau, Southwestern Angola. Geosciences, 11(9), 359. https://doi.org/10.3390/geosciences11090359