Glacial Erosion Rates Determined at Vorab Glacier: Implications for the Evolution of Limestone Plateaus
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Fieldwork
3.2. 36Cl Sample Preparation
3.3. MECED Model
4. Overview of Geomorphology of Vorab Glacier Forefield
4.1. Glacial Landforms and Sediments
4.2. Bedrock, Karst and Hydrological Features
5. Glacial Erosion Rate Determinations
5.1. ”Apparent” Exposure Ages
Sample | Location | Latitude | Longitude | Elevation | Thickness | Topographic Shielding | 36Cl Concentration 1,2 | Apparent Exposure Age |
---|---|---|---|---|---|---|---|---|
WGS 84 | m a.s.l. | cm | 106 at/g | ka | ||||
Vorab-1 | 2018 | 46.882 | 9.174 | 2653 | 2.5 | 0.9986 | 0.89 ± 0.05 | 5.7 ± 0.4 |
Vorab-2 | 2018 | 46.878 | 9.177 | 2635 | 1.0 | 0.9991 | 0.84 ± 0.05 * | 5.7 ± 0.4 |
Vorab-3 | 2018 | 46.877 | 9.176 | 2639 | 2.0 | 0.9987 | 0.91 ± 0.05 | 5.8 ± 0.4 |
Vorab-4 | 2018 | 46.876 | 9.176 | 2618 | 1.5 | 0.9979 | 0.81 ± 0.03 * | 5.2 ± 0.3 |
Vorab-5 | 2018 | 46.876 | 9.173 | 2640 | 3.0 | 0.9963 | 0.50 ± 0.03 | 3.3 ± 0.2 |
Vorab-6 | 1948 | 46.877 | 9.185 | 2623 | 1.5 | 0.9977 | 1.12 ± 0.06 | 7.1 ± 0.5 |
Vorab-7 | 1985 | 46.881 | 9.181 | 2616 | 2.0 | 0.9991 | 0.96 ± 0.05 | 6.3 ± 0.4 |
Vorab-8 | 1985 | 46.877 | 9.183 | 2609 | 1.5 | 0.9991 | 0.78 ± 0.05 * | 5.1 ± 0.4 |
Vorab-9 | 1985 | 46.876 | 9.182 | 2600 | 1.5 | 0.9990 | 0.58 ± 0.03 * | 4.2 ± 0.3 |
Vorab-10 | outside LIA | 46.864 | 9.178 | 2439 | 2.0 | 0.9962 | 1.26 ± 0.07 | 10.9 ± 0.7 |
Vorab-11 | 1948 | 46.871 | 9.184 | 2524 | 2.0 | 0.9988 | 0.77 ± 0.05 * | 6.0 ± 0.4 |
Vorab-12 | 1948 | 46.872 | 9.183 | 2531 | 3.0 | 0.9985 | 0.80 ± 0.05 | 5.6 ± 0.4 |
Vorab-13 | boulder | 46.872 | 9.184 | 2540 | 6.0 | 0.9955 | 0.10 ± 0.01 * | 0.9 ± 0.1 |
Vorab-14 | outside LIA | 46.870 | 9.203 | 2397 | 2.0 | 0.9955 | 1.23 ± 0.04 * | 9.2 ± 0.5 |
Sample | Al2O3 | CaO | Fe2O3 | K2O | MgO | MnO | Na2O | P2O5 | SiO2 | TiO2 | Sm | Gd | U | Th | Cl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | % | % | % | ppm | ppm | ppm | ppm | ppm | |
Vorab-1 | 0.73 | 53.53 | 0.57 | 0.19 | 0.63 | 0.01 | 0.05 | 0.06 | 2.73 | 0.03 | 0.6 | 0.5 | 0.4 | 0.7 | 2.83 ± 0.08 |
Vorab-2 | 0.44 | 51.13 | 0.98 | 0.05 | 0.59 | 0.02 | 0.03 | 0.03 | 6.58 | 0.02 | 0.7 | 0.6 | 0.8 | 0.6 | 5.40 ± 0.16 |
Vorab-3 | 0.20 | 55.00 | 0.17 | 0.04 | 0.51 | 0.01 | 0.03 | 0.02 | 1.43 | 0.01 | 0.1 | 0.1 | 0.5 | 0.2 | 2.73 ± 0.10 |
Vorab-4 | 0.12 | 55.37 | 0.22 | 0.03 | 0.45 | 0.01 | 0.02 | 0.03 | 1.23 | 0.01 | 0.2 | 0.1 | 0.6 | 0.2 | 3.16 ± 0.06 |
Vorab-5 | 1.46 | 51.85 | 0.51 | 0.41 | 0.65 | 0.01 | 0.13 | 0.04 | 4.76 | 0.06 | 0.4 | 0.3 | 2.1 | 0.7 | 2.81 ± 0.10 |
Vorab-6 | 0.13 | 55.82 | 0.12 | 0.02 | 0.40 | 0.01 | 0.02 | 0.02 | 0.56 | 0.00 | 0.3 | 0.4 | 0.4 | 0.4 | 0.97 ± 0.03 |
Vorab-7 | 0.60 | 53.30 | 0.58 | 0.17 | 0.53 | 0.01 | 0.05 | 0.06 | 3.22 | 0.03 | 0.4 | 0.6 | 0.3 | 0.8 | 5.56 ± 0.21 |
Vorab-8 | 0.42 | 54.26 | 0.57 | 0.13 | 0.50 | 0.01 | 0.01 | 0.02 | 1.85 | 0.02 | 0.5 | 0.5 | 0.7 | 0.7 | 4.10 ± 0.14 |
Vorab-9 | 2.01 | 46.83 | 1.05 | 0.55 | 1.07 | 0.02 | 0.14 | 0.06 | 11.70 | 0.11 | 1.2 | 0.9 | 2.3 | 2.3 | 8.71 ± 0.15 |
Vorab-10 | 1.37 | 45.39 | 0.97 | 0.32 | 0.98 | 0.02 | 0.31 | 0.04 | 14.71 | 0.08 | 1.1 | 1 | 1.7 | 2 | 2.99 ± 0.11 |
Vorab-11 | 0.23 | 48.48 | 0.58 | 0.02 | 0.48 | 0.01 | 0.01 | 0.02 | 9.47 | 0.01 | 0.2 | 0.3 | 0.7 | 0.2 | 3.31 ± 0.05 |
Vorab-12 | 0.51 | 53.64 | 0.49 | 0.14 | 0.55 | 0.01 | 0.02 | 0.03 | 2.93 | 0.02 | 3.5 | 2.5 | 1.6 | 7.4 | 3.43 ± 0.09 |
Vorab-13 | 2.22 | 40.15 | 0.92 | 0.73 | 1.09 | 0.02 | 0.11 | 0.03 | 22.70 | 0.13 | 1.3 | 0.9 | 1.8 | 2.4 | 6.12 ± 0.06 |
Vorab-14 | 0.34 | 55.18 | 0.16 | 0.10 | 0.46 | 0.01 | 0.01 | 0.03 | 0.85 | 0.02 | 0.9 | 0.6 | 0.6 | 1.7 | 2.68 ± 0.03 |
5.2. MECED Model Results
5.2.1. Evaluation and Definition of Input Parameters
5.2.2. Glacial Erosion Depths and Rates
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penck, A.; Brückner, E. Die Alpen im Eiszeitalter; Tauchitz: Leipzig, Germany, 1909. [Google Scholar]
- Wright, G.F. The Muir Glacier. Sci. Am. 1887, 23, 9252. [Google Scholar] [CrossRef]
- Agassiz, L. On the polished and striated surfaces of the rocks which form the beds of glaciers in the Alps. In Proceedings of the Geological Society London; Geological Society of London: London, UK, 1838; Volume 3, pp. 321–322. [Google Scholar]
- Davis, W.M. The sculpture of mountains by glaciers. Scott. Geogr. Mag. 1906, 22, 76–89. [Google Scholar] [CrossRef]
- Jordan, P. Analysis of overdeepened valleys using the digital elevation model of the bedrock surface of Northern Switzerland. Swiss J. Geosci. 2010, 103, 375–384. [Google Scholar] [CrossRef]
- Preusser, F.; Reitner, J.; Schlüchter, C. Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. Swiss J. Geosci. 2010, 103, 407–426. [Google Scholar] [CrossRef] [Green Version]
- Dürst Stucki, M.; Schlunegger, F. Identification of erosional mechanisms during past glaciations based on a bedrock surface model of the central European Alps. Earth Planet. Sci. Lett. 2013, 384, 57–70. [Google Scholar] [CrossRef]
- Sternai, P.; Herman, F.; Champagnac, J.-D.; Fox, M.; Salcher, B.; Willett, S.D. Pre-glacial topography of the European Alps. Geology 2012, 40, 1067–1070. [Google Scholar] [CrossRef]
- Herman, F.; Beaud, F.; Champagnac, J.D.; Lemieux, J.M.; Sternai, P. Glacial hydrology and erosion patterns: A mechanism for carving glacial valleys. Earth Planet. Sci. Lett. 2011, 310, 498–508. [Google Scholar] [CrossRef]
- Hinderer, M.; Kastowski, M.; Kamelger, A.; Bartolini, C.; Schlunegger, F. River loads and modern denudation of the Alps—A review. Earth-Sci. Rev. 2012, 118, 11–44. [Google Scholar] [CrossRef]
- Herman, F.; De Doncker, F.; Delaney, I.; Prasicek, G.; Koppes, M. The impact of glaciers on mountain erosion. Nat. Rev. Earth Environ. 2021. [Google Scholar] [CrossRef]
- Cook, S.J.; Swift, D.A. Subglacial basins: Their origin and importance in glacial systems and landscapes. Earth-Sci. Rev. 2012, 115, 332–372. [Google Scholar] [CrossRef] [Green Version]
- Boulton, G.S. Processes and Patterns of Glacial Erosion. In Glacial Geomorphology; Coates, D.R., Ed.; Springer: Dordrecht, The Netherland, 1982; pp. 41–87. [Google Scholar] [CrossRef]
- Lütschg-Loetscher, O. 4. Kapitel. Die Bedeutung und Bewertung der Vorratsänderungen im Wasserhaushalt der Gletscher im Schweizer Hochgebirge, 5. Kapitel. Beobachtungen über das Verhalten des vorstossenden Obern Grindelwaldgletschers im Berner Oberland. In Zum Wasserhaushalt Des Schweizer Hohgebrigers; Kümmerly & Frey: Bern, Switzerland, 1944. [Google Scholar]
- Bezinge, A.; Clark, M.J.; Gurnell, A.M.; Warburton, J. The management of sediment transported by glacial melt-water streams and its significance for the estimation of sediment yield. Ann. Glaciol. 1989, 13, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bogen, J. Erosion rates and sediment yields of glaciers. Ann. Glaciol. 1996, 22, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Beaud, F.; Flowers, G.E.; Venditti, J.G. Efficacy of bedrock erosion by subglacial water flow. Earth Surf. Dyn. 2016, 4, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.J.; Swift, D.A.; Kirkbride, M.P.; Knight, P.G.; Waller, R.I. The empirical basis for modelling glacial erosion rates. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- MacGregor, K.R.; Anderson, R.S.; Waddington, E.D. Numerical modeling of glacial erosion and headwall processes in alpine valleys. Geomorphology 2009, 103, 189–204. [Google Scholar] [CrossRef]
- Koppes, M.; Hallet, B.; Rignot, E.; Mouginot, J.; Wellner, J.S.; Boldt, K. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 2015, 526, 100. [Google Scholar] [CrossRef]
- Cohen, D.; Gillet-Chaulet, F.; Haeberli, W.; Machguth, H.; Fischer, U.H. Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum. Cryosphere 2018, 12, 2515–2544. [Google Scholar] [CrossRef] [Green Version]
- Seguinot, J.; Delaney, I. Last glacial cycle glacier erosion potential in the Alps. Earth Surf. Dyn. Discuss. 2021, 9, 923–935. [Google Scholar] [CrossRef]
- Wirsig, C.; Ivy-Ochs, S.; Reitner, J.M.; Christl, M.; Vockenhuber, C.; Bichler, M.; Reindl, M. Subglacial abrasion rates at Goldbergkees, Hohe Tauern, Austria, determined from cosmogenic 10Be and 36Cl concentrations. Earth Surf. Process. Landf. 2017, 42, 1119–1131. [Google Scholar] [CrossRef]
- Goehring, B.M.; Schaefer, J.M.; Schlüchter, C.; Lifton, N.A.; Finkel, R.C.; Jull, A.T.; Akçar, N.; Alley, R.B. The Rhone Glacier was smaller than today for most of the Holocene. Geology 2011, 39, 679–682. [Google Scholar] [CrossRef]
- Steinemann, O.; Ivy-Ochs, S.; Grazioli, S.; Luetscher, M.; Fischer, U.H.; Vockenhuber, C.; Synal, H.A. Quantifying glacial erosion on a limestone bed and the relevance for landscape development in the Alps. Earth Surf. Process. Landf. 2020, 45, 1401–1417. [Google Scholar] [CrossRef]
- Steinemann, O.; Ivy-Ochs, S.; Hippe, K.; Christl, M.; Haghipour, N.; Synal, H.A. Glacial erosion by the Trift glacier (Switzerland): Deciphering the development of riegels, rock basins and gorges. Geomorphology 2021, 375, 107533. [Google Scholar] [CrossRef]
- GLAMOS The Swiss glaciers 1880-2016/17, Glaciological reports No 1-138. In Yearbooks of the Cryospheric Commission of the Swiss Academy of Sciences (SCNAT) 1881–2019; Published since 1964; VAW/ETH: Zürich, Switzerland; Available online: https://www.glamos.ch (accessed on 30 June 2021). [CrossRef]
- Garwood, E.J. Features of Alpine Scenery Due to Glacial Protection. Geogr. J. 1910, 36, 310–336. [Google Scholar] [CrossRef]
- Buckingham, T.; Pfiffner, O.A. Mountain Building and Valley Formation in the UNESCO World Heritage Tectonic Arena Sardona Region. In Landscapes and Landforms of Switzerland; Reynard, E., Ed.; Springer: Cham, Switzerland, 2021; pp. 173–186. [Google Scholar] [CrossRef]
- Pfiffner, O.A. Structural map of the Helvetic Zone of the Swiss Alps: Including Vorarlberg (Austria) and Haute Savoie (France). Geological Special Map 128/1-7 2010. [Google Scholar]
- Pfiffner, O.A. Tektonische Untersuchungen im Infrahelvetikum der Ostschweiz. Ph.D. Thesis, ETH Zürich und Universität Zürich, Zürich, Switzerland, 1977. [Google Scholar]
- Ivy-Ochs, S.; Synal, H.A.; Roth, C.; Schaller, M. Initial results from isotope dilution for Cl and 36Cl measurements at the PSI/ETH Zurich AMS facility. Nucl. Instrum. Methods Phys. Res. Sect B Beam Interact. Mater. At. 2004, 223, 623–627. [Google Scholar] [CrossRef]
- Stone, J.O.; Allan, G.L.; Fifield, L.K.; Cresswell, R.G. Cosmogenic chlorine-36 from calcium spallation. Geochim. Cosmochim. Acta 1996, 60, 679–692. [Google Scholar] [CrossRef]
- Vockenhuber, C.; Miltenberger, K.U.; Synal, H.A. 36Cl measurements with a gas-filled magnet at 6 MV. Nucl. Instrum. Methods Phys. Res. Sect B Beam Interact. Mater. At. 2019, 455, 190–194. [Google Scholar] [CrossRef]
- Alfimov, V.; Ivy-Ochs, S. How well do we understand production of 36Cl in limestone and dolomite? Quat. Geochronol. 2009, 4, 462–474. [Google Scholar] [CrossRef]
- Steinemann, O. Using cosmogenic nuclides to understand rockglacier dynamics during the Lateglacial and to quantify glacial erosion on limestone and gneiss in the Alps. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2020. [Google Scholar]
- Wirsig, C. Constraining the Timing of Deglaciation of the High Alps and Rates of Subglacial Erosion with Cosmogenic Nuclides. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2015. [Google Scholar]
- Dufour, G.H.; Müllhaupt, H.; Stempelmann, J.; Kögel, H. Altdorf, Chur; Eidg. Topographisches Bureau: Genf, Switzerland, 1859. [Google Scholar]
- Online Karten viewer. Available online: www.maps.geo.admin.ch (accessed on 6 June 2021).
- Lukas, S.; Rother, H. Moränen versus Till: Empfehlungen für die Beschreibung, Interpretation und Klassifikation glazialer Landformen und Sedimente. E&G Quat. Sci. J. 2016, 65, 95–112. [Google Scholar] [CrossRef]
- Keller, B. Lithofazies-Codes für die Klassifikation von Lockergesteinen. Mitteilungen Schweiz. Ges. Boden- u. Felsmechanik 1996, 132, 5–12. [Google Scholar]
- Bögli, A. Karst Hydrology and Physical Speleology; Springer: Berlin, Germany, 1980. [Google Scholar] [CrossRef]
- Veress, M.; Telbisz, T.; Tóth, G.; Lóczy, D.; Ruban, D.A.; Gutak, J.M. Glaciokarsts; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Häuselmann, P.; Jeannin, P.Y. Wasserwege der Gemeinde Flims und ihre Einflüsse auf den Caumasee. Schweiz. Inst. Speläologie und Karstforschung 2009, 24, 1–24. [Google Scholar]
- Christl, M.; Vockenhuber, C.; Kubik, P.W.; Wacker, L.; Lachner, J.; Alfimov, V.; Synal, H.A. The ETH Zurich AMS facilities: Performance parameters and reference materials. Nucl. Instrum. Methods Phys. Res. Sect B Beam Interact. Mater. At. 2013, 294, 29–38. [Google Scholar] [CrossRef]
- Schneebeli, W.; Röthlisberger, F. 8000 Jahre Walliser Gletschergeschichte ein Beitrag zur Erforschung des Klimaverlaufs in der Nacheiszeit. Ph.D. Dissertation, University of Zürich, Verlag Schweizer Alpen-Club, Bern, Switzerland, 1976. [Google Scholar]
- Holzhauser, H. Gletscherschwankungen innerhalb der letzten 3200 Jahre am Beispiel des grossen Aletsch- und des Gornergletschers. Neue Ergebnisse. In Gletscher im Ständigen Wandel; vdf Hochschulverlag AG an der ETH Zürich: Zürich, Switzerland, 1995; pp. 101–123. [Google Scholar]
- Ivy-Ochs, S.; Kerschner, H.; Maisch, M.; Christl, M.; Kubik, P.W.; Schlüchter, C. Latest Pleistocene and Holocene glacier variations in the European Alps. Quat. Sci. Rev. 2009, 28, 2137–2149. [Google Scholar] [CrossRef]
- Holzhauser, H. Auf dem Holzweg zur Gletschergeschichte; Mitteilungen Naturforschende Gesellschaft in Bern: Bern, Switzerland, 2009; Volume 66, pp. 173–208. [Google Scholar]
- Hormes, A.; Müller, B.U.; Schlüchter, C. The Alps with little ice: Evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. Holocene 2001, 11, 255–265. [Google Scholar] [CrossRef]
- Joerin, U.E.; Stocker, T.F.; Schlüchter, C. Multicentury glacier fluctuations in the Swiss Alps during the Holocene. Holocene 2006, 16, 697–704. [Google Scholar] [CrossRef]
- Wick, L. Vegetational response to climatic changes recorded in Swiss Late Glacial lake sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 159, 231–250. [Google Scholar] [CrossRef]
- Leemann, A.; Niessen, F. Holocene glacial activity and climatic variations in the Swiss Alps: Reconstructing a continuous record from proglacial lake sediments. Holocene 1994, 4, 259–268. [Google Scholar] [CrossRef]
- Zumbühl, H.J.; Nussbaumer, S.U. Little Ice Age glacier history of the Central and Western Alps from pictorial documents. Cuad. Investig. Geogr. 2018, 44, 115–136. [Google Scholar] [CrossRef] [Green Version]
- Bauder, A.; Funk, M.; Huss, M. Ice-volume changes of selected glaciers in the Swiss Alps since the end of the 19th century. Ann. Glaciol. 2007, 46. [Google Scholar] [CrossRef] [Green Version]
- Le Roy, M.; Deline, P.; Carcaillet, J.; Schimmelpfennig, I.; Ermini, M. 10Be exposure dating of the timing of Neoglacial glacier advances in the Ecrins-Pelvoux massif, southern French Alps. Quat. Sci. Rev. 2017, 178, 118–138. [Google Scholar] [CrossRef]
- Le Roy, M.; Nicolussi, K.; Deline, P.; Astrade, L.; Edouard, J.L.; Miramont, C.; Arnaud, F. Calendar-dated glacier variations in the western European Alps during the Neoglacial: The Mer de Glace record, Mont Blanc massif. Quat. Sci. Rev. 2015, 108, 1–22. [Google Scholar] [CrossRef]
- Schimmelpfennig, I.; Schaefer, J.M.; Akçar, N.; Ivy-Ochs, S.; Finkel, R.C.; Schlüchter, C. Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology 2012, 40, 891–894. [Google Scholar] [CrossRef]
- Schimmelpfennig, I.; Schaefer, J.M.; Akçar, N.; Koffman, T.; Ivy-Ochs, S.; Schwartz, R.; Finkel, R.C.; Zimmerman, S.; Schlüchter, C. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett. 2014, 393, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Kronig, O.; Ivy-Ochs, S.; Hajdas, I.; Christl, M.; Wirsig, C.; Schlüchter, C. Holocene evolution of the Triftje- and the Oberseegletscher (Swiss Alps) constrained with 10Be exposure and radiocarbon dating. Swiss J. Geosci. 2018, 111, 117–131. [Google Scholar] [CrossRef]
- Protin, M.; Schimmelpfennig, I.; Mugnier, J.-L.; Buoncristiani, J.-F.; Le Roy, M.; Pohl, B.; Moreau, L.; ASTER Team; Aumaître, G.; Bourlès, D.; et al. Millennial-scale deglaciation across the European Alps at the transition between the Younger Dryas and the Early Holocene—Evidence from a new cosmogenic nuclide chronology. Boreas 2021, 50, 671–685. [Google Scholar] [CrossRef]
- Joerin, U.E.; Nicolussi, K.; Fischer, A.; Stocker, T.F.; Schlüchter, C. Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quat. Sci. Rev. 2008, 27, 337–350. [Google Scholar] [CrossRef]
- Plan, L. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 2005, 68, 201–212. [Google Scholar] [CrossRef]
- Häuselmann, P. Surface corrosion of an Alpine karren field: Recent measures at Innerbergli (Siebenhengste, Switzerland). Int. J. Speleol. 2008, 37, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Krklec, K.; Domínguez-Villar, D.; Braucher, R.; Perica, D.; Mrak, I. Morphometric comparison of weathering features on side by side carbonate rock surfaces with different exposure ages—A case from the Croatian coast. Quat. Int. 2017, 494, 275–285. [Google Scholar] [CrossRef]
- Hantke, R. Eiszeitalter; Ott Verlag: Thun, Switzerland, 1980; Volume 2, p. 703. [Google Scholar]
- Maisch, M. Zur Gletscher- und Klimageschichte des alpinen Spätglazials. Geogr. Helv. 1982, 37, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Jordi, U. Glazialmorphologische und Gletschergeschichtliche Untersuchungen im Taminatal und im Rheintalabschnitt zwischen Flims und Feldkirch (Ostschweiz/Vorarlberg); Geographisches Institut der Universität Bern: Bern, Switzerland, 1986. [Google Scholar]
- Weber, E.; Jordan, F.; Jeannin, P.-Y.; Vouillamoz, J.; Malard, A. Swisskarst project (NRP61): Towards a pragmatic simulation of karst spring discharge with conceptual semi-distributed model. The Flims case study (Eastern Swiss Alps). In Proceedings of the 9th Conference Limestone Hydrogeology, Besançon, France, 1–3 September 2011. [Google Scholar]
- Hallet, B. A theoretical model of glacial abrasion. J. Glaciol. 1979, 23, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Ugelvig, S.V.; Egholm, D.L.; Anderson, R.S.; Iverson, N.R. Glacial Erosion Driven by Variations in Meltwater Drainage. J. Geophys. Res. Earth Surf. 2018, 123, 2863–2877. [Google Scholar] [CrossRef]
- Dühnforth, M.; Anderson, R.S.; Ward, D.; Stock, G.M. Bedrock fracture control of glacial erosion processes and rates. Geology 2010, 38, 423–426. [Google Scholar] [CrossRef]
- Krabbendam, M.; Glasser, N.F. Glacial erosion and bedrock properties in NW Scotland: Abrasion and plucking, hardness and joint spacing. Geomorphology 2011, 130, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Lane, T.P.; Roberts, D.H.; Rea, B.R.; Cofaigh, C.Ó.; Vieli, A. Controls on bedrock bedform development beneath the Uummannaq Ice Stream onset zone, West Greenland. Geomorphology 2015, 231, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Haeberli, W.; Linsbauer, A.; Cochachin, A.; Salazar, C.; Fischer, U.H. On the morphological characteristics of overdeepenings in high-mountain glacier beds. Earth Surf. Process. Landf. 2016, 41, 1980–1990. [Google Scholar] [CrossRef]
- MacGregor, K.R.; Anderson, R.S.; Anderson, S.P.; Waddington, E.D. Numerical simulations of glacial-valley longitudinal profile evolution. Geology 2000, 28, 1031–1034. [Google Scholar] [CrossRef]
- Sugden, D.E.; John, B.S. Glaciers and Landscape: A Geomorphological Approach; Arnold: London, UK, 1976. [Google Scholar]
- Evans, I.S. Glacial Erosional Processes and Forms Mountain Glaciation and Glacier Geography; The Geological Society: London, UK, 2008. [Google Scholar]
- Evans, I.S. Glaciers, rock avalanches and the ‘buzzsaw’ in cirque development: Why mountain cirques are of mainly glacial origin. Earth Surf. Process. Landf. 2021, 46, 24–46. [Google Scholar] [CrossRef]
- Wirsig, C.; Ivy-Ochs, S.; Akçar, N.; Lupker, M.; Hippe, K.; Wacker, L.; Vockenhuber, C.; Schlüchter, C. Combined cosmogenic 10Be, in situ 14C and 36Cl concentrations constrain Holocene history and erosion depth of Grueben glacier (CH). Swiss J. Geosci. 2016, 109, 379–388. [Google Scholar] [CrossRef]
Sample | Erosion Depth | Erosion Rate |
---|---|---|
cm | mm a−1 | |
Glacier front 2018 | ||
Vorab-1 | 0.0–3.5 | 0.00–0.01 |
Vorab-2 | 0.0–4.1 | 0.00–0.01 |
Vorab-3 | 0.0–2.5 | 0.00–0.01 |
Vorab-4 | 3.1–8.8 | 0.01–0.03 |
Vorab-5 | 32.2–39.5 | 0.10–0.12 |
Glacier front 1985 | ||
Vorab-7 | 17.8–24.5 | 0.05–0.07 |
Vorab-8 | 30.4–38.7 | 0.09–0.12 |
Vorab-9 | 46.0–53.7 | 0.14–0.16 |
Glacier front 1948 | ||
Vorab-6 | 11.8–18.9 | 0.05–0.08 |
Vorab-11 | 24.3–32.6 | 0.10–0.13 |
Vorab-12 | 28.5–35.9 | 0.11–0.14 |
Outside LIA extent | ||
Vorab-10 | nv–nv | nv–nv |
Vorab-14 | 2.5–7.2 | 0.02–0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinemann, O.; Martinez, A.; Picotti, V.; Vockenhuber, C.; Ivy-Ochs, S. Glacial Erosion Rates Determined at Vorab Glacier: Implications for the Evolution of Limestone Plateaus. Geosciences 2021, 11, 356. https://doi.org/10.3390/geosciences11090356
Steinemann O, Martinez A, Picotti V, Vockenhuber C, Ivy-Ochs S. Glacial Erosion Rates Determined at Vorab Glacier: Implications for the Evolution of Limestone Plateaus. Geosciences. 2021; 11(9):356. https://doi.org/10.3390/geosciences11090356
Chicago/Turabian StyleSteinemann, Olivia, Alicia Martinez, Vincenzo Picotti, Christof Vockenhuber, and Susan Ivy-Ochs. 2021. "Glacial Erosion Rates Determined at Vorab Glacier: Implications for the Evolution of Limestone Plateaus" Geosciences 11, no. 9: 356. https://doi.org/10.3390/geosciences11090356
APA StyleSteinemann, O., Martinez, A., Picotti, V., Vockenhuber, C., & Ivy-Ochs, S. (2021). Glacial Erosion Rates Determined at Vorab Glacier: Implications for the Evolution of Limestone Plateaus. Geosciences, 11(9), 356. https://doi.org/10.3390/geosciences11090356