New System for Measuring Cosmogenic Ne in Terrestrial and Extra-Terrestrial Rocks
Abstract
:1. Introduction
2. Analytical System
3. Cosmogenic Ne in Extra-Terrestrial Material: Multi-Collection Faraday Technique
4. Cosmogenic Ne in Terrestrial Material: Analysis by Peak Jumping Using Electron Multiplier
4.1. Analysis Procedure and Repeated Measurement of Low Quantities of Atmospheric Ne
4.2. CREU-1 Quartz
5. Conclusions and Future Research Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunai, T.J.; González López, G.A.; Juez-Larré, J. Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 2005, 33, 321–324. [Google Scholar] [CrossRef]
- Füri, E.; Zimmermann, L.; Deloule, E.; Trappitsch, R. Cosmic ray effects on the isotope composition of hydrogen and noble gases in lunar samples: Insights from Apollo 12018. Earth Planet. Sci. Lett. 2020, 550, 116550. [Google Scholar] [CrossRef]
- Sinclair, H.D.; Stuart, F.M.; Mudd, S.M.; McCann, L.; Tao, Z. Detrital cosmogenic 21Ne records decoupling of source-to-sink signals by sediment storage and recycling in Miocene to present rivers of the Great Plains, Nebraska, USA. Geology 2018, 47, 3–6. [Google Scholar] [CrossRef]
- Wieler, R. Cosmic-Ray-Produced Noble Gases in Meteorites. Rev. Mineral. Geochem. 2002, 47, 125–170. [Google Scholar] [CrossRef]
- Vermeesch, P.; Balco, G.; Blard, P.-H.; Dunai, T.J.; Kober, F.; Niedermann, S.; Shuster, D.L.; Strasky, S.; Stuart, F.M.; Wieler, R.; et al. Interlaboratory comparison of cosmogenic 21Ne in quartz. Quat. Geochronol. 2015, 26, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Györe, D.; Tait, A.; Hamilton, D.; Stuart, F.M. The formation of NeH+ in static vacuum mass spectrometers and re-determination of 21Ne/20Ne of air. Geochim. Cosmochim. Acta 2019, 263, 1–12. [Google Scholar] [CrossRef]
- Saxton, J.M. The 21Ne/20Ne ratio of atmospheric neon. J. Anal. At. Spectrom. 2020, 35, 943–952. [Google Scholar] [CrossRef]
- Farley, K.A.; Treffkorn, J.; Hamilton, D. Isobar-free neon isotope measurements of flux-fused potential reference minerals on a Helix-MC-Plus mass spectrometer. Chem. Geol. 2020, 537, 119487. [Google Scholar] [CrossRef]
- Marrocchi, Y.; Burnard, P.G.; Hamilton, D.; Colin, A.; Pujol, M.; Zimmermann, L.; Marty, B. Neon isotopic measurements using high-resolution, multicollector noble gas mass spectrometer: HELIX-MC. Geochem. Geophys. Geosyst. 2009, 10. [Google Scholar] [CrossRef]
- Honda, M.; Zhang, X.; Phillips, D.; Hamilton, D.; Deerberg, M.; Schwieters, J.B. Redetermination of the 21Ne relative abundance of the atmosphere, using a high resolution, multi-collector noble gas mass spectrometer (HELIX-MC Plus). Int. J. Mass Spectrom. 2015, 387, 1–7. [Google Scholar] [CrossRef]
- Ruzié-Hamilton, L.; Clay, P.L.; Burgess, R.; Joachim, B.; Ballentine, C.J.; Turner, G. Determination of halogen abundances in terrestrial and extraterrestrial samples by the analysis of noble gases produced by neutron irradiation. Chem. Geol. 2016, 437, 77–87. [Google Scholar] [CrossRef]
- Bai, X.; Qiu, H.; Liu, W.; Mei, L. Automatic 40Ar/39Ar dating techniques using multicollector ARGUS VI noble gas mass spectrometer with self-made peripheral apparatus. J. Earth Sci. 2018, 29, 408–415. [Google Scholar] [CrossRef]
- Niedermann, S.; Graf, T.; Marti, K. Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Geochim. Cosmochim. Acta 1993, 118, 65–73. [Google Scholar] [CrossRef]
- Gilfillan, S.M.V.; Györe, D.; Flude, S.; Johnson, G.; Bond, C.E.; Hicks, N.; Lister, R.; Jones, D.G.; Kremer, Y.; Haszeldine, R.S.; et al. Noble gases confirm plume-related mantle degassing beneath Southern Africa. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kirkup, L. Data Analysis for Physical Scientists, Featuring Excel, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Ritter, B.; Stuart, F.M.; Binnie, S.A.; Gerdes, A.; Wennrich, V.; Dunai, T.J. Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert. Sci. Rep. 2018, 8, 13952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzog, G.F.; Cook, D.L.; Cosarinsky, M.; Huber, L.; Leya, I.; Park, J. Cosmic-ray exposure ages of pallasites. Meteorit. Planet. Sci. 2015, 50, 86–111. [Google Scholar] [CrossRef]
- Graf, T. Produktion Kosmogener Nuklide in Meteoriten. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 1988; 136p. (In German). [Google Scholar]
- Schultz, L.; Kruse, H. Helium, neon and argon in meteorites—A data compilation. Meteoritics 1989, 24, 155–172. [Google Scholar] [CrossRef]
- Ozima, M.; Podosek, F.A. Noble Gas Geochemistry, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002; p. 367. [Google Scholar]
- Balco, G.; Shuster, D.L. Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces. Earth Planet. Sci. Lett. 2009, 281, 48–58. [Google Scholar] [CrossRef]
- Eberhardt, P.; Eugster, O.; Marti, K. A redetermination of the isotopic composition of atmospheric neon. Z. Nat. A 1965, 20, 623–624. [Google Scholar] [CrossRef]
- Carracedo, A.; Rodés, Á.; Smellie, J.L.; Stuart, F.M. Episodic erosion in West Antarctica inferred from cosmogenic 3He and 10Be in olivine from Mount Hampton. Geomorphology 2019, 327, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Ritter, B.; Vogt, A.; Dunai, T.J. Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis. Geochronology 2021, 3, 421–431. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, Y.; Li, D.; Zheng, D. Analytical procedure of neon measurements on GV 5400 noble gas mass spectrometer and its evaluation by quartz standard CREU-1. Int. J. Mass Spectrom. 2015, 380, 26–33. [Google Scholar] [CrossRef]
- Niedermann, S.; Graf, T.; Kim, J.S.; Kohl, C.P.; Marti, K.; Nishiizumi, K. Cosmic-ray-produced 21Ne in terrestrial quartz: The neon inventory of Sierra Nevada quartz separates. Earth Planet. Sci. Lett. 1994, 125, 341–355. [Google Scholar] [CrossRef]
- Schäfer, J.M.; Ivy-Ochs, S.; Wieler, R.; Leya, I.; Baur, H.; Denton, G.H.; Schlüchter, C. Cosmogenic noble gas studies in the oldest landscape on earth: Surface exposure ages of the Dry Valleys, Antarctica. Earth Planet. Sci. Lett. 1999, 167, 215–226. [Google Scholar] [CrossRef]
- Baur, H. Numerische Simulation und Praktische Erprobung einer Rotationssymmetrischen Ionenquelle für Gasmassenspektrometer. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 1980. (In German). [Google Scholar]
- Eiler, J.M.; Clog, M.; Magyar, P.; Piasecki, A.; Sessions, A.; Stolper, D.; Deerberg, M.; Schlueter, H.-J.; Schwieters, J. A high-resolution gas-source isotope ratio mass spectrometer. Int. J. Mass Spectrom. 2013, 335, 45–56. [Google Scholar] [CrossRef]
Sample | Weight (mg) | 20Ne/22Ne | 21Ne/22Ne | 22Ne |
---|---|---|---|---|
This study | ||||
Bruderheim-1 | 9.13 | 0.867 (2) | 0.916 (2) | N/A |
Bruderheim-2 | 10.67 | 0.852 (2) | 0.925 (2) | N/A |
Imilac-1 | 10.10 | 0.896 (2) | 0.893 (2) | 66.52 (8) |
Imilac-2 | 4.10 | 1.028 (3) | 1.030 (3) | 69.42 (7) |
Pers. comm. with T. Graf | ||||
Bruderheim-1 | 49.2 | 0.914 | 0.851 | 11.98 |
Bruderheim-2 | 42.2 | 0.914 | 0.850 | 12.30 |
Bruderheim-3 | 25.5 | 0.911 | 0.844 | 12.18 |
Bruderheim-4 | 33.0 | 0.912 | 0.842 | 12.20 |
Bruderheim-5 | 24.3 | 0.912 | 0.849 | 12.15 |
Bruderheim-6 | 53.7 | 0.918 | 0.839 | 11.99 |
Bruderheim-7 | 32.8 | 0.922 | 0.828 | 12.12 |
Bruderheim-8 | 33.4 | 0.925 | 0.839 | 12.21 |
Sample | Weight (mg) | 21Ne/20Ne | 22Ne/20Ne | 21Ne* |
---|---|---|---|---|
CREU-A | 19.67 | 0.0084 (1) | 0.1092 (4) | 332 (6) |
CREU-B | 19.45 | 0.0102 (1) | 0.1113 (6) | 329 (6) |
CREU-C | 19.36 | 0.0132 (1) | 0.1134 (8) | 373 (7) |
CREU-D | 20.08 | 0.0122 (1) | 0.1129 (4) | 350 (7) |
CREU-E | 20.88 | 0.0117 (1) | 0.1119 (5) | 323 (6) |
CREU-F | 20.29 | 0.0138 (2) | 0.1145 (6) | 327 (6) |
CREU-G | 19.64 | 0.0133 (2) | 0.1122 (8) | 308 (6) |
CREU-H | 19.98 | 0.0126 (1) | 0.1139 (8) | 318 (6) |
CREU-I | 19.18 | 0.0113 (1) | 0.1112 (6) | 324 (6) |
CREU-J | 19.48 | 0.0112 (1) | 0.1116 (7) | 291 (5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Györe, D.; Di Nicola, L.; Currie, D.; M. Stuart, F. New System for Measuring Cosmogenic Ne in Terrestrial and Extra-Terrestrial Rocks. Geosciences 2021, 11, 353. https://doi.org/10.3390/geosciences11080353
Györe D, Di Nicola L, Currie D, M. Stuart F. New System for Measuring Cosmogenic Ne in Terrestrial and Extra-Terrestrial Rocks. Geosciences. 2021; 11(8):353. https://doi.org/10.3390/geosciences11080353
Chicago/Turabian StyleGyöre, Domokos, Luigia Di Nicola, David Currie, and Finlay M. Stuart. 2021. "New System for Measuring Cosmogenic Ne in Terrestrial and Extra-Terrestrial Rocks" Geosciences 11, no. 8: 353. https://doi.org/10.3390/geosciences11080353
APA StyleGyöre, D., Di Nicola, L., Currie, D., & M. Stuart, F. (2021). New System for Measuring Cosmogenic Ne in Terrestrial and Extra-Terrestrial Rocks. Geosciences, 11(8), 353. https://doi.org/10.3390/geosciences11080353