Cosmogenic and Geological Evidence for the Occurrence of a Ma-Long Feedback between Uplift and Denudation, Chur Region, Swiss Alps
Abstract
:1. Introduction
2. Setting
2.1. Lithotectonic Architecture
2.2. Rock Uplift and Exhumation
2.3. Geomorphologic Framework
3. Methods
3.1. Morphometric Analysis
3.1.1. Knickzones and Steepness Indices
3.1.2. Hypsometry, Slope Distribution, and Landscape Shape
3.2. Sediment Provenance
3.3. Catchment-Wide Denudation Rates Inferred from In Situ Produced Cosmogenic 10Be
3.3.1. Sediment Collection
3.3.2. Laboratory Work
3.3.3. Calculation of Denudation Rates, Scaling, and Sediment Fluxes
4. Results
4.1. Geomorphometric Analysis
4.1.1. Knickzones, Steepness Indices, and Hypsometries
4.1.2. Landscape Patterns
4.2. Sediment Fingerprinting
4.2.1. Discrimination of Endmembers
4.2.2. Sediment Provenance
4.3. Cosmogenic Data and Denudation Rates
5. Discussion
5.1. Topographic Parameters Reveal a Transient Stage
5.2. The Relationship between Sediment Provenance and Denudation Rate
5.3. Upscaling and Including the Material Flux of the Rhine River
5.4. Possible Controls on the Local Uplift Rates and Feedbacks with Denudation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willett, S.D.; Brandon, M.T. On steady states in mountain belts. Geology 2002, 30, 175. [Google Scholar] [CrossRef]
- Burbank, D.W.; Anderson, R.S. Tectonic Geomorphology; John Wiley & Sons, Ltd.: Chichester, UK, 2011; Volume 13, ISBN 9781444345063. [Google Scholar]
- Champagnac, J.-D.; Molnar, P.; Sue, C.; Herman, F. Tectonics, climate, and mountain topography. J. Geophys. Res. Solid Earth 2012, 117, B2. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, A.C. How do landscapes record tectonics and climate? Lithosphere 2012, 4, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Whipple, K.X. The influence of climate on the tectonic evolution of mountain belts. Nat. Geosci. 2009, 2, 97–104. [Google Scholar] [CrossRef]
- Champagnac, J.-D.; Schlunegger, F.; Norton, K.; von Blanckenburg, F.; Abbühl, L.M.; Schwab, M. Erosion-driven uplift of the modern Central Alps. Tectonophysics 2009, 474, 236–249. [Google Scholar] [CrossRef] [Green Version]
- Korup, O.; Schlunegger, F. Rock-type control on erosion-induced uplift, eastern Swiss Alps. Earth Planet. Sci. Lett. 2009, 278, 278–285. [Google Scholar] [CrossRef]
- Persaud, M.; Pfiffner, O. Active deformation in the eastern Swiss Alps: Post-glacial faults, seismicity and surface uplift. Tectonophysics 2004, 385, 59–84. [Google Scholar] [CrossRef]
- Gudmundsson, G.H. An order-of-magnitude estimate of the current uplift-rates in Switzerland caused by the Würm Alpine deglaciation. Eclogae Geol. Helv. 1994, 87, 545–557. [Google Scholar]
- Barletta, V.R.; Ferrari, C.; Diolaiuti, G.; Carnielli, T.; Sabadini, R.; Smiraglia, C. Glacier shrinkage and modeled uplift of the Alps. Geophys. Res. Lett. 2006, 33, L14307. [Google Scholar] [CrossRef]
- Mey, J.; Scherler, D.; Wickert, A.D.; Egholm, D.L.; Tesauro, M.; Schildgen, T.F.; Strecker, M.R. Glacial isostatic uplift of the European Alps. Nat. Commun. 2016, 7, 13382. [Google Scholar] [CrossRef] [Green Version]
- Schmid, S.M.; Pfiffner, O.A.; Froitzheim, N.; Schönborn, G.; Kissling, E. Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 1996, 15, 1036–1064. [Google Scholar] [CrossRef] [Green Version]
- Kahle, H.; Marti, U.; Geiger, A.; Wirth, B.; Gubler, E. Recent crustal movements, geoid and density determination: Contribution from integrated satellite and terrestrial measurements. In Deep Structure of the Swiss Alps: Results of NRP 20; Pfiffner, O.A., Lehner, P., Heitzmann, P., Mueller, S., Steck, A., Eds.; Birkhäuser: Basel, Switzerland, 1997; pp. 251–259. [Google Scholar]
- Schlatter, A.; Schneider, D.; Geiger, A.; Kahle, H.-G. Recent vertical movements from precise levelling in the vicinity of the city of Basel, Switzerland. Int. J. Earth Sci. 2005, 94, 507–514. [Google Scholar] [CrossRef]
- Weh, M. Tektonische Entwicklung der Penninischen Sediment-Decken in Graubünden (Prättigau bis Oberhalbstein); Universitaet Basel: Basel, Switzerland, 1998. [Google Scholar]
- Klingelé, E.; Olivier, R. Schwerekarte der Schweiz (Bouguer-Anomalien). Carte Gravimetrique de la Suisse (Anomalies de Bouguer). (Karte 4 der Geophysikalischen Landeskarten 1:500,000); Bundesamt für Landestopografie Swisstopo: Wabern/Bern, Switzerland, 1979. [Google Scholar]
- Pfiffner, O. Geology of the Alps; John Wiley & Sons, Ltd.: Chichester, UK, 2014. [Google Scholar]
- Stutenbecker, L.; Delunel, R.; Schlunegger, F.; Silva, T.A.; Šegvić, B.; Girardclos, S.; Bakker, M.; Costa, A.; Lane, S.N.; Loizeau, J.-L.; et al. Reduced sediment supply in a fast eroding landscape? A multi-proxy sediment budget of the upper Rhône basin, Central Alps. Sediment. Geol. 2018, 375, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Delunel, R.; Schlunegger, F.; Valla, P.G.; Dixon, J.; Glotzbach, C.; Hippe, K.; Kober, F.; Molliex, S.; Norton, K.P.; Salcher, B.; et al. Late-Pleistocene catchment-wide denudation patterns across the European Alps. Earth Sci. Rev. 2020, 211, 103407. [Google Scholar] [CrossRef]
- Kühni, A.; Pfiffner, O. The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: Topographic analysis from a 250-m DEM. Geomorphology 2001, 41, 285–307. [Google Scholar] [CrossRef]
- Vernon, A.; van der Beek, P.A.; Sinclair, H.D.; Rahn, M.K. Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. Earth Planet. Sci. Lett. 2008, 270, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Glaus, G.; Delunel, R.; Stutenbecker, L.; Akçar, N.; Christl, M.; Schlunegger, F. Differential erosion and sediment fluxes in the Landquart basin and possible relationships to lithology and tectonic controls. Swiss J. Geosci. 2019, 112, 453–473. [Google Scholar] [CrossRef]
- Weh, M.; Froitzheim, N. Penninic cover nappes in the Prattigau half-window (Eastern Switzerland): Structure and tectonic evolution. Eclogae Geol. Helv. 2001, 94, 237–252. [Google Scholar] [CrossRef]
- Trümpy, R. Penninic-Austroalpine boundary in the Swiss Alps: A presumed former continental margin and its problems. Am. J. Sci. 1975, 275, 209–238. [Google Scholar]
- Ring, U.; Ratschbacher, L.; Frisch, W.; DÜrr, S.; Borchert, S. The internal structure of the Arosa Zone (Swiss-Austrian Alps). Geol. Rundsch. 1990, 79, 725–739. [Google Scholar] [CrossRef]
- Ferreiro Mählmann, R.; Giger, M. The Arosa zone in Eastern Switzerland: Oceanic, sedimentary burial, accretional and orogenic very low- to low grade patterns in a tectono-metamorphic mélange. Swiss J. Geosci. 2012, 105, 203–233. [Google Scholar] [CrossRef] [Green Version]
- Mohn, G.; Manatschal, G.; Masini, E.; Müntener, O. Rift-related inheritance in orogens: A case study from the Austroalpine nappes in Central Alps (SE-Switzerland and N-Italy). Int. J. Earth Sci. 2011, 100, 937–961. [Google Scholar] [CrossRef]
- Wagner, G.; Reimer, G.M. Fission track tectonics: The tectonic interpretation of fission track apatite ages. Earth Planet. Sci. Lett. 1972, 14, 263–268. [Google Scholar] [CrossRef]
- Fox, M.; Herman, F.; Willett, S.D.; Schmid, S.M. The Exhumation history of the European Alps inferred from linear inversion of thermochronometric data. Am. J. Sci. 2016, 316, 505–541. [Google Scholar] [CrossRef]
- Kissling, E. Deep structure of the Alps—What do we really know? Phys. Earth Planet. Inter. 1993, 79, 87–112. [Google Scholar] [CrossRef]
- Schlunegger, F.; Kissling, E. Slab rollback orogeny in the Alps and evolution of the Swiss Molasse basin. Nat. Commun. 2015, 6, 8605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissling, E.; Schlunegger, F. Rollback Orogeny Model for the Evolution of the Swiss Alps. Tectonics 2018, 37, 1097–1115. [Google Scholar] [CrossRef]
- Salcher, B.C.; Kober, F.; Kissling, E.; Willett, S.D. Glacial impact on short-wavelength topography and long-lasting effects on the denudation of a deglaciated mountain range. Glob. Planet. Chang. 2014, 115, 59–70. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Kerschner, H.; Reuther, A.; Preusser, F.; Heine, K.; Maisch, M.; Kubik, P.W.; Schlüchter, C. Chronology of the last glacial cycle in the European Alps. J. Quat. Sci. 2008, 23, 559–573. [Google Scholar] [CrossRef]
- Bini, A.; Buoncristiani, J.; Couterrand, S.; Ellwanger, D.; Felber, M.; Florineth, D.; Graf, H.; Keller, O.; Kelly, M.; Schluchter, C.; et al. Die Schweiz Während des Letzteiszeitlichen Maximums (LGM); Bundesamt für Landestopografie Swisstopo: Wabern/Bern, Switzerland, 2009. [Google Scholar]
- Ahnert, F. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. Am. J. Sci. 1970, 268, 243–263. [Google Scholar] [CrossRef]
- Tucker, G.E.; Slingerland, R. Drainage basin responses to climate change. Water Resour. Res. 1997, 33, 2031–2047. [Google Scholar] [CrossRef]
- Whipple, K.X.; Tucker, G.E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- Radaideh, O.M.A.; Mosar, J. Tectonics controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: Insights from DEM-derived geomorphic indices. Tectonophysics 2019, 768, 228179. [Google Scholar] [CrossRef] [Green Version]
- Korup, O.; Montgomery, D.R. Tibetan plateau river incision inhibited by glacial stabilization of the Tsangpo gorge. Nature 2008, 455, 786–789. [Google Scholar] [CrossRef] [PubMed]
- Schlunegger, F.; Norton, K.P.; Zeilinger, G. Climatic Forcing on Channel Profiles in the Eastern Cordillera of the Coroico Region, Bolivia. J. Geol. 2011, 119, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Walsh, L.S.; Martin, A.J.; Ojha, T.P.; Fedenczuk, T. Correlations of fluvial knickzones with landslide dams, lithologic contacts, and faults in the southwestern Annapurna Range, central Nepalese Himalaya. J. Geophys. Res. Earth Surf. 2012, 117, F01012. [Google Scholar] [CrossRef]
- Flint, J.J. Stream gradient as a function of order, magnitude, and discharge. Water Resour. Res. 1974, 10, 969–973. [Google Scholar] [CrossRef]
- Schwanghart, W.; Kuhn, N.J. TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Model. Softw. 2010, 25, 770–781. [Google Scholar] [CrossRef]
- Wobus, C.; Whipple, K.X.; Kirby, E.; Snyder, N.; Johnson, J.; Spyropolou, K.; Crosby, B.; Sheehan, D. Tectonics from topography: Procedures, promise, and pitfalls. In Tectonics, Climate, and Landscape Evolution; Geological Society of America: Boulder, CO, USA, 2006. [Google Scholar]
- Stutenbecker, L.; Costa, A.; Schlunegger, F. Lithological control on the landscape form of the upper Rhône Basin, Central Swiss Alps. Earth Surf. Dyn. 2016, 4, 253–272. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Brozovic, N.; Burbank, D.W.; Meigs, A.J. Climatic Limits on Landscape Development in the Northwestern Himalaya. Science 1997, 276, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Hurtrez, J.-E.; Sol, C.; Lucazeau, F. Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surf. Process. Landforms 1999, 24, 799–808. [Google Scholar] [CrossRef]
- Brocklehurst, S.H.; Whipple, K.X. Hypsometry of glaciated landscapes. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2004, 29, 907–926. [Google Scholar] [CrossRef]
- Woodward, D. Method to predict cropland ephemeral gully erosion. Catena 1999, 37, 393–399. [Google Scholar] [CrossRef]
- Ouimet, W.B.; Whipple, K.X.; Granger, D.E. Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges. Geology 2009, 37, 579–582. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative Slope Analysis. Geol. Soc. Am. Bull. 1956, 67, 571–596. [Google Scholar] [CrossRef]
- Strahler, A.N. Equilibrium theory of erosional slopes approached by frequency distribution analysis; Part II. Am. J. Sci. 1950, 248, 800–814. [Google Scholar] [CrossRef]
- Burbank, D.W.; Leland, J.; Fielding, E.; Anderson, R.S.; Brozovic, N.; Reid, M.R.; Duncan, C. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 1996, 379, 505–510. [Google Scholar] [CrossRef]
- Owens, P.; Blake, W.; Gaspar, L.; Gateuille, D.; Koiter, A.J.; Lobb, D.A.; Petticrew, E.L.; Reiffarth, D.G.; Smith, H.G.; Woodward, J.C. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth Sci. Rev. 2016, 162, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Hinderer, M.; Kastowski, M.; Kamelger, A.; Bartolini, C.; Schlunegger, F. River loads and modern denudation of the Alps—A review. Earth Sci. Rev. 2013, 118, 11–44. [Google Scholar] [CrossRef]
- Aitchison, J. Principal component analysis of compositional data. Biometrika 1983, 70, 57–65. [Google Scholar] [CrossRef]
- Vermeesch, P.; Garzanti, E. Making geological sense of ‘Big Data’ in sedimentary provenance analysis. Chem. Geol. 2015, 409, 20–27. [Google Scholar] [CrossRef]
- Lizaga, I.; Latorre, B.; Gaspar, L.; Navas, A. FingerPro: An R Package for Tracking the Provenance of Sediment. Water Resour. Manag. 2020, 34, 3879–3894. [Google Scholar] [CrossRef]
- Collins, A.; Walling, D. Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. J. Hydrol. 2002, 261, 218–244. [Google Scholar] [CrossRef]
- Von Blanckenburg, F. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 2005, 237, 462–479. [Google Scholar] [CrossRef]
- Akçar, N.; Ivy-Ochs, S.; Alfimov, V.; Schlunegger, F.; Claude, A.; Reber, R.; Christl, M.; Vockenhuber, C.; Dehnert, A.; Rahn, M.; et al. Isochron-burial dating of glaciofluvial deposits: First results from the Swiss Alps. Earth Surf. Process. Landf. 2017, 42, 2414–2425. [Google Scholar] [CrossRef]
- Christl, M.; Vockenhuber, C.; Kubik, P.; Wacker, L.; Lachner, J.; Alfimov, V.; Synal, H.-A. The ETH Zurich AMS facilities: Performance parameters and reference materials. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 294, 29–38. [Google Scholar] [CrossRef]
- Kubik, P.W.; Christl, M. 10Be and 26Al measurements at the Zurich 6MV Tandem AMS facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 880–883. [Google Scholar] [CrossRef]
- Korschinek, G.; Bergmaier, A.; Faestermann, T.; Gerstmann, U.C.; Knie, K.; Rugel, G.; Wallner, A.; Dillmann, I.; Dollinger, G.; von Gostomski, C.L.; et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 187–191. [Google Scholar] [CrossRef]
- Chmeleff, J.; von Blanckenburg, F.; Kossert, K.; Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Mudd, S.M.; Harel, M.-A.; Hurst, M.D.; Grieve, S.W.D.; Marrero, S.M. The CAIRN method: Automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations. Earth Surf. Dyn. 2016, 4, 655–674. [Google Scholar] [CrossRef] [Green Version]
- Norton, K.P.; Abbühl, L.M.; Schlunegger, F. Glacial conditioning as an erosional driving force in the Central Alps. Geology 2010, 38, 655–658. [Google Scholar] [CrossRef]
- Cruz Nunes, F.; Delunel, R.; Schlunegger, F.; Akçar, N.; Kubik, P.W. Bedrock bedding, landsliding and erosional budgets in the Central European Alps. Terra Nova 2015, 27, 370–378. [Google Scholar] [CrossRef]
- Wittmann, H.; von Blanckenburg, F.; Kruesmann, T.; Norton, K.P.; Kubik, P.W. Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland. J. Geophys. Res. Earth Surf. 2007, 112, F04010. [Google Scholar] [CrossRef] [Green Version]
- Chittenden, H.; Delunel, R.; Schlunegger, F.; Akçar, N.; Kubik, P. The influence of bedrock orientation on the landscape evolution, surface morphology and denudation (10 Be) at the Niesen, Switzerland. Earth Surf. Process. Landf. 2014, 39, 1153–1166. [Google Scholar] [CrossRef] [Green Version]
ksn | Upstream/Downstream ksn Increase Factor | Knickzone Elevation (m) | Relative Knickzone (KZ) Distance Propagation (towards Upstream) (%) | Relative Knickzone (KZ) Relief Propagation (Relative Vertical Propagation) (%) | ||
---|---|---|---|---|---|---|
Plessur | Upstream (Up) | 176 | 1.0 | 965 | 35 | 22 |
Downstream (Down) | 180 | |||||
Rabiusa | Up | 172 | - | - | - | - |
Down | - | |||||
Sagabach | Up | 213 | 1.6 | 1154 | 14 | 23 |
Down | 347 | |||||
Sapünerbach | Up | 137 | 1.6 | 1613 | 48 | 49 |
Down | 214 | |||||
Welschtobelbach | Up | 126 | 1.0 | 1814 | 31 | 24 |
Down | 128 |
Sample | Lithology | SiO2 | Al2O3 | Fe2O3(T) | MnO | MgO | CaO | Na2O | K2O | TiO2 | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|---|
PLE01 | Sedimentary | 55.95 | 9.46 | 3.83 | 0.074 | 2.47 | 25.09 | 0.79 | 1.66 | 0.48 | 0.19 |
PLE02 | 49.54 | 8.65 | 4.48 | 0.088 | 6.54 | 27.81 | 0.71 | 1.49 | 0.524 | 0.17 | |
PLE03 | Sedimentary | 45.79 | 10.18 | 4.35 | 0.112 | 9.67 | 26.51 | 0.65 | 2.06 | 0.547 | 0.13 |
PLE04 | 45.28 | 10.01 | 4.95 | 0.088 | 10.2 | 26.24 | 0.73 | 1.71 | 0.64 | 0.16 | |
PLE05 | 34.04 | 7.39 | 4.48 | 0.122 | 21.43 | 29.96 | 0.48 | 1.53 | 0.468 | 0.1 | |
PLE06 | Sedimentary | 46.71 | 5.74 | 3.87 | 0.092 | 10.01 | 31.12 | 0.74 | 0.93 | 0.6 | 0.18 |
PLE07 | 41.2 | 7.63 | 4.35 | 0.101 | 13.68 | 30.2 | 0.69 | 1.42 | 0.587 | 0.14 | |
PLE08 | Ophiolitic | 52.17 | 13.52 | 7.82 | 0.192 | 12.28 | 9.65 | 0.95 | 2.43 | 0.81 | 0.17 |
PLE09 | Dolomitic | 7.93 | 2.12 | 1.24 | 0.103 | 35.06 | 52.68 | 0.09 | 0.63 | 0.108 | 0.04 |
PLE10 | 46.31 | 7.4 | 4.39 | 0.087 | 6.82 | 32.27 | 0.65 | 1.21 | 0.621 | 0.22 |
Sample | Lithology | Sr | Zr | Ba | Cr | Ni | Y | Nb | Sc |
---|---|---|---|---|---|---|---|---|---|
PLE01 | Sedimentary | 647 | 247 | 197 | 70 | 50 | 19.5 | 7.4 | 7 |
PLE02 | 614 | 227 | 182 | 160 | 90 | 18.4 | 8.1 | 7 | |
PLE03 | Sedimentary | 316 | 134 | 224 | 80 | 60 | 14.7 | 8.4 | 7 |
PLE04 | 457 | 218 | 229 | 180 | 110 | 15.6 | 9.3 | 8 | |
PLE05 | 152 | 129 | 144 | 280 | 200 | 11.6 | 6.2 | 6 | |
PLE06 | Sedimentary | 531 | 361 | 124 | 160 | 100 | 17.1 | 8 | 6 |
PLE07 | 387 | 292 | 158 | 200 | 150 | 15 | 8.4 | 7 | |
PLE08 | Ophiolitic | 127 | 179 | 310 | 550 | 450 | 21.7 | 11.3 | 13 |
PLE09 | Dolomitic | 112 | 51 | 75 | 10 | 10 | 3.1 | 1.2 | 1 |
PLE10 | 712 | 1039 | 153 | 150 | 80 | 28 | 9.1 | 7 |
Model Run. | In-Stream Location | GOF | Sedimentary Contribution (%) | Ophiolitic Contribution (%) | Dolomitic Contribution (%) |
---|---|---|---|---|---|
1 (all elements) | PLE02 | 93 | 72 ± 5 | 16 ± 3 | 12 ± 3 |
PLE04 | 93 | 57 ± 5 | 29 ± 3 | 13 ± 2 | |
PLE05 | 95 | 10 ± 1 | 41 ± 1 | 49 ± 1 | |
PLE07 | 93 | 45 ± 5 | 28 ± 3 | 27 ± 2 | |
PLE10 | 82 | 84 ± 7 | 10 ± 4 | 5 ± 3 | |
2 (MgO, Ni) | PLE02 | 99 | 83 ± 3 | 12 ± 1 | 5 ± 3 |
PLE04 | 99 | 67 ± 3 | 17 ± 1 | 15 ± 3 | |
PLE05 | 99 | 13 ± 1 | 42 ± 1 | 45 ± 1 | |
PLE07 | 99 | 48 ± 2 | 28 ± 1 | 24 ± 2 | |
PLE10 | 99 | 83 ± 4 | 10 ± 2 | 6 ± 3 |
Sample | Sample Weight (g) | 9Be Spike (mg) | AMS Ratio (×10−12) | Uncertainty in AMS (%) | 10Be Concentration (×10 4 atoms g−1) |
---|---|---|---|---|---|
PLE02 | 37.03 | 0.195 | 0.044 | 9.9 | 1.53 ± 0.15 |
PLE05 | 44.54 | 0.188 | 0.106 | 4.3 | 2.99 ± 0.12 |
PLE06 | 49.55 | 0.195 | 0.147 | 5.4 | 3.86 ± 0.21 |
PLE10 | 50.47 | 0.192 | 0.066 | 6.2 | 1.68 ± 0.10 |
RHE01 | 50.17 | 0.190 | 0.070 | 7.1 | 1.78 ± 0.13 |
RHE02 | 50.13 | 0.198 | 0.056 | 5.6 | 1.48 ± 0.08 |
Lan-1 | 24.44 | 0.199 | 0.02 | 15.9 | 0.95 ± 0.17 |
Sample | Topographic Shielding a | Snow Shielding b | Denudation Rate (mm a−1) c |
---|---|---|---|
PLE02 | 0.96 | 0.89 | 0.77 ± 0.16 |
PLE05 | 0.96 | 0.88 | 0.44 ± 0.08 |
PLE06 | 0.96 | 0.88 | 0.34 ± 0.07 |
PLE10 | 0.96 | 0.90 | 0.68 ± 0.13 |
RHE01 | 0.95 | 0.89 | 0.70 ± 0.14 |
RHE02 | 0.96 | 0.89 | 0.81 ± 0.16 |
Lan-1 | 0.97 | 0.90 | 1.14 ± 0.30 |
Sample | Area (Km2) | Relative Area (%) | Denudation Rate (mm a−1) | Sediment Flux (103 m3 a−1) | Relative Contribution (%) |
---|---|---|---|---|---|
PLE02 | 207.3 | 4.8 | 0.77 ± 0.16 | 160.28 ± 33.82 | 4.59 ± 1.31 |
PLE05 | 112.4 | 2.6 | 0.44 ± 0.08 | 50.12 ± 9.47 | 1.43 ± 0.04 |
PLE06 | 40.9 | < 1 | 0.34 ± 0.07 | 14.03 ± 2.69 | 0.04 ± 0.01 |
PLE10 | 265.4 | 6.1 | 0.68 ± 0.13 | 181.16 ± 35.57 | 5.18 ± 1.43 |
RHE01 | 3270.9 | 75.8 | 0.70 ± 0.14 | 2297.26 ± 455.65 | 65.74 ± 18.23 |
RHE02 | 4311.7 | 100 | 0.81 ± 0.16 | 3494.07 ± 676.83 | 100.00 ± 27.39 |
Lan-1 * | 616.1 | 14.3 | 1.14 ± 0.30 | 703.93 ± 186.23 | 20.15 ± 6.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Guimarães, E.; Delunel, R.; Schlunegger, F.; Akçar, N.; Stutenbecker, L.; Christl, M. Cosmogenic and Geological Evidence for the Occurrence of a Ma-Long Feedback between Uplift and Denudation, Chur Region, Swiss Alps. Geosciences 2021, 11, 339. https://doi.org/10.3390/geosciences11080339
da Silva Guimarães E, Delunel R, Schlunegger F, Akçar N, Stutenbecker L, Christl M. Cosmogenic and Geological Evidence for the Occurrence of a Ma-Long Feedback between Uplift and Denudation, Chur Region, Swiss Alps. Geosciences. 2021; 11(8):339. https://doi.org/10.3390/geosciences11080339
Chicago/Turabian Styleda Silva Guimarães, Ewerton, Romain Delunel, Fritz Schlunegger, Naki Akçar, Laura Stutenbecker, and Marcus Christl. 2021. "Cosmogenic and Geological Evidence for the Occurrence of a Ma-Long Feedback between Uplift and Denudation, Chur Region, Swiss Alps" Geosciences 11, no. 8: 339. https://doi.org/10.3390/geosciences11080339
APA Styleda Silva Guimarães, E., Delunel, R., Schlunegger, F., Akçar, N., Stutenbecker, L., & Christl, M. (2021). Cosmogenic and Geological Evidence for the Occurrence of a Ma-Long Feedback between Uplift and Denudation, Chur Region, Swiss Alps. Geosciences, 11(8), 339. https://doi.org/10.3390/geosciences11080339