Definitions and Concepts for Quantitative Rockfall Hazard and Risk Analysis
Abstract
:1. Introduction
2. The Rockfall Process
2.1. Failure
2.2. Fragmentation
2.3. Rockfall Modelling
3. Rockfall Hazard
3.1. Frequency and Probability
3.2. Localized Hazard
3.3. Diffuse Hazard
3.3.1. Frequency
- -
- -
- Fragment release frequency: the number of rock fragments that detach from a given source area, per unit of time (and per unit of area for the spatial–temporal frequency). Ref. [34] proposed a method to derive the fragment release frequency from the failure frequency.
- -
- Event passage frequency: the number of rock fall events that pass through a given location, per unit of time (and per unit of length for the spatial–temporal frequency). In other words, it is the number of rock fall events, at least one fragment of which passes through the given location. The spatial–temporal passage frequency allows one to derive the passage frequency at any location according to its width, measured perpendicularly to the movement direction [22].
- -
- Fragment passage frequency: the number of rock fragments that pass through a given area or location, per unit of time (and per unit of length for the spatial–temporal frequency).
- -
3.3.2. Rockfall Event Inventory
3.3.3. Rockfall Fragment Inventory
3.3.4. Volume–Frequency Relation
3.3.5. Derivation of the Passage Frequency from the Release Frequency through Propagation Analysis
4. Rockfall Risk
- Individual risk to life (or individual human risk): “The annual probability that a particular life will be lost”.
- Societal risk to life (or societal human risk): “The risk of multiple fatalities or injuries in society as a whole”, which can be expressed as the annual number of deaths.
- Non-human societal risk concerns “financial, environmental, and other losses”. The elements at risk can be “buildings and engineering works, economic activities, public services utilities, infrastructure and environmental features in the area potentially affected by landslides”.
4.1. Localized Hazard
4.1.1. Trivial Case of a Unique Block without Fragmentation
4.1.2. Case of a Rock Compartment with Fragmentation
4.1.3. Case of Several Rock Compartments
4.2. Diffuse Hazard
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Corominas, J.; Mavrouli, O. Rockfall quantitative risk assessment. In Rockfall Engineering; Lambert, S., Nicot, F., Eds.; ISTE: London, UK, 2011; pp. 255–301. [Google Scholar]
- Volkwein, A.; Schellenberg, K.; Labiouse, V.; Agliardi, F.; Berger, F.; Bourrier, F.; Dorren, L.K.A.; Gerber, W.; Jaboyedoff, M. Rockfall characterisation and structural protection—A review. Nat. Hazards Earth Syst. Sci. 2011, 11, 2617–2651. [Google Scholar] [CrossRef] [Green Version]
- Crosta, G.B.; Agliardi, F.; Frattini, P.; Lari, S. Key Issues in Rock Fall Modeling, Hazard and Risk Assessment for Rockfall Protection. In Engineering Geology for Society and Territory—Volume 2; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 43–58. [Google Scholar]
- Scavia, C.; Barbero, M.; Castelli, M.; Marchelli, M.; Peila, D.; Torsello, G.; Vallero, G. Evaluating Rockfall Risk: Some Critical Aspects. Geosciences 2020, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Varnes, D.J. Slope movement types and processes. In Special Report 176: Landslides: Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; TRB, National Research Council: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides, Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transport Research Board, National Research Council: Washington, DC, USA, 1996. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Bourrier, F.; Dorren, L.; Hungr, O. The use of ballistic trajectory and granular flow models in predicting rockfall propagation. Earth Surf. Process. Landf. 2013, 38, 435–440. [Google Scholar] [CrossRef]
- Turner, A.K.; Jayaprakash, G.P. Introduction. In Rockfall Characterization and Control; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board, National Academy of Sciences: Washington, DC, USA, 2012; pp. 3–20. [Google Scholar]
- Hoek, E.; Bray, J.W. Rock Slope Engineering; The Institution of Mining and Metallurgy: London, UK, 1981. [Google Scholar]
- Wyllie, D.C. Rock Slope Engineering, Civil Applications; CRC Press: Boca Raton, FL, USA, 2017; p. 568. [Google Scholar]
- Lu, P.; Latham, J.P. Developments in the Assessment of In-situ Block Size Distributions of Rock Masses. Rock Mech. Rock Eng. 1999, 32, 29–49. [Google Scholar] [CrossRef]
- Ruiz-Carulla, R.; Corominas, J.; Mavrouli, O. Comparison of block size distribution in rockfalls. In Landslides and Engineered Slopes. Experience, Theory and Practice; Associazione Geotecnica Italiana: Naples, Italy, 2016. [Google Scholar]
- Jaboyedoff, M.; Dudt, J.P.; Labiouse, V. An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. Nat. Hazards Earth Syst. Sci. 2005, 5, 621–632. [Google Scholar] [CrossRef]
- Dorren, L.K.A. A review of rockfall mechanics and modelling approaches. Prog. Phys. Geogr. Earth Environ. 2003, 27, 69–87. [Google Scholar] [CrossRef]
- Wang, Y.; Tonon, F. Discrete Element Modeling of Rock Fragmentation upon Impact in Rock Fall Analysis. Rock Mech. Rock Eng. 2011, 44, 23–35. [Google Scholar] [CrossRef]
- Matas, G.; Lantada, N.; Corominas, J.; Gili, J.A.; Ruiz-Carulla, R.; Prades, A. RockGIS: A GIS-based model for the analysis of fragmentation in rockfalls. Landslides 2017, 14, 1565–1578. [Google Scholar] [CrossRef] [Green Version]
- Richefeu, V.; Villard, P. Modeling Gravity Hazards from Rockfalls to Landslides; ISTE Press Ltd.: London, UK, 2016. [Google Scholar]
- Scheidegger, A.E. On the prediction of the reach and velocity of catastrophic landslides. Rock Mech. 1973, 5, 231–236. [Google Scholar] [CrossRef]
- Heim, A. Bergsturz und Menschenleben; Fretz und Wasmuth Verlag: Zürich, Switzerland, 1932; p. 218. [Google Scholar]
- Evans, S.G.; Hungr, O. The assessment of rockfall hazard at the base of talus slopes. Can. Geotech. J. 1993, 30, 620–636. [Google Scholar] [CrossRef]
- Hantz, D.; Rossetti, J.-P.; Servant, F.; D’Amato, J. Etude de la distribution des blocs dans un éboulement pour l’évaluation de l’aléa. In Rock Slope Stability 2014; Comité français de Mécanique des Roches: Marrakesh, Morocco, 2014. [Google Scholar]
- Fell, R.; Ho, K.; Lacasse, S.; Leroi, E. A Framework for Landslide Risk Assessment and Management. In Landslide Risk Management; Hungr, O., Fell, R., Couture, R., Eberhardt, E., Eds.; Taylor and Francis: Vancouver, BC, Canada, 2005; pp. 3–26. [Google Scholar]
- Durville, J.-L. Quelques remarques sur l’emploi des probabilités dans le domaine des risques naturels: Cas des mouvements de terrain. Bull. Des Lab. Ponts Chaussées 2004, 249, 3–17. [Google Scholar]
- Rat, M. Optimisation de la gestion de la route du littoral à la Réunion vis-à-vis du risque de chutes de blocs. Bull. Des Lab. Ponts Chaussées 2006, 263–264, 43–52. [Google Scholar]
- Leroueil, S.; Locat, J. Slope movements—Geotechnical characterization, risk assessment and mitigation. In Geotechnical Hazards; Maric, B., Lisac, L., Szavits-Nossan, A., Eds.; Balkema: Rotterdam, The Netherlands, 1998; pp. 95–106. [Google Scholar]
- Jaboyedoff, M.; Baillidard, F.; Hantz, D.; Heidenreich, B.; Mazzoccola, D. Terminologie. In Prévention des Mouvements de VERSANTS et des Instabilités de Falaises; Carere, K., Ratto, S., Zanolini, F., Eds.; Programme Interreg IIc: Aosta, Italy, 2001; pp. 48–57. [Google Scholar]
- Crosta, G.B.; Agliardi, F. A methodology for physically based rockfall hazard assessment. Nat. Hazards Earth Syst. Sci. 2003, 3, 407–422. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Moos, C.; Fehlmann, M.; Trappmann, D.; Stoffel, M.; Dorren, L. Integrating the mitigating effect of forests into quantitative rockfall risk analysis—Two case studies in Switzerland. Int. J. Disaster Risk Reduct. 2018, 32, 55–74. [Google Scholar] [CrossRef]
- Farvacque, M.; Lopez-Saez, J.; Corona, C.; Toe, D.; Bourrier, F.; Eckert, N. How is rockfall risk impacted by land-use and land-cover changes? Insights from the French Alps. Glob. Planet. Chang. 2019, 174, 138–152. [Google Scholar] [CrossRef]
- van Veen, M.; Hutchinson, D.J.; Bonneau, D.A.; Sala, Z.; Ondercin, M.; Lato, M. Combining temporal 3-D remote sensing data with spatial rockfall simulations for improved understanding of hazardous slopes within rail corridors. Nat. Hazards Earth Syst. Sci. 2018, 18, 2295–2308. [Google Scholar] [CrossRef] [Green Version]
- Hantz, D.; Rossetti, J.-P.; Valette, D.; Bourrier, F. Quantitative rockfall hazard assessment at the Mont Saint-Eynard (French Alps). In Proceedings of the 6th Interdisciplinary Workshop on Rockfall Protection, Barcelona, Spain, 22–24 May 2017. [Google Scholar]
- Agliardi, F.; Crosta, G.B.; Frattini, P. Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat. Hazards Earth Syst. Sci. 2009, 9, 1059–1073. [Google Scholar] [CrossRef] [Green Version]
- Macciotta, R.; Hendry, M.; Cruden, D.M.; Blais-Stevens, A.; Edwards, T. Quantifying rock fall probabilities and their temporal distribution associated with weather seasonality. Landslides 2017, 14, 2025–2039. [Google Scholar] [CrossRef]
- Macciotta, R.; Martin, C.D.; Morgenstern, N.R.; Cruden, D.M. Development and application of a quantitative risk assessment to a very slow moving rock slope and potential sudden acceleration. Landslides 2016, 13, 765–785. [Google Scholar] [CrossRef]
- Hantz, D.; Vengeon, J.M.; Dussauge-Peisser, C. An historical, geomechanical and probabilistic approach to rock-fall hazard assessment. Nat. Hazards Earth Syst. Sci. 2003, 3, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Frattini, P.; Crosta, G.B.; Zhang, L.; Agliardi, F.; Lari, S.; Yang, Z. Uncertainty assessment in quantitative rockfall risk assessment. Landslides 2014, 11, 711–722. [Google Scholar] [CrossRef]
- Federico, A.; Popescu, M.; Murianni, A. Temporal prediction of landslide occurrence: A possibility or a challenge? Ital. J. Eng. Geol. Environ. 2015, 1, 41–60. [Google Scholar]
- Bozzano, F.; Mazzanti, P.; Esposito, C.; Moretto, S.; Rocca, A. Potential of satellite InSAR monitoring for landslide Failure Forecasting. In Landslides and Engineered Slopes. Experience, Theory and Practice; Aversa, A.E., Ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Carlà, T.; Farina, P.; Intrieri, E.; Botsialas, K.; Casagli, N. On the monitoring and early-warning of brittle slope failures in hard rock masses: Examples from an open-pit mine. Eng. Geol. 2017, 228, 71–81. [Google Scholar] [CrossRef]
- Scoppettuolo, M.R.; Cascini, L.; Babilio, E. Typical displacement behaviours of slope movements. Landslides 2020, 17, 1105–1116. [Google Scholar] [CrossRef]
- Corominas, J.; Matas, G.; Ruiz-Carulla, R. Quantitative analysis of risk from fragmental rockfalls. Landslides 2019, 16, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Agliardi, F.; Crosta, G.B. High resolution three-dimensional numerical modelling of rockfalls. Int. J. Rock Mech. Min. Sci. 2003, 40, 455–471. [Google Scholar] [CrossRef]
- Guerin, A.; D’amato, J.; Hantz, D.; Rossetti, J.-P.; Jaboyedoff, M. Investigating rockfall frequency using Terrestrial Laser Scanner. In Proceedings of the Vertical Geology Conference 2014, Lausanne, Switzerland, 6–7 February 2014; University of Lausanne, Switzerland: Lausanne, Switzerland, 2014. [Google Scholar]
- D’Amato, J.; Guerin, A.; Hantz, D.; Rossetti, J.P.; Baillet, L.; Mariscal, A.; Jaboyedoff, M. Influence of Geological and Meteorological Factors on the Frequency of Rockfalls. In Proceedings of the ISRM Regional Symposium—EUROCK 2015, Salzburg, Austria, 7–10 October 2010; International Society for Rock Mechanics and Rock Engineering: Salzburg, Austria, 2015; p. 6. [Google Scholar]
- Roberds, W. Estimating temporal and spatial variability and vulnerability. In Landslide Risk Management; Hungr, O., Fell, R., Couture, R., Eberhardt, E., Eds.; Taylor and Francis: London, UK, 2005; pp. 129–158. [Google Scholar]
- Williams, J.G.; Rosser, N.J.; Hardy, R.J.; Brain, M.J. The Importance of Monitoring Interval for Rockfall Magnitude-Frequency Estimation. J. Geophys. Res. Earth Surf. 2019, 124, 2841–2853. [Google Scholar] [CrossRef] [Green Version]
- Hungr, O.; Evans, S.G. The Occurrence and Classification of Massive Rock Slope Failure. Felsbau 2004, 22, 16–23. [Google Scholar]
- Killingback, Z.; Holdsworth, R.E.; Walker, R.J.; Nielsen, S.; Dempsey, E.; Hardman, K. A bigger splat: The catastrophic geology of a 1.2-b.y.-old terrestrial megaclast, northwest Scotland. Geology 2021, 49, 180–184. [Google Scholar] [CrossRef]
- Hantz, D.; Colas, B. Caractérisation de L’aléa Éboulement Rocheux-Etat de L’art; CEREMA: Bron, France, 2020; p. 64. [Google Scholar]
- Stoffel, M.; Corona, C. Dendroecological Dating of Geomorphic Disturbance in Trees. Tree Ring Res. 2014, 70, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Trappmann, D.; Stoffel, M. Counting scars on tree stems to assess rockfall hazards: A low effort approach, but how reliable? Geomorphology 2013, 180–181, 180–186. [Google Scholar] [CrossRef]
- Trappmann, D.; Stoffel, M. Visual dating of rockfall scars in Larix decidua trees. Geomorphology 2015, 245, 62–72. [Google Scholar] [CrossRef]
- Abbruzzese, J.M.; Labiouse, V. New Cadanav methodology for quantitative rock fall hazard assessment and zoning at the local scale. Landslides 2014, 11, 551–564. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.; Hazzard, J. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can. Geotech. J. 1999, 36, 224–238. [Google Scholar] [CrossRef]
- Dussauge-Peisser, C.; Helmstetter, A.; Grasso, J.R.; Hantz, D.; Desvarreux, P.; Jeannin, M.; Giraud, A. Probabilistic approach to rock fall hazard assessment: Potential of historical data analysis. Nat. Hazards Earth Syst. Sci. 2002, 2, 15–26. [Google Scholar] [CrossRef]
- Mavrouli, O.; Corominas, J. Evaluation of Maximum Rockfall Dimensions Based on Probabilistic Assessment of the Penetration of the Sliding Planes into the Slope. Rock Mech. Rock Eng. 2020, 53, 2301–2312. [Google Scholar] [CrossRef] [Green Version]
- Abbruzzese, J.M.; Labiouse, V. New Cadanav Methodology for Rock Fall Hazard Zoning Based on 3D Trajectory Modelling. Geosciences 2020, 10, 434. [Google Scholar] [CrossRef]
- Farvacque, M.; Eckert, N.; Bourrier, F.; Corona, C.; Lopez-Saez, J.; Toe, D. Quantile-based individual risk measures for rockfall-prone areas. Int. J. Disaster Risk Reduct. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Nicolet, P.; Jaboyedoff, M.; Cloutier, C.; Crosta, G.B.; Lévy, S. Brief communication: On direct impact probability of landslides on vehicles. Nat. Hazards Earth Syst. Sci. 2016, 16, 995–1004. [Google Scholar] [CrossRef] [Green Version]
- Leroi, E.; Bonnard, C.; Fell, R.; McInnes, R. Risk assessment and management. In Landslide Risk Management; Hungr, O., Fell, R., Couture, R., Eberhardt, E., Eds.; Taylor and Francis: London, UK, 2005; pp. 159–198. [Google Scholar]
- Bründl, M.; Romang, H.E.; Bischof, N.; Rheinberger, C.M. The risk concept and its application in natural hazard risk management in Switzerland. Nat. Hazards Earth Syst. Sci. 2009, 9, 801–813. [Google Scholar] [CrossRef]
Volume Class (m3) | Rockfall Release Frequency (Events/Year) | Reach Probability | Temporal Spatial Probability | Vulnerability | Annual Risk (Human Life) |
---|---|---|---|---|---|
V < 0.05 | 16.32 | 0.119 | 0.010 | 0.5 | 9.9 × 10−3 |
0.05 < V < 0.5 | 0.25 | 0.328 | 0.019 | 0.9 | 1.4 × 10−3 |
0.5 < V < 5 | 3.3 × 10−2 | 0.590 | 0.022 | 1.0 | 4.3 × 10−4 |
5 < V < 50 | 4.3 × 10−3 | 0.765 | 0.066 | 1.0 | 2.2 × 10−4 |
50 < V < 500 | 5.7 × 10−4 | 0.832 | 0.124 | 1.0 | 5.9 × 10−5 |
V > 500 | 8 × 10−5 | 0.874 | 0.153 | 1.0 | 1.0 × 10−5 |
Total risk | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hantz, D.; Corominas, J.; Crosta, G.B.; Jaboyedoff, M. Definitions and Concepts for Quantitative Rockfall Hazard and Risk Analysis. Geosciences 2021, 11, 158. https://doi.org/10.3390/geosciences11040158
Hantz D, Corominas J, Crosta GB, Jaboyedoff M. Definitions and Concepts for Quantitative Rockfall Hazard and Risk Analysis. Geosciences. 2021; 11(4):158. https://doi.org/10.3390/geosciences11040158
Chicago/Turabian StyleHantz, Didier, Jordi Corominas, Giovanni B. Crosta, and Michel Jaboyedoff. 2021. "Definitions and Concepts for Quantitative Rockfall Hazard and Risk Analysis" Geosciences 11, no. 4: 158. https://doi.org/10.3390/geosciences11040158