Introducing Uncertainty in Risk Calculation along Roads Using a Simple Stochastic Approach
Abstract
:1. Introduction
2. Model Data
3. Introducing Uncertainty into Risk Calculation
4. Results
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wieczorek, G.F.; Nishenko, S.P.; Varnes, D.J. Analysis of rock falls in the Yosemite Valley, California. In Proceedings of the 35th US Symposium on Rock Mechanics (USRMS), Reno, NV, USA, 5–7 June 1995; pp. 85–89. [Google Scholar]
- Hovius, N.; Allen, P.A.; Stark, C.P. Sediment flux from a mountain belt derived by landslide mapping. Geology 1997, 25, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Dussauge, C.; Grasso, J.-R.; Helmstetter, A. Statistical analysis of rockfall volume distributions: Implications for rockfall dynamics. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Hantz, D. Quantitative assessment of diffuse rock fall hazard along a cliff foot. Nat. Hazards Earth Syst. Sci. 2011, 11, 1303–1309. [Google Scholar] [CrossRef] [Green Version]
- Hungr, O.; Evans, S.G.; Hazzard, J. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can. Geotech. J. 1999, 36, 224–238. [Google Scholar] [CrossRef]
- Hoek, E. Practical Rock Engineering. Available online: https://www.rocscience.com/learning/hoeks-corner/course-notes-books (accessed on 16 March 2021).
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Wyllie, D.C. Rock Slope Engineering: Civil Applications, 5th ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2018; p. 568. [Google Scholar]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Nadim, F. Tools and Strategies for Dealing with Uncertainty in Geotechnics. In Probabilistic Methods in Geotechnical Engineering; Griffiths, D.V., Fenton, G.A., Eds.; Springer: Vienna, Austria, 2007; pp. 71–95. [Google Scholar]
- Wang, X.; Frattini, P.; Crosta, G.B.; Zhang, L.; Agliardi, F.; Lari, S.; Yang, Z. Uncertainty assessment in quantitative rockfall risk assessment. Landslides 2014, 11, 711–722. [Google Scholar] [CrossRef]
- Crosta, G.B.; Agliardi, F.; Frattini, P.; Lari, S. Key Issues in Rock Fall Modeling, Hazard and Risk Assessment for Rockfall Protection. In Engineering Geology for Society and Territory; Springer: Cham, Switzerland, 2015; Volume 2, pp. 43–58. [Google Scholar]
- Macciotta, R.; Martin, C.D.; Morgenstern, N.R.; Cruden, D.M. Quantitative risk assessment of slope hazards along a section of railway in the Canadian Cordillera—A methodology considering the uncertainty in the results. Landslides 2016, 13, 115–127. [Google Scholar] [CrossRef]
- Mitchell-Wallace, K.; Jones, M.; Hillier, J.; Foote, M. Natural Catastrophe Risk Management and Modelling—A Practitioner’s Guide; Wiley-Blackwell: Hoboken, NJ, USA, 2017; 536p. [Google Scholar]
- Nicolet, P.; Foresti, L.; Caspar, O.; Jaboyedoff, M. Shallow landslide’s stochastic risk modelling based on the precipitation event of August 2005 in Switzerland: Results and implications. Nat. Hazards Earth Syst. Sci. 2013, 13, 3169–3184. [Google Scholar] [CrossRef] [Green Version]
- Farvacque, M.; Eckert, N.; Bourrier, F.; Corona, C.; Lopez-Saez, J.; Toe, D. Quantile-based individual risk measures for rockfall-prone areas. Int. J. Disaster Risk Reduct. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Haimes, Y.Y. Risk Modeling, Assessment, and Management, 4th ed.; Wiley: Hoboken, NJ, USA, 2015; 720p. [Google Scholar]
Volume | 4.99 × Vol−0.434 | λr × fr | D~Vol(1/3) | Exp | Pp | V | H × Pp × Exp × V | 1/R |
---|---|---|---|---|---|---|---|---|
(m3) | (#/yr) | (#/yr) | (m) | (-) | (-) | (-) | (-) | (yr) |
0.001 | 100.000 | |||||||
0.010 | 36.813 | 63.187 | 0.2 | 0.0146 | 0.1 | 0.05 | 0.005 | 217.0 |
0.100 | 13.552 | 23.261 | 0.5 | 0.0154 | 0.2 | 0.1 | 0.007 | 139.9 |
1.0 | 4.989 | 8.563 | 1 | 0.0167 | 0.4 | 0.2 | 0.011 | 87.6 |
10 | 1.837 | 3.152 | 2 | 0.0193 | 0.6 | 0.5 | 0.018 | 54.9 |
100 | 0.676 | 1.160 | 5 | 0.0271 | 0.8 | 0.8 | 0.020 | 49.7 |
1000 | 0.249 | 0.427 | 10 | 0.0401 | 1.0 | 1.0 | 0.017 | 58.4 |
10,000 | 0.092 | 0.157 | 30 | 0.0922 | 1.0 | 1.0 | 0.014 | 69.0 |
>10,000 | 0.092 | 50 | 0.1443 | 1.0 | 1.0 | 0.013 | 75.7 | |
Total | 0.106 | 9.4 |
Variables | Units (Remarks) | Minimum | Maximum |
---|---|---|---|
Debris width D | m | D/2 | 3D/2 |
Vehicle speed vv | km/h | 57.5 | 102.5 |
Number of vehicles Nv | Vehicles/day | 4500 | 5500 |
Probability of impact or propagation at the vehicle location Pp | (-) (Integrated in the calculation; one order of magnitude of volume variability) | log10(V(d)) − 0.5 | log10(V(d)) + 0.5 |
Vulnerability V(lethality) | idem | idem | idem |
Thresholds | Frequency | Return Period T [Year] | |||
---|---|---|---|---|---|
Case | A | A | B | C | D |
(events/year) | 1 occ. N0 = 100 | 1 occ. N0 = 130 | 1–2 occ. N0 = 100 | 1–2 occ. N0 = 130 | |
Average | 0.059 | 16.8 | 13.0 | 11.2 | 8.6 |
Minimum (max. T) | 0.010 | 103.3 | 80.9 | 75.4 | 48.6 |
97.50% | 0.020 | 51.2 | 35.4 | 34.8 | 24.1 |
95% | 0.022 | 45.6 | 31.8 | 31.0 | 21.6 |
Median | 0.047 | 21.1 | 15.5 | 14.2 | 10.5 |
5% | 0.137 | 7.3 | 6.0 | 4.8 | 3.9 |
2.5 | 0.165 | 6.1 | 5.1 | 3.9 | 3.3 |
Maximum (Min. T) | 0.603 | 1.7 | 1.6 | 1.2 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaboyedoff, M.; Choanji, T.; Derron, M.-H.; Fei, L.; Gutierrez, A.; Loiotine, L.; Noel, F.; Sun, C.; Wyser, E.; Wolff, C. Introducing Uncertainty in Risk Calculation along Roads Using a Simple Stochastic Approach. Geosciences 2021, 11, 143. https://doi.org/10.3390/geosciences11030143
Jaboyedoff M, Choanji T, Derron M-H, Fei L, Gutierrez A, Loiotine L, Noel F, Sun C, Wyser E, Wolff C. Introducing Uncertainty in Risk Calculation along Roads Using a Simple Stochastic Approach. Geosciences. 2021; 11(3):143. https://doi.org/10.3390/geosciences11030143
Chicago/Turabian StyleJaboyedoff, Michel, Tiggi Choanji, Marc-Henri Derron, Li Fei, Amalia Gutierrez, Lidia Loiotine, François Noel, Chunwei Sun, Emmanuel Wyser, and Charlotte Wolff. 2021. "Introducing Uncertainty in Risk Calculation along Roads Using a Simple Stochastic Approach" Geosciences 11, no. 3: 143. https://doi.org/10.3390/geosciences11030143
APA StyleJaboyedoff, M., Choanji, T., Derron, M.-H., Fei, L., Gutierrez, A., Loiotine, L., Noel, F., Sun, C., Wyser, E., & Wolff, C. (2021). Introducing Uncertainty in Risk Calculation along Roads Using a Simple Stochastic Approach. Geosciences, 11(3), 143. https://doi.org/10.3390/geosciences11030143