Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example
Abstract
:1. Introduction
2. Local Impacts of Volcanic Eruptions
2.1. Impacts on the Drainage Systems
2.2. Impacts on the Volcanic Structure
2.3. Impacts on the Water Bodies
2.4. Impacts on Societies and the Environment
3. Global Impacts of Volcanic Eruptions
4. Disaster Management Practices Related to Volcanic Impacts
4.1. The Monitoring Phase
4.2. The Mapping Phase
4.3. The Emergency Phase
4.4. The Recovery Phase
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newhall, G.; Self, G. The Volcanic Explosivity Index (VEI): An Estimate of Explosive Magnitude for Historical Volcanism. J. Geophys. Res. Atmos. 1982, 87, 1231–1238. [Google Scholar] [CrossRef]
- Hickson, C.; Spurgeon, T.; Tilling, R.; Adam, P. Factors influencing volcanic hazards and the morphology of volcanic landforms. In Treatise on Geomorphology; Shroder, J., James, L., Harden, C., Clague, J., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 219–242. [Google Scholar]
- Lechner, P.; Tupper, A.; Guffanti, M.; Loughlin, S.; Casadevall, T. Volcanic Ash and Aviation—The Challenges of Real-Time, Global Communication of a Natural Hazard. Adv. Volcanol. 2018, 69, 51–64. [Google Scholar]
- Lavigne, F.; De Belizal, E. Les effets géographiques des éruptions volcaniques. EchoGéo 2010. [Google Scholar] [CrossRef] [Green Version]
- Newhall, C.; Self, S.; Robock, A. Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts. Geosphere 2018, 14, 572–603. [Google Scholar] [CrossRef] [Green Version]
- Aydın, F.; Midilli, A.; Dincer, I. Environmental Impact Assessment of Explosive Volcanoes: A Case Study. In Causes, Impacts and Solutions to Global Warming; Dincer, I., Colpan, C.O., Kadioglu, F., Eds.; Springer: New York, NY, USA, 2013; pp. 261–290. [Google Scholar]
- Campelo, C.E.C.; Bennett, B. Representing and reasoning about changing spatial extensions of geographic features. In Spatial Information Theory. COSIT 2013. Lecture Notes in Computer Science, Volume 8116; Tenbrink, T., Stell, J., Galton, A., Wood, Z., Eds.; Springer: Cham, Switzerland, 2013; pp. 32–52. [Google Scholar]
- Waythomas, C.F. Geomorphic consequences of volcanic eruptions in Alaska: A review. Geomorphology 2015, 246, 123–145. [Google Scholar] [CrossRef]
- Syahbana, D.K.; Kasbani, K.; Suantika, G.; Prambada, O.; Andreas, A.S.; Saing, U.B.; Kunrat, S.L.; Andreastuti, S.; Martanto, M.; Kriswati, E.; et al. The 2017–19 activity at Mount Agung in Bali (Indonesia): Intense unrest, monitoring, crisis response, evacuation, and eruption. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hizbaron, D.R.; Hadmoko, D.S.; Mei, E.T.W.; Murti, S.H.; Laksani, M.R.T.; Tiyansyah, A.F.; Siswanti, E.; Tampubolon, I.E. Towards measurable resilience: Mapping the vulnerability of at-risk community at Kelud Volcano, Indonesia. Appl. Geogr. 2018, 97, 212–227. [Google Scholar] [CrossRef]
- Nofrita, S.; Krol, B. The Livelihood Analysis in Merapi Prone Area After 2010 Eruption. Indones. J. Geogr. 2014, 46, 195. [Google Scholar] [CrossRef] [Green Version]
- Mei, E.T.W.; Fajarwati, A.; Hasanati, S.; Sari, I.M. Resettlement Following the 2010 Merapi Volcano Eruption. Procedia—Soc. Behav. Sci. 2016, 227, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C. Ethics and Disaster Risk Reduction Including Climate Change Adaptation. In The Routledge Handbook of Disaster Risk Reduction Including Climate Change Adaptation; Kelman, I., Mecer, J., Gaillard, J.C., Eds.; Routlegde: Oxon, UK, 2017; pp. 174–186. [Google Scholar]
- Van Neikerk, D. Introduction to Disaster Risk Reduction; USAID: Washington, DC, USA, 2011.
- Lavigne, F.; Degeai, J.-P.; Komorowski, J.-C.; Guillet, S.; Robert, V.; Lahitte, P.; Oppenheimer, C.; Stoffel, M.; Vidal, C.M.; Surono; et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc. Natl. Acad. Sci. USA 2013, 110, 16742–16747. [Google Scholar] [CrossRef] [Green Version]
- Zaennudin, A. The characteristic of eruption of Indonesian active volcanos in the last four decades. J. Ling. Benc. Geol. 2010, 1, 113–129. [Google Scholar]
- De Maisonneuve, C.B.; Bergal-Kuvikas, O. Timing, magnitude and geochemistry of major Southeast Asian volcanic eruptions: Identifying tephrochronologic markers. J. Quat. Sci. 2020, 35, 272–287. [Google Scholar] [CrossRef]
- Gunawan, H.; McCausland, W.; Pallister, J.; Iguchi, M.; Nakada, S. The eruptions of Sinabung and Kelud volcanoes, Indonesia. J. Volcanol. Geotherm. Res. 2019, 382, 1–5. [Google Scholar]
- Gob, F.; Gautier, E.; Virmoux, C.; Grancher, D.; Tamisier, V.; Primanda, K.W.; Wibowo, S.B.; Sarrazin, C.; de Belizal, E.; Ville, A.; et al. River responses to the 2010 major eruption of the Merapi volcano, central Java, Indonesia. Geomorphology 2016, 273, 244–257. [Google Scholar] [CrossRef]
- Selles, A.; Deffontaines, B.; Hendrayana, H.; Violette, S. The eastern flank of the Merapi volcano (Central Java, Indonesia): Architecture and implications of volcaniclastic deposits. J. Asian Earth Sci. 2015, 108, 33–47. [Google Scholar] [CrossRef]
- Gertisser, R.; Cassidy, N.J.; Charbonnier, S.J.; Nuzzo, L.; Preece, K. Overbank block-and-ash flow deposits and the impact of valley-derived, unconfined flows on populated areas at Merapi volcano, Java, Indonesia. Nat. Hazards 2012, 60, 623–648. [Google Scholar] [CrossRef]
- Umbal, J.V.; Rodolfo, K.S. The 1991 Lahars of Southwestern Mount Pinatubo and Evolution of the Lahar-Dammed Mapanuepe Lake. In Fire mud eruptions lahars Mt Pinatubo, Philippines; Newhall, C.G., Punongbayan, R.S., Eds.; University of Washington Press: Seattle, WA, USA, 1996. [Google Scholar]
- Lavigne, F.; Thouret, J.C.; Voight, B.; Suwa, H.; Sumaryono, A. Lahars at Merapi volcano, Central Java: An overview. J. Volcanol. Geotherm. Res. 2000, 100, 423–456. [Google Scholar] [CrossRef]
- De Bélizal, E.; Lavigne, F.; Hadmoko, D.S.; Degeai, J.-P.; Dipayana, G.A.; Mutaqin, B.W.; Marfai, M.A.; Coquet, M.; Le Mauff, B.; Robin, A.-K.; et al. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk. J. Volcanol. Geotherm. Res. 2013, 261, 330–347. [Google Scholar] [CrossRef]
- Künzler, M.; Huggel, C.; Ramírez, J.M. A risk analysis for floods and lahars: Case study in the Cordillera Central of Colombia. Nat. Hazards. 2012, 64, 767–796. [Google Scholar] [CrossRef]
- Sarrazin, C.; Gautier, E.; Hollé, A.; Grancher, D.; de Bélizal, E.; Hadmoko, D.S. Resilience of socio-ecological systems in volcano risk-prone areas, but how much longer? Assessment of adaptive water governance in Merapi volcano, Central Java, Indonesia. GeoJournal 2019, 84, 183–213. [Google Scholar] [CrossRef]
- Todesco, M.; Todini, E. Volcanic eruption induced floods. A rainfall-runoff model applied to the Vesuvian Region (Italy). Nat. Hazards 2004, 33, 223–245. [Google Scholar] [CrossRef]
- Ville, A.; Lavigne, F.; Virmoux, C.; Brunstein, D.; de Bélizal, É.; Wibowo, S.B.; Hadmoko, D.S. Geomorphological evolution of the Gendol valley following the October 2010 eruption of Mt Merapi (Java, Indonesia). Géomorphologie Relief Process Environ. 2015, 21, 235–250. [Google Scholar] [CrossRef]
- Hadmoko, D.S.; De Belizal, E.; Mutaqin, B.W.; Dipayana, G.A.; Marfai, M.A.; Lavigne, F.; Sartohadi, J.; Worosuprojo, S.; Starheim, C.C.A.; Gomez, C. Post-eruptive lahars at Kali Putih following the 2010 eruption of Merapi volcano, Indonesia: Occurrences and impacts. Nat. Hazards 2018, 94, 419–444. [Google Scholar] [CrossRef]
- Darmawan, H.; Walter, T.R.; Brotopuspito, K.S.; Subandriyo; Nandaka, I.G. Morphological and structural changes at the Merapi lava dome monitored in 2012–15 using unmanned aerial vehicles (UAVs). J. Volcanol. Geotherm. Res. 2018, 349, 256–267. [Google Scholar] [CrossRef]
- Darmawan, H.; Walterm, T.R.; Troll, V.R.; Budi-Santoso, A. Dome instability at Merapi volcano identified by drone photogrammetry and numerical modeling. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, A.J.; Gertisser, R.; Troll, V.R.; Jolis, E.M.; Dahren, B.; Harris, C.; Tindle, A.G.; O’Driscoll, B.; Humaida, H.; Chadwick, J.P. The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contrib. Miner. Petrol. 2013, 166, 275–308. [Google Scholar] [CrossRef]
- Ogburn, S.E.; Loughlin, S.C.; Calder, E.S. The association of lava dome growth with major explosive activity (VEI ≥ 4): DomeHaz, a global dataset. Bull. Volcanol. 2015, 77, 1–77. [Google Scholar] [CrossRef] [Green Version]
- Mutaqin, B.W.; Lavigne, F. Oldest description of a caldera-forming eruption in Southeast Asia unveiled in forgotten written sources. GeoJournal 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Rachmat, H.; Rosana, M.; Wirakusumah, A.D.; Jabbar, G.A. Petrogenesis of Rinjani post-1257 caldera-forming-eruption lava flows. Indones. J. Geosci. 2016, 3, 107–126. [Google Scholar] [CrossRef] [Green Version]
- Madden-Nadeau, A.L.; Cassidy, M.; Pyle, D.M.; Mather, T.A.; Watt, S.F.L.; Enfwell, S.L.; Abdurrachman, M.; Nursha, M.E.M.; Tappin, D.R.; Ismail, T. The magmatic and eruptive evolution of the 1883 caldera-forming eruption of Krakatau: Integrating field- to crystal-scale observations. J. Volcanol. Geotherm. Res. 2021, 411. [Google Scholar] [CrossRef]
- Mutaqin, B.W.; Lavigne, F.; Sudrajat, Y.; Handayani, L.; Lahitte, P.; Virmoux, C.; Hiden; Hadmoko, D.S.; Komorowski, J.-C.; Hananto, N.D.; et al. Landscape evolution on the eastern part of Lombok (Indonesia) related to the 1257 CE eruption of the Samalas Volcano. Geomorphology 2019, 327, 338–350. [Google Scholar] [CrossRef]
- Reid, M.E.; Keith, T.E.C.; Kayen, R.E.; Iverson, N.R.; Iverson, R.M.; Brien, D.L. Volcano collapse promoted by progressive strength reduction: New data from Mount St. Helens. Bull. Volcanol. 2010, 72, 761–766. [Google Scholar] [CrossRef] [Green Version]
- Norini, G.; Bustos, E.; Arnosio, M.; Baez, W.; Zuluaga, M.C.; Roverato, M. Unusual volcanic instability and sector collapse configuration at Chimpa volcano, central Andes. J. Volcanol. Geotherm. Res. 2020. 393, 106807. [CrossRef]
- Yoshida, H. Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area. Geomorphology 2014, 223, 67–80. [Google Scholar] [CrossRef]
- Roverato, M.; Capra, L.; Sulpizio, R.; Norini, G. Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): Insights into pre-failure conditions and climate influence. J. Volcanol. Geotherm. Res. 2011, 207, 33–46. [Google Scholar] [CrossRef]
- Bronto, S. Volcanic Geology of Galunggung, West Java, Indonesia. Ph.D. Thesis, University Canterbury, Christchurch, New Zeland, 1989; 511p. Available online: http://ir.canterbury.ac.nz/handle/10092/5667 (accessed on 11 December 2019).
- Siebert, L. Landslide resulting from structural failure of volcanoes. In Catastrophic Landslide: Effects, Occurrence, and Mechanisms; Evans, S., De Graff, J., Eds.; Geological Society of America Reviews in Engineering Geology: Boulder, CO, USA, 2002; pp. 209–235. [Google Scholar]
- Malawani, M.N.; Lavigne, F.; Hadmoko, D.S.; Marfai, M.A.; Mutaqin, B.W. Hummocky terrain of the Kalibabak debris avalanche deposit, Lombok Island, Indonesia. E3S Web Conf. 2020, 200, 02015. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nakamura, Y.; Glicken, H. Pyroclastic density current from the 1888 phreatic eruption of Bandai volcano, NE Japan. J. Volcanol. Geotherm. Res. 1999, 90, 191–207. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, S.W.; Kim, S.H. Simulating floods triggered by volcanic activities in the Cheon-ji caldera lake for hazards and risk analysis. J. Flood Risk Manag. 2018, 11, 479–488. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Kennedy, B.M.; Villeneuve, M.C.; Cook, S.C.; Jolly, A.D.; Keys, H.J.; Leonard, G.S.; Jolly, A. Stability assessment of the Crater Lake Te Wai-a-moe channel at Mt. Ruapehu (New Zealand), and implications for volcanic lake break-out triggers. J. Volcanol. Geotherm. Res. 2018, 358, 31–44. [Google Scholar] [CrossRef]
- Sudarmadji; Suprayogi, S.; Lestari, S.; Malawani, M.N. Water quality and sustainability of Merdada Lake, Dieng, Indonesia. E3S Web Conf. 2019, 76, 02003. [Google Scholar] [CrossRef]
- Gunkel, G.; Beulker, C.; Grupe, B.; Viteri, F. Hazards of volcanic lakes: Analysis of Lakes Quilotoa and Cuicocha, Ecuador. Adv. Geosci. 2008, 14, 29–33. [Google Scholar] [CrossRef] [Green Version]
- D’Addabbo, M.; Sulpizio, R.; Guidi, M.; Capitani, G.; Mantecca, P.; Zanchetta, G. Ash leachates from some recent eruptions of Mount Etna (Italy) and Popocatepetl (Mexico) volcanoes and their impact on amphibian living freshwater organisms. Biogeosciences 2015, 12, 7087–7106. [Google Scholar] [CrossRef] [Green Version]
- Mayr, C.; Smith, R.E.; García, M.L.; Massaferro, J.; Lücke, A.; Dubois, N.; Maidana, N.I.; Meier, W.J.-H.; Wissel, H.; Zolitschka, B. Historical eruptions of Lautaro Volcano and their impacts on lacustrine ecosystems in southern Argentina. J. Paleolimnol. 2019, 62, 205–221. [Google Scholar] [CrossRef]
- Sumita, M.; Schmincke, H.U. Impact of volcanism on the evolution of Lake Van I: Evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia) during the past >400,000 years. Bull. Volcanol. 2013, 75, 1–32. [Google Scholar] [CrossRef]
- Paris, R.; Wassmer, P.; Lavigne, F.; Belousov, A.; Belousova, M.; Iskandarsyah, Y.; Benbakkar, M.; Ontowirjo, B.; Mazzoni, N. Coupling eruption and tsunami records: The Krakatau 1883 case-study, Indonesia. Bull. Volcanol. 2014, 76, 814. [Google Scholar] [CrossRef]
- Mutaqin, B.W.; Lavigne, F.; Hadmoko, D.S.; Ngalawani, M.N. Volcanic Eruption-Induced Tsunami in Indonesia: A Review. IOP Conf. Ser. Earth Environ. Sci. 2019, 256, 012023. [Google Scholar] [CrossRef] [Green Version]
- Giachetti, T.; Paris, R.; Kelfoun, K.; Ontowirjo, B. Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia. Geol. Soc. Spec. Publ. 2012, 361, 79–90. [Google Scholar] [CrossRef]
- Waythomas, C.F.; Neal, C.A. Tsunami generation by pyroclastic flow during the 3500-year B.P. caldera-forming eruption of Aniakchak Volcano, Alaska. Bull. Volcanol. 1998, 60, 110–124. [Google Scholar] [CrossRef]
- Novikova, T.; Papadopoulos, G.A.; McCoy, F.W. Modelling of tsunami generated by the giant Late Bronze Age eruption of Thera, South Aegean Sea, Greece. Geophys. J. Int. 2011, 186, 665–680. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Indonesia-Volcanic Eruption & Tsunami; JRC Emergency Reporting—Activation #029; European Commission: Geneva, Switzerland, 2018. [Google Scholar]
- Brown, S.K.; Jenkins, S.F.; Sparks, R.S.J.; Odbert, H.; Auker, M.R. Volcanic fatalities database: Analysis of volcanic threat with distance and victim classification. J. Appl. Volcanol 2017, 6, 15. [Google Scholar] [CrossRef]
- Warsini, S.; Buettner, P.; Mills, J.; West, C.; Usher, K. The Psychosocial Impact of the Environmental Damage Caused by the MT Merapi Eruption on Survivors in Indonesia. Ecohealth 2014, 11, 491–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, L.J.; Henquinet, K.B. Disaster risk reduction and resettlement efforts at San Vicente (Chichontepec) Volcano, El Salvador: Toward understanding social and geophysical vulnerability. J. Appl. Volcanol. 2015, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.; Janin, M.; Lavigne, F.; Gertisser, R.; Charbonnier, S.; Lahitte, P.; Hadmoko, S.R.; Fort, M.; Wassmer, P.; Degroot, V.; et al. Borobudur, a basin under volcanic influence: 361, 000 years BP to present. J. Volcanol. Geotherm. Res. 2010, 196, 245–264. [Google Scholar] [CrossRef]
- Tsuruyaki, S. Vegetation changes from 1984 to 2008 on Mont Usu, northern Japan, after the 1977–1978 eruptions. Ecol. Res. 2019, 34, 813–820. [Google Scholar]
- Syifa, M.; Kadavi, P.R.; Lee, C.W.; Pradhan, B. Landsat images and artificial intelligence techniques used to map volcanic ashfall and pyroclastic material following the eruption of Mount Agung, Indonesia. Arab. J. Geosci. 2018, 13, 13. [Google Scholar] [CrossRef]
- Grishin, S.Y. Forest die-off under the impact of burning pyroclastic surge on the Shiveluch Volcano (Kamchatka, 2005). Russ. J. Ecol. 2009, 40, 146–148. [Google Scholar] [CrossRef]
- Grishin, S.Y. Environmental impact of the powerful eruption of Sarychev Peak volcano (Kuril Islands, 2009) according to satellite imagery. Izv—Atmos. Ocean. Phys. 2011, 47, 1028–1031. [Google Scholar] [CrossRef]
- Tagawa, H. Primary succession and the effect of first arrivals on subsequent development of forest types. GeoJournal 1992, 28, 175–183. [Google Scholar] [CrossRef]
- Teltscher, K.; Fassnacht, F.E. Using multispectral Landsat and sentinel-2 satellite data to investigate vegetation change at Mount St. Helens since the great volcanic eruption in 1980. J. Mt. Sci. 2018, 15, 1851–1867. [Google Scholar] [CrossRef]
- Rampino, M.R.; Self, R. Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature 1984, 310, 677–679. [Google Scholar] [CrossRef]
- Cooper, C.L.; Swindles, G.T.; Savov, I.P.; Schmidt, A.; Bacon, K.L. Evaluating the relationship between climate change and volcanism. Earth-Sci. Rev. 2018, 177, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.M.; Métrich, N.; Komorowski, J.-C.; Pratomo, I.; Michel, A.; Kartadinata, N.; Robert, V.; Lavigne, F. The 1257 Samalas eruption (Lombok, Indonesia): The single greatest stratospheric gas release of the Common Era. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, C.; Van Ypersele, J.P.; Berger, A. Volcanic and solar impacts on climate since 1700. Clim. Dyn. 1999, 15, 355–367. [Google Scholar] [CrossRef]
- Piscini, A.; Marchetti, D.; De Santis, A. Multi-Parametric Climatological Analysis Associated with Global Significant Volcanic Eruptions During 2002–2017. Pure Appl. Geophys. 2019, 176, 3629–3647. [Google Scholar] [CrossRef]
- Fischer, E.M. Climate response to tropical eruptions. Pages News. 2006, 13, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Guillet, S.; Corona, C.; Stoffel, M.; Khodri, M.; Lavigne, F.; Ortega, P.; Eckert, N.; Sielenou, P.D.; Daux, V.; Sidorova, O.V.C.; et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci. 2017, 10, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.H.; Geirsdóttir, Á.; Zhong, Y.; Larsen, D.J.; Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A.; Refsnider, K.A.; Lehman, S.J.; Southon, J.R.; et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 2012, 39, 39. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog. Phys. Geogr. 2003, 27, 230–259. [Google Scholar] [CrossRef]
- Brázdil, R.; Řezníčková, L.; Valášek, H.; Dolák, L.; Kotyza, O. Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands. Clim. Past. 2016, 12, 1361–1374. [Google Scholar] [CrossRef] [Green Version]
- Brönnimann, S.; Krämer, D. Tambora and the “Year Without a Summer” of 1816. A Perspective on Earth and Human Systems Science; Geographica Bernensia: Gerlafingen, Switzerland, 2016; Volume G90, 48p. [Google Scholar]
- Stothers, R.B. Far reach of the tenth century eldgjá eruption, Iceland. Clim. Chang. 1998, 39, 715–726. [Google Scholar] [CrossRef]
- Fei, J.; Zhou, J. The possible climatic impact in China of Iceland’s Eldgjá eruption inferred from historical sources. Clim. Chang. 2006, 76, 443–457. [Google Scholar] [CrossRef]
- Sigl, M.; Winstrup, M.; McConnell, J.R.; Welten, K.C.; Plunkett, G.; Ludlow, F.; Buntgen, U.; Caffee, M.W.; Chellman, N.; Dahljensen, D.; et al. Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature 2015, 523, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Toohey, M.; Krüger, K.; Sigl, M.; Stordal, F.; Svensen, H. Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Clim. Chang. 2016, 136, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Dull, R.A.; Southon, J.R.; Kutterolf, S.; Anchukaitis, K.J.; Freundt, A.; Wahl, D.B.; Sheets, P.; Amaroli, P.; Hernandez, W.; Wiemann, M.C.; et al. Radiocarbon and geologic evidence reveal Ilopango volcano as source of the colossal ‘mystery’ eruption of 539/40 CE. Quat. Sci. Rev. 2019, 222. [Google Scholar] [CrossRef] [Green Version]
- Nooren, K.; Hoek, W.; Plicht, H.; Sigl, M.; Bergen, M.; Al, E. Explosive eruption of El Chichón volcano (Mexico) disrupted 6 th century Maya civilization and contributed to global cooling. Geology 2017, 45, 175–178. [Google Scholar] [CrossRef]
- Büntgen, U.; Myglan, V.S.; Ljungqvist, F.C.; McCormick, M.; di Cosmo, N.; Sigl, M.; Jungclaus, J.; Wagner, S.; Krusic, P.J.; Esper, J.; et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016, 9, 231–236. [Google Scholar] [CrossRef]
- Thurber, C.; Prejean, S. Volcanoes, Observations and Impact. In Earth System Monitoring: Selected Entries from the Encyclopedia of Sustainability Science and Technology; Orcutt, J., Ed.; Springer: New York, NY, USA, 2013; pp. 473–505. [Google Scholar]
- Guffanti, B.M.; Casadevall, T.J.; Budding, K. Encounters of Aircraft with Volcanic Ash Clouds: A Compilation of Known Incidents, 1953–2009; U.S. Geological Survey: Reston, VA, USA, 2010.
- Langmann, B.; Folch, A.; Hensch, M.; Matthias, V. Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April-May 2010. Atmos. Environ. 2012, 48, 1–8. [Google Scholar] [CrossRef]
- Picquout, A.; Lavigne, F.; Mei, E.; Grancher, D.; Noer, C.; Vidal, C.; Hadmoko, D. Air traffic disturbance due to the 2010 Merapi volcano eruption. J. Volcanol. Geotherm. Res. 2013, 261, 366–375. [Google Scholar] [CrossRef]
- Gomez, C.; Hart, D.E. Disaster gold rushes, sophisms and academic neocolonialism: Comments on ‘Earthquake disasters and resilience in the global North’. Geogr. J. 2013, 179, 272–277. [Google Scholar] [CrossRef]
- Hasegawa, N.; Harada, S.; Tanaka, S.; Ogawa, S.; Goto, A.; Sasagawa, Y. Multi-Hazard Early Warning System in Japan. In Institutional Partnerships in Multi-Hazard Early Warning Systems; Golnaraghi, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 181–215. [Google Scholar]
- Prata, A.J. Satellite detection of hazardous volcanic clouds and the risk to global air traffic. Nat. Hazards 2009, 51, 303–324. [Google Scholar] [CrossRef]
- Newhall, C.; Solidum, R.U. Volcanic Hazard Communication at Pinatubo from 1991 to 2015. In Observing the Volcano World. Advances in Volcanology. (An Official Book Series of the International Association of Volcanology and Chemistry of the Earth’s Interior—IAVCEI, Barcelona, Spain); Fearnley, C.J., Bird, D.K., Haynes, K., McGuire, W.J., Jolly, G., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Marzocchi, W.; Newhall, C.; Woo, G. The scientific management of volcanic crises. J. Volcanol. Geotherm. Res. 2012, 248, 181–189. [Google Scholar] [CrossRef]
- Jenkins, S.F.; Phillips, J.C.; Price, R.; Feloy, K.; Baxter, P.J.; Hadmoko, D.S.; de Bélizal, E. Developing building-damage scales for lahars: Application to Merapi volcano, Indonesia. Bull. Volcanol. 2015, 77, 75. [Google Scholar] [CrossRef]
- Mei, E.T.W.; Lavigne, F.; Picquout, A.; de Bélizal, E.; Brunstein, D.; Grancher, D.; Sartohadi, J.; Cholik, N.; Vidal, C. Lessons learned from the 2010 evacuations at Merapi volcano. J. Volcanol. Geotherm. Res. 2013, 261, 348–365. [Google Scholar] [CrossRef]
- Andarwati, S.; Haryadi, F.T. The effects of dairy cattle ownership and farmers’ demography factors on the evacuation moving farmers’ behavior at Merapi volcano area (case study at Kaliadem Sub Village, Yogyakarta, Indonesia). In Proceedings of the 5th International Seminar on Tropical Animal Production Community Empowerment and Tropical Animal Industry, Yogyakarta, Indonesia, 19–22 October2010. [Google Scholar]
- Diefenbach, A.K.; Wood, N.J.; Ewert, J.W. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA). J. Appl. Volcanol. 2015, 4, 339. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, S.F.; Spence, R.J.S.; Fonseca, J.F.B.D.; Solidum, R.U.; Wilson, T.M. Volcanic risk assessment: Quantifying physical vulnerability in the built environment. J. Volcanol. Geotherm. Res. 2014, 276, 105–120. [Google Scholar] [CrossRef]
- Hidayat, A.; Marfai, M.A.; Hadmoko, D.S. Eruption hazard and challenges of volcanic crisis management on a small island: A case study on Ternate Island. Int. J. GEOMATE 2020, 18, 171–178. [Google Scholar] [CrossRef]
- Elysia, V.; Wihadanto, A. The Sister Village Program: Promoting Community Resilience after Merapi Eruption. Indones. J. Plan Dev. 2018, 3, 32. [Google Scholar] [CrossRef]
- Hidayat, A.; Marfai, M.A.; Hadmoko, D.S. The 2015 eruption of Gamalama volcano (Ternate Island–Indonesia): Precursor, crisis management, and community response. GeoJournal 2020. [Google Scholar] [CrossRef]
- UNICEF. Vanuatu Monaro Volcano; UNICEF Pacific Humanitarian Situation Report; UNICEF: New York, NY, USA, 2017. [Google Scholar]
- Saputro, C.D. Evaluation on damage condition of the lahar control building in the krasak river (in Bahasa). Rekayasa Sipil 2019, 13, 110–117. [Google Scholar]
- Wilson, G.; Wilson, T.M.; Deligne, N.I.; Cole, J.W. Volcanic hazard impacts to critical infrastructure: A review. J. Volcanol. Geotherm. Res. 2014, 286, 148–182. [Google Scholar] [CrossRef] [Green Version]
- Nainggolan, H.L.; Ginting, A.; Tampubolon, J. Model of socio-economic recovery of farmers in erupted areas of mount Sinabung in Karo Regency. IOP Conf. Ser. Earth Environ. Sci. 2019, 314, 012065. [Google Scholar] [CrossRef] [Green Version]
- Monteil, C.; Simmons, P.; Hicks, A. Post-disaster recovery and sociocultural change: Rethinking social capital development for the new social fabric. Int. J. Disaster Risk Reduct. 2020, 42, 101356. [Google Scholar] [CrossRef]
Volcano (Year) | Country | Fatalities |
---|---|---|
Krakatoa (1883) | Indonesia | 36,000 |
Mount Pelée (1902) | Martinique | 28,000 |
Nevado del Ruiz (1985) | Colombia | 24,000 |
Tambora (1815) | Indonesia | 12,000 |
Unzen (1792) | Japan | 10,139 |
Kelud (1586) | Indonesia | 10,000 |
Kelud (1919) | Indonesia | 5110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malawani, M.N.; Lavigne, F.; Gomez, C.; Mutaqin, B.W.; Hadmoko, D.S. Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example. Geosciences 2021, 11, 109. https://doi.org/10.3390/geosciences11030109
Malawani MN, Lavigne F, Gomez C, Mutaqin BW, Hadmoko DS. Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example. Geosciences. 2021; 11(3):109. https://doi.org/10.3390/geosciences11030109
Chicago/Turabian StyleMalawani, Mukhamad N., Franck Lavigne, Christopher Gomez, Bachtiar W. Mutaqin, and Danang S. Hadmoko. 2021. "Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example" Geosciences 11, no. 3: 109. https://doi.org/10.3390/geosciences11030109
APA StyleMalawani, M. N., Lavigne, F., Gomez, C., Mutaqin, B. W., & Hadmoko, D. S. (2021). Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example. Geosciences, 11(3), 109. https://doi.org/10.3390/geosciences11030109