Environmental Factors and Metal Mobilisation in Alluvial Sediments—Minas Gerais, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Spatial Modelling—Geostatistical Approach
- Structural analysis and experimental variograms were carried out on the selected attribute. Variograms are vectorial functions used to calculate the spatial variation structure of regional variables [22,23]. Its argument is h (distance), where Z(xi) and Z(xi+h) are the numeric values of the variable observed in points xi and xi + h. The number of forming pairs for an h distance is N (h). Thus, it is the median value of the square of the differences between all pairs of points existing in the geometric field spaced at an h distance [23]. The graphical study of the behaviour of the variogram gives an overview of the spatial structure of the variable. One of the parameters that supply this information is the nugget effect (C0), which shows the behaviour at the origin. The other two parameters are the sill (C1) and the amplitude (a) which define correspondently the inertia used in the interpolation process and the influence radius of the variable (Table 1).
- Sequential Gaussian Simulation (SGS) was employed as a stochastic simulation algorithm. SGS begins by setting the univariate value distribution by performing a normal score transformation of the original values into standard normal distribution. Normal scores at grid node sites were sequentially simulated with simple kriging (SK) using normal score data and a zero mean [41] After all normal scores were simulated, they were retro converted to original rank values. For the calculus, the Space-Stat V software. 4.0.18, Biomedwere, was used [42]. The output of a simulation is a misrepresented variant of an estimation process, which reproduces the statistics of the known data, producing a realistic feel of the exemplar, but supplying a low prediction behaviour. If multiple sequences in the sequential simulation process are developed, more reliable probabilistic maps can be obtained.
3. Results
3.1. Geochemical Assessment of Metal Contamination
3.1.1. Discrete Data Evaluation
3.1.2. Continuous Data Evaluation—Spatial Patterns and Spatial Uncertainty
3.2. Assessment of the Geochemical Mobility of Metals
3.2.1. Geochemistry of the Interstitial Water
3.2.2. Geochemistry of Metals Speciation
4. Discussion
4.1. Geochemical Behaviour and Risk Assessment of Potentially Toxic Metals in the Alluvial Sediments
4.2. Metal Mobilisation in the Alluvial Sediments
4.2.1. Geochemistry of the Soluble Phase
4.2.2. Geochemistry of Metal Speciation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Level 1
Appendix B. Level 2
References
- Bentley, S.; Thibodeaux, L.; Adriaens, P.; Li, M.-Y.; Romero-González, M.; Banwart, S.A.; Filip, Z.; Demnerova, K.; Reible, D. Physicochemical and Biological Assessment and Characterization of Contaminated Sediments. In Assessment and Remediation of Contaminated Sediments; Nato Series; IV Earth and Environment; Reible, D., Lanczos, T., Eds.; Springer Science & Business Media: Berlin, Germany, 2006; Volume 3, pp. 83–136. [Google Scholar]
- Long, E.R.; MacDonald, D.D.; Smith, S.L.; Calder, E.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Förstner, U.; Heise, S. Assessing and Managing Contaminated Sediments: Requirements on Data Quality–from Molecular to River Basin Scale. Croat. Chem. Acta 2006, 79, 5–14. [Google Scholar]
- Apitz, S.E.; Brils, J.; Marcomi, A.; Critto, A.; Agostini, P.; Micheletti, C.; Pippa, R.; Zuin, P.; Lánczos, T.; Dercová, K.; et al. Approaches and Frameworks for managing contaminated sediments–a European Perspective. In Assessment and Remediation of Contaminated Sediments; Nato Series; IV Earth and Environment; Reible, D., Lanczos, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3, pp. 5–82. [Google Scholar]
- Reible, D.; Lanczos, T. Assessment and Remediation of Contaminated Sediments; Nato Series; IV Earth and Environment; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3, p. 268. [Google Scholar]
- Siegel, F. Environmental Geochemistry of Potentially Toxic Metals; Springer: Berlin/Heidelberg, Germany, 2002; p. 218. [Google Scholar]
- Siepmann, R.; Von der Kammer, F.; Calmano, F. Determination of Heavy Metal Mobility from Resuspended Sediments Using Simulated Natural Experimental Conditions. In Sediment Dynamics and Pollutant Mobility in Rivers. An Interdisciplinary Approach, 1st ed.; Westrich, B., Förstner, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 258–268. [Google Scholar]
- Sahuquillo, A.; Rauret, G.; Rehnert, A.; Muntau, H. Solid sample graphite furnace atomic absorption spectroscopy for supporting arsenic determination in sediments following a sequential extraction procedure. Anal. Chim. Acta 2003, 476, 15–24. [Google Scholar] [CrossRef]
- Calmano, W.; Von der Kammer, F.; Schwartz, R. Characterization of redox conditions in soils and sediments: Heavy metals. In Soil and Sediment Remediation; Lens, P., Grotenhuis, T., Malina, G., Tabak, H., Eds.; IWA Publ.: London, UK, 2005; pp. 102–120. [Google Scholar]
- Tundisi, J.G. Avaliação das Condições Físicas, Químicas, Biológicas e Toxicológicas da Represa de Três Marias e do Rio São Francisco (Trecho Represa Três Marias–Rio Abaeté); Instituto Internacional de Ecologia e Gerenciamento Ambiental: Belo Horizonte, Minas Gerais, Brazil, 2005. [Google Scholar]
- Mozeto, A.A.; Nascimento, M.D.; Silva, E.F.A.; Fioravanti, M.I.A. Avaliação da Contaminação por Metais e Metalóides (Água, Sedimento e Peixe) no Rio São Francisco em Três Marias (MG-Brasil): Projeto de Pesquisa Participativa com a Comunidade Local; Relatório Final Técnico-Científico; Departamento de Química, Universidade Federal de São Carlos: São Carlos, State of São Paulo, Brazil, 2007; Available online: http://worldfish.org/PPA/PDFs/Semi-Annual%20VII/E-6b%20UFSCar%20Metals%20Project%20Technical%20Report-%20port.pdf (accessed on 14 January 2021).
- Almeida, D.F. Gestão Ambiental dos Sedimentos de Corrente do Rio São Francisco na Região de Três Marias/Minas Gerais. Ph.D. Thesis, Engenharia Metalúrgica e de Minas, Universidade de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 2010; p. 94. [Google Scholar]
- Ribeiro, E.V. Avaliação da Qualidade da Água do rio São Francisco No Segmento Entre Três Marias e Pirapora-MG: Metais Pesados e Actividades Antropogênicas. Master’s Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 2010; p. 196. [Google Scholar]
- Trindade, W.M. Concentração e Distribuição de Metais Pesados em Sedimentos do rio São Francisco Entre Três Marias e Pirapora/MG: Factores Naturais e Antrópicos. Master’s Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 2010; p. 111. [Google Scholar]
- Fonseca, R.; Araújo, A.; Martins, L.; Dias, N.; Pinho, C.; Carneiro, J.; Cavacundo, O.; Borges, J.; Caldeira, B.; Matos, J.; et al. Remediation Strategy of the Consciência and Barreiro Grande Creeks-2nd Phase. Final Report to Votorantim Metais Zinco S/A; University of Évora: Évora, Portugal, 2015; p. 588. [Google Scholar]
- Ribeiro da Costa, I.; Fonseca, R.; Pinho, C.; Araújo, A.; Martins, L.; Dias, N.; Janeiro, A.I.; Freitas, G. Contaminated soils and sediments associated with Zn ore metallurgy near the São Francisco River, Minas Gerais (Brazil). Environ. Earth Sci. 2018, 77, 202. [Google Scholar] [CrossRef]
- Lahr, J.; Kooistra, L. Environmental risk mapping of pollutants: State of the art and communication aspects. Sci. Total Environ. 2010, 408, 3899–3907. [Google Scholar] [CrossRef] [PubMed]
- Woodbury, P.B. DOs and DON’Ts of spatially explicit ecological risk assessment. Environ. Toxicol. Chem. 2003, 22, 77–82. [Google Scholar] [CrossRef]
- Moen, J.E.T.; Ale, B.J.M. Risk maps and communication. J. Hazard. Mater. 1998, 61, 271–278. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Y. Mobility of toxic metals in sediments: Assessing methods and controlling factors. J. Environ. Sci. 2015, 31, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and environm;ntal degradation in agricultural districts: A computational approach based on entropy indexes. EIA Rev. 2017, 64, 37–46. [Google Scholar] [CrossRef]
- Matheron, G. The Theory of Regionalized Variables and Its Applications; Les Cahiers du Centre de Morphologie Mathématique, no. 5, Ecole des Mines de Paris: Paris, France, 1971; p. 211. [Google Scholar]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: San Diego, CA, USA, 1978. [Google Scholar]
- Antunes, I.M.H.R.; Albuquerque, M.T.D. Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Sci. Total Environ. 2013, 442, 545–552. [Google Scholar] [CrossRef]
- Golder Associates. Zoneamento da Distribuição da Contaminação de Sedimentos do Leito Submerso do Rio São Francisco; Final Report to Votorantim Metais Zinco S/A, Três Marias–MG, RT-079-515-6012-0015-00-J; Golder Associates Brasil Consultoria e Projetos LTDA: Belo Horizonte, Minas Gerais, Brazil, 2007; p. 124. [Google Scholar]
- Mozeto, A.A.; Silva, E.F.A. Diagnóstico Preliminar De Contaminação Ambiental por Metais na Área de Influência da VM na Bacia do Rio São Francisco, Região de Três Marias (MG). Final Scientific Report; Laboratory of Environmental Biogeochemistry, DQ/UFS Carlos: São Carlos, State of São Paulo, Brazil, 2005. [Google Scholar]
- Chiavegatto, J.R. Análise Estratigráfica das Seqüências Tempestíticas da Formação Três Marias (Proterozóico Superior), na Porção Meridional da Bacia do São Francisco. Master’s Thesis, Depto. de Geol., Esc. de Minas, Univ. Fed. Ouro Preto, Ouro Preto, Minas Gerais, Brazil, 1992; p. 216. [Google Scholar]
- Signorelli, N.; Tuller, M.P.; Silva, P.C.; Justo, L.J. Carta Geológica Escala 1:250000 Folha SE.23-Y-B-Três Marias; CPRM-Serviço Geológico do Brasil, Ministério de Minas e Energia: Belo Horizonte, Minas Gerais, Brazil, 2003. [Google Scholar]
- Costa, R.D.; Knauer, L.G.; Prezotti, F.P.S.; Paula, F.L.; Duarte, F.T.; Teixeira, L.F. Mapa Geológico Folha Três Marias-SE.23-Y-B-III Escala 1:100.000. Ministério de Minas e Energia, CPRM-Serviço Geológico do Brasil; CODEMIG-Companhia de Desenvolvimento Econômico de Minas Gerais: Belo Horizonte, Minas Gerais, Brazil, 2011. [Google Scholar]
- Oliveira, M.R. Investigação da Contaminação por Metais Pesados da Água e do Sedimento de Corrente Nas Margens do Rio São Francisco e Tributários, a Jusante da Represa da Cemig, no Município de Três-Marias, Minas Gerais. Ph.D. Thesis, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 2007; p. 150. [Google Scholar]
- Carvalho, D.A.C.; Filho, A.T.O.; Vilela, E.A.; Curi, N.; Van den Berg, E.; Fontes, A.L.; Botezelli, L. Distribuição de espécies arbóreo-arbustivas ao longo de um gradiente de solos e topografia em um trecho de floresta ripária do Rio São Francisco em Três Marias, MG. Brasil. Rev. Bras. Botânica 2005, 28, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Marinho, A.O.T.; Abreu, A.V.; Pol, A.; Costa, A.L.; Costa, D.A.A.; Ramos, D.B.S.A.; Nascimento, F.S.; Eccard, G.H.A.; Meyer, G.; Christofidis, H.V.; et al. Caderno da região hidrográfica do São Francisco. Ministério do Meio Ambiente, Secretaria de Recursos Hídricos; MMA: Brasília, Brazil, 2006; p. 148. [Google Scholar]
- Oliveira, M.A.; Horn, A.H. Comparação da Concentração de Metais Pesados nas Águas do Rio São Francisco em Três Marias, desde 1991 até hoje, relacionando a atuação da CMM-Três Marias. Geonomos 2006, 14, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.F.; Galvíncio, J.D.; Silva, D.F.; Almeida, H.C. Análise espaço-temporal de parâmetros de qualidade de água no Alto São Francisco e sua relação com intervenções antrópicas. Eng. Ambient. Espírito Santo do Pinhal 2009, 6, 492–518. [Google Scholar] [CrossRef] [Green Version]
- Amaral, D.C. Estudos Ultraestruturais e da Capacidade Bioacumuladora de Zn, Cd e PB POR PLANTAS em Área de Mineração de Zinco. Master’s Thesis, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 2013. [Google Scholar]
- US EPA (US Environmental Protection Agency). Method 3051A, Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; US EPA (US Environmental Protection Agency): Washington, DC, USA, 2007.
- Cardoso Fonseca, E.; Ferreira da Silva, E. Application of selective extraction in metal-bearing phases identification: A South European case study. J. Geochem. Explor. 1998, 6, 203–212. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Fonseca, R.; Patinha, C.; Barriga, F.J.A.S.; Morais, M. Role of the sediments of two tropical dam reservoirs in the flux of metallic elements to the water column. Water Sci. Technol. 2012, 66, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Bhumbla, D.K.; Keefer, R.F. Recommended Soil Sulfate-S Tests, Chapter 7; The Northeast Coordinating Committee for Soil Testing: Madison, WI, USA, 2011. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA; Oxford, UK, 1997. [Google Scholar]
- Albuquerque, M.T.D.; Gerassis, S.; Sierra, C.; Taboada, J.; Martín, J.E.; Antunes, I.M.H.R.; Gallego, J.R. Developing a new Bayesian Risk Index for risk evaluation of soil contamination. Sci. Total Environ. 2017, 603–604, 167–177. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; p. 548. ISBN 9781420093681. [Google Scholar]
- CONAMA. Resoluções do CONAMA: Resoluções Vigentes Publicadas Entre Setembro de 1984 e Janeiro de 2012; Ministério do Meio Ambiente: Brasília, Brazil, 2012; p. 1125.
- Chica-Olmo, M. La Geoestadística Como Herramienta de Análisis Espacial de Datos de Inventario Forestal. Cuadernos De La Sociedad Espanola De Ciencias Forestales 2005, 19, 47–55. [Google Scholar] [CrossRef]
- Pereira, H.G.; Brito, M.G.; Albuquerque, T.; Ribeiro, J. Geostatistical Estimation of a Summary Recovery Index for Marble Quarries; Geostatistics Troia’92 5; Kluwer Academic Publishers: Lisbon, Portugal, 1993; pp. 1029–1040. [Google Scholar]
- Kyriakidis, P.C.; Journel, A.G. Geostatistical space–time models: A review. Math. Geol. 1999, 31, 651–684. [Google Scholar] [CrossRef]
- Schmoll, O.; Howard, G.; Chilton, G.; Chorus, I. Protecting Groundwater for Health: Managing the Quality of Drinking-Water Sources; World Health Organization: Geneva, Switzerland; IWA Publishing: London, UK, 2006; p. 697. [Google Scholar]
- COPAM. Deliberação Normativa COPAM n 166, de 29 de Junho de 2011; Conselho Estadual de Política Ambiental, 2011; p. 5. [Google Scholar]
- Evanko, C.R.; Dzombak, D.A. Remediation of Metals-Contaminated Soils and Groundwater; Ground-Water Remediation Technologies Analysis Center: Pittsburgh, PA, USA, 1997; p. 53. [Google Scholar]
- Rauret, G. Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 1998, 46, 449–455. [Google Scholar] [CrossRef]
- Hooda, P.S. Trace Elements in Soils, 1st ed.; Wiley Online Library: Chichester, UK, 2010; p. 596. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2007; p. 550. [Google Scholar]
- Buringh, P. Introduction to the Study of Soils in Tropical and Subtropical Regions, 3rd ed.; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1979; p. 148. [Google Scholar]
- Buffle, J.; Leppard, G.G. Characterization of Aquatic Colloids and Macromolecules. 1. Structure and Behavior of Colloidal Material. Environ. Sci. Technol. 1995, 29, 2169–2175. [Google Scholar] [CrossRef] [PubMed]
- Westrich, B. Managing River Sediments. In Sediment Dynamics and Pollutant Mobility in Rivers. An Interdisciplinary Approach, 1st ed.; Westrich, B., Förstner, U., Eds.; Springer: Berlin/Heidelberg, 2007; pp. 35–66. [Google Scholar]
- Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.; Bennett, T.A.; Puls, R.W. Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 2000, 45, 123–137. [Google Scholar] [CrossRef]
- McBride, B. Environmental Chemistry of Soils, 1st ed.; Oxford University Press: Oxford, UK, 1994; ISBN 0195070119. [Google Scholar]
Elements/Depth | Model | C0 | C1 | a (m) |
---|---|---|---|---|
As_level1 [0–40 cm] | Spherical | 0.00 | 0.95 | 200 |
Cd_level1 [0–40 cm] | Spherical | 0.25 | 0.70 | 200 |
Cu_level1 [0–40 cm] | Spherical | 0.40 | 0.55 | 200 |
Pb_level1 [0–40 cm] | Spherical | 0.40 | 0.50 | 200 |
Zn_level1 [0–40 cm] | Spherical | 0.10 | 0.80 | 200 |
As_level2 [+40 cm] | Spherical | 0.05 | 0.85 | 200 |
Cd_level2 [+40 cm] | Spherical | 0.10 | 0.85 | 200 |
Cu_level2 [+40 cm] | Spherical | 0.10 | 0.85 | 200 |
Pb_level2 [+40 cm] | Spherical | 0.50 | 0.50 | 200 |
Zn_level2 [+40 cm] | Spherical | 0.30 | 0.65 | 200 |
Dry Period | pH | Eh (mV) | Dry Period | pH | Eh (mV) |
Consciência alluvium N = 50 | Grota Seca alluvium N = 9 | ||||
Minimum | 4.84 | 4 | Minimum | 4.88 | 162 |
Average | 5.94 | 251 | Average | 6.35 | 253 |
Median | 5.91 | 262 | Median | 6.45 | 271 |
Maximum | 7.48 | 402 | Maximum | 7.45 | 326 |
Rainy period | pH | Eh (mV) | Rainy period | pH | Eh (mV) |
Consciência alluvium N = 20 N = 13 | Grota Seca alluvium N = 8 N = 3 | ||||
Minimum | 5.62 | −14 | Minimum | 6.10 | 124 |
Average | 6.35 | 93 | Average | 6.23 | 135 |
Median | 6.41 | 93 | Median | 6.20 | 130 |
Maximum | 6.94 | 255 | Maximum | 6.32 | 146 |
Dry Period | ||||||||||||
Elements | Background Area N = 3 | Consciência Alluvium N = 49 | Grota Seca Alluvium N = 10 | |||||||||
(mg·kg−1) | Min | Avg | Med | Max | Min | Avg | Med | Max | Min | Avg | Med | Max |
As | 1.51 | 6.13 | 6.53 | 10.35 | <0.25 | 93.75 | 11.30 | 1892.20 | <0.25 | 17.35 | 15.78 | 52.87 |
Cd | <0.025 | 0.04 | <0.025 | 0.06 | <0.25 | 20.69 | 11.90 | 159.69 | 12.68 | 26.95 | 27.86 | 40.73 |
Co | 3.28 | 3.87 | 4.00 | 4.33 | 2.69 | 6.86 | 5.69 | 25.22 | 3.72 | 12.47 | 9.07 | 32.16 |
Cr | 17.07 | 18.72 | 17.85 | 21.23 | 12.73 | 31.72 | 27.43 | 70.44 | 23.21 | 43.11 | 40.10 | 74.51 |
Cu | 13.05 | 14.04 | 14.25 | 14.84 | 14.74 | 327.49 | 101.10 | 3246.94 | 122.67 | 190.46 | 146.70 | 337.94 |
Fe | 20,640.29 | 25,067.29 | 25,159.24 | 29,402.36 | 26,791.03 | 72,905.94 | 51,398.02 | 231,499.91 | 40,128.03 | 56,327.54 | 52,279.04 | 81,619.97 |
Mn | 135.62 | 142.03 | 144.96 | 145.50 | 73.78 | 502.74 | 211.52 | 4944.89 | 409.87 | 1038.38 | 824.44 | 2239.84 |
Ni | 4.83 | 5.43 | 5.69 | 5.77 | 5.98 | 13.55 | 12.39 | 30.41 | 8.82 | 13.17 | 13.11 | 17.76 |
Pb | 4.76 | 4.86 | 4.82 | 5.01 | 2.63 | 670.21 | 137.10 | 3997.06 | 46.94 | 296.25 | 318.80 | 556.17 |
Zn | 32.44 | 37.09 | 34.65 | 44.19 | 159.06 | 14,895.57 | 3302.52 | 65,720.57 | 1080.62 | 8500.24 | 11,647.10 | 13,228.57 |
Rainy Period | Guidelines Values—Dredged Sediment | |||||||||||
Elements | Consciência Alluvium N = 19 | Grota Seca Alluvium N = 8 | CONAMA No. 454, 2012 | |||||||||
(mg·kg−1) | Min | Avg | Med | Max | Min | Avg | Med | Max | Low | Medium | High | Critic |
As | <0.25 | 6.00 | 3.75 | 24.74 | 76.07 | 76.07 | 76.07 | 76.07 | <5.9 | 5.9–17 | >17 | |
Cd | 8.06 | 37.04 | 20.06 | 211.88 | 21.64 | 21.64 | 21.64 | 21.64 | <0.6 | 0.6–3.5 | >3.5 | |
Co | 2.25 | 7.32 | 6.47 | 19.74 | 9.16 | 9.16 | 9.16 | 9.16 | ||||
Cr | 26.66 | 44.08 | 39.72 | 66.02 | 34.39 | 34.39 | 34.39 | 34.39 | <33 | 33–37.3 | 37.3–90 | >90 |
Cu | 108.76 | 216.64 | 143.38 | 995.60 | 533.01 | 533.01 | 533.01 | 533.01 | <17 | 17–35.7 | 35.7–197 | >197 |
Fe | 19,834.96 | 43,170.86 | 39,240.12 | 128,951.29 | 39,855.20 | 39,855.20 | 39,855.20 | 39,855.20 | ||||
Mn | 87.58 | 348.69 | 210.61 | 1278.89 | 913.76 | 913.76 | 913.76 | 913.76 | ||||
Ni | 7.51 | 15.49 | 12.68 | 35.05 | 16.00 | 16.00 | 16.00 | 16.00 | <14 | 14–18 | 18–35.9 | >35.9 |
Pb | 9.91 | 193.26 | 102.67 | 757.07 | 1068.08 | 1068.08 | 1068.08 | 1068.08 | <8.4 | 8.4–35 | 35–91.3 | >91.3 |
Zn | 382.03 | 3965.54 | 2754.29 | 15,943.99 | 15,393.78 | 15,393.78 | 15,393.78 | 15,393.78 | <58 | 58–123 | 123–315 | >315 |
SO4 (mg·kg−1) Dry Season | |||||
---|---|---|---|---|---|
Background Area | N = 3 | Consciência Alluvium | N = 69 | Grota Seca Alluvium | N = 11 |
Minimum | 1.41 | Minimum | 230.86 | Minimum | 234.06 |
Average | 13.40 | Average | 861.68 | Average | 552.56 |
Median | 17.87 | Median | 692.75 | Median | 449.28 |
Maximum | 20.91 | Maximum | 3743.43 | Maximum | 1539.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, R.; Pinho, C.; Albuquerque, T.; Araújo, J. Environmental Factors and Metal Mobilisation in Alluvial Sediments—Minas Gerais, Brazil. Geosciences 2021, 11, 110. https://doi.org/10.3390/geosciences11030110
Fonseca R, Pinho C, Albuquerque T, Araújo J. Environmental Factors and Metal Mobilisation in Alluvial Sediments—Minas Gerais, Brazil. Geosciences. 2021; 11(3):110. https://doi.org/10.3390/geosciences11030110
Chicago/Turabian StyleFonseca, Rita, Catarina Pinho, Teresa Albuquerque, and Joana Araújo. 2021. "Environmental Factors and Metal Mobilisation in Alluvial Sediments—Minas Gerais, Brazil" Geosciences 11, no. 3: 110. https://doi.org/10.3390/geosciences11030110
APA StyleFonseca, R., Pinho, C., Albuquerque, T., & Araújo, J. (2021). Environmental Factors and Metal Mobilisation in Alluvial Sediments—Minas Gerais, Brazil. Geosciences, 11(3), 110. https://doi.org/10.3390/geosciences11030110