Validation of an Index for Susceptibility to Earthquake-Induced Landslides Derived from Helicopter-Borne Electromagnetic Resistivity and Digital Elevation Data
Abstract
:1. Introduction
2. Study Area
3. Method for Estimating Landslide Susceptibility
3.1. HEM Data Acquisition
3.2. Index of Susceptibility for Earthquake-Induced Landslides
4. Results
4.1. Topographic Seismic Vibration Amplification
4.2. Resistivity and Average Ruggedness of Resistivity—Estimation of Looseness
4.3. The Distribution of ISEL and Occurrence of Landslides at Bedrock
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chigira, M.; Wang, W.N.; Furuya, T.; Kamai, T. Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan. Eng. Geol. 2003, 68, 259–273. [Google Scholar] [CrossRef]
- Shou, K.-J.; Wang, C.-F. Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan. Eng. Geol. 2003, 68, 237–250. [Google Scholar] [CrossRef]
- Wang, W.-N.; Chigira, M.; Furuya, T. Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan. Eng. Geol. 2003, 69, 1–13. [Google Scholar] [CrossRef]
- Chigira, M.; Yagi, H. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigata prefecture earthquake in Japan. Eng. Geol. 2006, 82, 202–221. [Google Scholar] [CrossRef]
- Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 2007, 4, 113–122. [Google Scholar] [CrossRef]
- Yagi, H.; Sato, G.; Higaki, D.; Yamamoto, M.; Yamasaki, T. Distribution and characteristics of landslides induced by the Iwate–Miyagi Nairiku Earthquake in 2008 in Tohoku District, Northeast Japan. Landslides 2009, 6, 335–344. [Google Scholar] [CrossRef]
- Chigira, M.; Wu, X.; Inokuchi, T.; Wang, G. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 2010, 118, 225–238. [Google Scholar] [CrossRef]
- Doi, I.; Kamai, T.; Azuma, R.; Wang, G. A landslide induced by the 2016 Kumamoto Earthquake adjacent to tectonic displacement—Generation mechanism and long-term monitoring. Eng. Geol. 2019, 248, 80–88. [Google Scholar] [CrossRef]
- Kawamura, S.; Kawajiri, S.; Hirose, W.; Watanabe, T. Slope failures/landslides over a wide area in the 2018 Hokkaido Eastern Iburi earthquake. Soils Found. 2019, 59, 2376–2395. [Google Scholar] [CrossRef]
- Wu, J.-H.; Tsai, P.-H. New dynamic procedure for back-calculating the shear strength parameters of large landslides. Eng. Geol. 2011, 123, 129–147. [Google Scholar] [CrossRef]
- Wu, J.H.; Chen, C.H. Back calculating the seismic shear strengths of the Tsaoling landslide associated with accelerograph and GPS data. Iran. J. Sci. Technol. Trans. B Eng. 2009, 33, 301–311. [Google Scholar]
- Hikima, K.; Koketsu, K. Rupture processes of the 2004 Chuetsu (mid-Niigata prefecture) earthquake, Japan: A series of events in a complex fault system. Geophys. Res. Lett. 2005, 32, 18303. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Zhao, J.; Ju, N.; Li, G.; Lee, M.L.; Li, Y. Analysis of an anti-dip landslide triggered by the 2008 Wenchan earthquake in China. Nat Hazards 2013, 68, 1021–1039. [Google Scholar] [CrossRef] [Green Version]
- Stahl, T.; Bilderback, E.L.; Quigley, M.C.; Nobes, D.C.; Massey, C.I. Coseismic landsliding during the Mw 7.1 Darfield (Canterbury) earthquake: Implications for paleoseismic studies of landslides. Geomorphology 2014, 214, 114–127. [Google Scholar] [CrossRef]
- Al-Homoud, A.S.; Tahtamoni, W.W. A reliability based expert system for assessment and mitigation of landslides hazard under seismic loading. Nat. Hazards 2001, 24, 13–51. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J. A review of assessing landslide frequency for hazard zoning purposes. Eng. Geol. 2008, 102, 193–213. [Google Scholar] [CrossRef]
- Eeckhaut, M.V.D.; Poesen, J.; Govers, G.; Verstraeten, G.; Demoulin, A. Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet. Sci. Lett. 2007, 256, 588–603. [Google Scholar] [CrossRef]
- Tabor, R.W. Origin of ridge-top depressions by large-scale creep in the Olympic Mountains, Washington. GSA Bull. 1971, 82, 1811–1822. [Google Scholar] [CrossRef]
- Chigira, M. Long-term gravitational deformation of rocks by mass rock creep. Eng. Geol. 1992, 32, 157–184. [Google Scholar] [CrossRef]
- Chigira, M.; Kiho, K. Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan. Eng. Geol. 1994, 38, 221–230. [Google Scholar] [CrossRef]
- Nonomura, A.; Hasegawa, S. Regional extraction of flexural-toppled slopes in epicentral regions of subduction earthquakes along the Nankai Trough using DEMs. Environ. Earth Sci. 2013, 68, 139–149. [Google Scholar] [CrossRef]
- Kasprzak, M.; Jancewicz, K.; Różycka, M.; Kotwicka, W.; Migoń, P. Geomorphology- and geophysics-based recognition of stages of deep-seated slope deformation (Stdetes, SW Poland). Eng. Geol. 2019, 260, 105230. [Google Scholar]
- Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2005, 2, 193–201. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef] [Green Version]
- Jianjun, G.; Zhang, Y.; Xiao, L. An application of the high-density electrical resistivity method for detecting slide zones in deep-seated landslides in limestone areas. J. Appl. Geophys. 2020, 177, 104013. [Google Scholar] [CrossRef]
- Supper, R.; Baroň, I.; Ottowitz, D.; Motschka, K.; Gruber, S.; Winkler, E.; Jochum, B.; Römer, A. Airborne geophysical mapping as an innovative methodology for landslide investigation: Evaluation of results from the Gschliefgraben landslide, Austria. Nat. Hazards Earth Syst. Sci. 2013, 13, 3313–3328. [Google Scholar] [CrossRef] [Green Version]
- Baroň, I.; Supper, R.; Winkler, E.; Motschka, K.; Ahl, A.; Čarman, A.; Kumelj, Š. Airborne geophysical survey of the catastrophic landslide at Stože, Log pod Mangrtom, as a test of an innovative approach for landslide mapping in steep alpine terrains. Nat. Hazards Earth Syst. Sci. 2013, 13, 2543–2550. [Google Scholar] [CrossRef] [Green Version]
- Schamper, C.; Jørgensen, F.; Auken, E.; Effersø, F. Assessment of near-surface mapping capabilities by airborne transient electromagnetic data—An extensive comparison to conventional borehole data. Geophysics 2014, 79, B187–B199. [Google Scholar] [CrossRef] [Green Version]
- Christensen, C.W.; Pfaffhuber, A.A.; Anschütz, H.; Smaavik, T.F. Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking. J. Appl. Geophys. 2015, 119, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Baranwal, V.C.; Brönner, M.; Rønning, J.-S.; Elvebakk, H.; Dalsegg, E. 3D interpretation of helicopter-borne frequency-domain electromagnetic (HEM) data from Ramså Basin and adjacent areas at Andøya, Norway. Earth Planets Space 2020, 72, 52. [Google Scholar] [CrossRef]
- Okazaki, K.; Mogi, T.; Utsugi, M.; Ito, Y.; Kunishima, H.; Yamazaki, T.; Takahashi, Y.; Hashimoto, T.; Ymamaya, Y.; Ito, H.; et al. Airborne electromagnetic and magnetic surveys for long tunnel construction design. Phys. Chem. Earth A/B/C 2011, 36, 1237–1246. [Google Scholar] [CrossRef]
- Nonomura, A.; Hasegawa, S.; Kageura, R.; Kawato, K.; Chiba, T.; Onoda, S.; Dahal, R.K. A method for regionally mapping gravitationally deformed and loosened slopes using helicopter-borne electromagnetic resistivity data. Nat. Hazards 2016, 81, 123–144. [Google Scholar] [CrossRef]
- Nonomura, A.; Hasegawa, S. Susceptibility of slopes to earthquake-induced landslides: A new index derived from helicopter-borne electromagnetic resistivity and digital elevation data sets. Landslides 2017, 14, 2155–2163. [Google Scholar] [CrossRef]
- Chigira, M. Geological prediction of rock avalanches. In Proceedings of the 8th Congress of the International Association for Engineering Geology and the Environment, Vancouver, BC, Canada, 21–25 September 1998; pp. 1409–1414. [Google Scholar]
- Chigira, M. Kanagi-kuzure. In Earthquake Sabo; Nakamura, H., Tsuchiya, S., Inoue, K., Ishikawa, Y., Eds.; Kokon Shoin: Tokyo, Japan, 2000; pp. 38–41. (In Japanese) [Google Scholar]
- Japan Meteorological Agency. Available online: http://www.data.jma.go.jp/svd/eew/data/suikei/201604160125_741/201604160125_741_506.html (accessed on 7 January 2021). (In Japanese)
- Mukoyama, S.; Sato, T.; Takami, T.; Nishimura, T. Estimation of Ground Displacements around Aso-Caldera Caused by the 2016 Kumamoto, Earthquake, from the Geomorphic Image Analysis of Temporal LiDAR DEMs, JSEG 2016 Kumamoto-Oita Earthquake Disaster Investigation Team. Available online: https://www.jseg.or.jp/00-main/pdf/20160822_kumamoto_rep.pdf (accessed on 7 January 2021). (In Japanese).
- Beard, L.P. Comparison of methods for estimating earth resistivity from airborne electromagnetic measurements. J. Appl. Geophys. 2000, 45, 239–259. [Google Scholar] [CrossRef]
- Huang, H.; Fraser, D.C. The differential parameter method for multifrequency airborne resistivity mapping. Geophysics 1996, 61, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Nakazato, H.; Konishi, N. Subsurface structure exploration of wide landslide area by Aerial electromagnetic exploration. Landslides 2005, 2, 165–169. [Google Scholar] [CrossRef]
- Pellerin, L.; Labson, V.F. An empirical approach to inversion of an unconventional helicopter electromagnetic dataset. J. Appl. Geophys. 2003, 53, 49–61. [Google Scholar] [CrossRef]
- Siemon, B.; Auken, E.; Christiansen, A.V. Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data. J. Appl. Geophys. 2009, 67, 259–268. [Google Scholar] [CrossRef]
- Steuer, A.; Siemon, B.; Auken, E. A comparison of helicopter-borne electromagnetics in frequency- and time-domain at the Cuxhaven valley in Northern Germany. J. Appl. Geophys. 2009, 67, 194–205. [Google Scholar] [CrossRef]
- Sengpiel, K.P.; Siemon, B. Advanced inversion methods for airborne electromagnetic exploration. Geophysics 2000, 65, 1983–1992. [Google Scholar] [CrossRef]
- Lin, C.-W.; Shieh, C.-L.; Yuan, B.-D.; Shieh, Y.-C.; Liu, S.-H.; Lee, S.-Y. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: Example from the Chenyulan River watershed, Nantou, Taiwan. Eng. Geol. 2004, 71, 49–61. [Google Scholar] [CrossRef]
- Miles, S.B.; Keefer, D.K. Evaluation of seismic slope-performance models using a regional case study. Environ. Eng. Geosci. 2000, 6, 25–39. [Google Scholar] [CrossRef]
- Uchida, T.; Kataoka, S.; Iwao, T.; Matsuo, O.; Terada, H.; Nakano, Y.; Sugiura, N.; Osanai, N. A Study on Methodology for Assessing the Potential of Slope Failures During Earthquakes; Technical Note No. 204; National Institute for Land and Infrastructure Management: Tsukaba, Japan, 2004. (In Japanese) [Google Scholar]
- Hasegawa, S.; Dahal, R.K.; Nishimura, T.; Nonomura, A.; Yamanaka, M. DEM-Based analysis of earthquake-induced shallow landslide susceptibility. Geotech. Geol. Eng. 2008, 27, 419–430. [Google Scholar] [CrossRef]
- Uchida, T.; Osanai, N.; Onoda, S.; Takayama, T.; Tomura, K. A simple method for producing probabilistic seismic shallow landslide hazard maps. In Proceedings of the INTERPRAEVENT International Symposium Disaster mitigation of debris flows, slope failures and landslides, Niigata, Japan, 25–27 September 2006; pp. 529–534. [Google Scholar]
- Palacky, G.J. Resistivity characteristics of geologic targets. In Electromagnetic Methods in Applied Geophysics; Nabighian, N.M., Ed.; Investigations in Geophysics 3; Society of Exploration Geophysicists: Tulsa, OK, USA, 2008; pp. 53–129. [Google Scholar]
- Leucci, G.; Giorgi, L.D. Integrated geophysical surveys to assess the structural conditions of a karstic cave of archaeological importance. Nat. Hazards Earth Syst. Sci. 2005, 5, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, R.; Shirasawa, M.; Pike, R.J. Visualizing topography by openness: A new application of image processing to digital elevation models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonomura, A.; Hasegawa, S.; Abe, T.; Mukoyama, S.; Kaneda, Y. Validation of an Index for Susceptibility to Earthquake-Induced Landslides Derived from Helicopter-Borne Electromagnetic Resistivity and Digital Elevation Data. Geosciences 2021, 11, 95. https://doi.org/10.3390/geosciences11020095
Nonomura A, Hasegawa S, Abe T, Mukoyama S, Kaneda Y. Validation of an Index for Susceptibility to Earthquake-Induced Landslides Derived from Helicopter-Borne Electromagnetic Resistivity and Digital Elevation Data. Geosciences. 2021; 11(2):95. https://doi.org/10.3390/geosciences11020095
Chicago/Turabian StyleNonomura, Atsuko, Shuichi Hasegawa, Tatsuya Abe, Sakae Mukoyama, and Yoshiyuki Kaneda. 2021. "Validation of an Index for Susceptibility to Earthquake-Induced Landslides Derived from Helicopter-Borne Electromagnetic Resistivity and Digital Elevation Data" Geosciences 11, no. 2: 95. https://doi.org/10.3390/geosciences11020095
APA StyleNonomura, A., Hasegawa, S., Abe, T., Mukoyama, S., & Kaneda, Y. (2021). Validation of an Index for Susceptibility to Earthquake-Induced Landslides Derived from Helicopter-Borne Electromagnetic Resistivity and Digital Elevation Data. Geosciences, 11(2), 95. https://doi.org/10.3390/geosciences11020095