Paleoceanographic Perturbations and the Marine Carbonate System during the Middle to Late Miocene Carbonate Crash—A Critical Review
Abstract
:1. Introduction
2. Strategies to Detect Carbonate Crash Mechanisms: Discrimination between Dilution, Productivity, and Dissolution
3. Age Control
4. The Carbonate Crash Events—Timing and Mechanisms
4.1. The Pacific Carbonate Crash Events
4.1.1. The Eastern Equatorial Pacific
4.1.2. The West Equatorial Pacific (Site 806)
4.1.3. The California Upwelling (Site 1010)
4.1.4. The Intermediate EEP (Site 1241) and the South East Pacific (Site 1237)
4.1.5. The Caribbean Sea
4.2. The Atlantic Ocean
4.3. The Indian Ocean
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyle, M.; Dadey, K.A.; Farrell, J.W. The late Miocene (11–8 Ma) eastern Pacific carbonate crash; evidence for reorganization of deep-water circulation by the closure of the Panama Gateway. Proc. Ocean Drill. Program 1995, 138, 821. [Google Scholar] [CrossRef]
- Peterson, L.C.; Murray, D.W.; Ehrmann, W.U.; Hempel, P. Cenozoic carbonate accumulation and compensation depth changes in the Indian Ocean. Synth. Results Sci. Drill. Indian Ocean 1992, 70, 311. [Google Scholar] [CrossRef]
- Lübbers, J.; Kuhnt, W.; Holbourn, A.E.; Bolton, C.T.; Gray, E.; Usui, Y.; Kochhann, K.G.D.; Beil, S.; Andersen, N. The Middle to Late Miocene “Carbonate Crash” in the Equatorial Indian Ocean. Paleoceanogr. Paleoclimatol. 2019, 34, 813–832. [Google Scholar] [CrossRef]
- Farrell, J.W.; Raffi, I.; Janecek, T.R.; Murray, D.W.; Levitan, M.; Dadey, K.A.; Emeis, K.-C.; Lyle, M.; Flores, J.-A.; Hovan, S. Late Neogene sedimentation patterns in the eastern Equatorial Pacific Ocean. Proc. Ocean Drill. Program 1995, 138, 717. [Google Scholar] [CrossRef]
- Roth, J.M.; Droxler, A.W.; Kameo, K. The Caribbean carbonate crash at the middle to late Miocene transition; linkage to the establishment of the modern global ocean conveyor. Proc. Ocean Drill. Program 2000, 165, 249. [Google Scholar] [CrossRef] [Green Version]
- King, T.A.; Ellis, W.G., Jr.; Murray, D.W.; Shackleton, N.J.; Harris, S.E. Miocene evolution of carbonate sedimentation at the Ceara Rise; a multivariate data/proxy approach. Proc. Ocean Drill. Program 1997, 154, 349. [Google Scholar] [CrossRef]
- Murray, D.W.; Peterson, L.C. Biogenic carbonate production and preservation changes between 5 and 10 Ma from the Ceara Rise, western Equatorial Atlantic. Proc. Ocean Drill. Program 1997, 154, 375. [Google Scholar] [CrossRef]
- Diester-Haass, L.; Meyers, P.A.; Bickert, T. Carbonate crash and biogenic bloom in the late Miocene: Evidence from ODP Sites 1085, 1086, and 1087 in the Cape Basin, southeast Atlantic Ocean. Paleoceanography 2004, 19. [Google Scholar] [CrossRef] [Green Version]
- Kastanja, M.M.; Henrich, R. Grain-size variations in pelagic carbonate oozes from the Walvis Ridge–SE Atlantic Ocean (ODP Site 1265): A low resolution Miocene record of carbonate sedimentation and preservation. Mar. Geol. 2007, 237, 97–108. [Google Scholar] [CrossRef]
- Krammer, R.; Baumann, K.-H.; Henrich, R. Middle to late Miocene fluctuations in the incipient Benguela Upwelling System revealed by calcareous nannofossil assemblages (ODP Site 1085A). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 230, 319–334. [Google Scholar] [CrossRef]
- Diester-Haass, L.; Nees, S. Late Neogene History of Paleoproductivity and Ice Rafting South of Tasmania. In The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica; Exon, N.F., Kennett, J.P., Malone, M.J., Eds.; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Shackford, J.K.; Lyle, M.W.; Wilkens, R.; Tian, J. Data report; Raw and normalized elemental data along the Site U1335, Ui336, and U1337 splices from X-ray fluorescence scanning. Proc. Ocean Drill. Program 2014, 320, 17. [Google Scholar] [CrossRef]
- Lyle, M.; Baldauf, J. Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site U1338: Burial, production, and diatom community. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 433, 106–128. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Wise, S.W., Jr.; Wang, Y. Cause of the middle/late Miocene carbonate crash; dissolution or low productivity? Proc. Ocean Drill. Program 2007, 206, 24. [Google Scholar] [CrossRef]
- Newkirk, D.R.; Martin, E.E. Circulation through the Central American Seaway during the Miocene carbonate crash. Geology 2009, 37, 87–90. [Google Scholar] [CrossRef]
- Pälike, H.; Lyle, M.W.; Nishi, H.; Raffi, I.; Ridgwell, A.; Gamage, K.; Klaus, A.; Acton, G.; Anderson, L.; Backman, J.; et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 2012, 488, 609. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lawver, L.A. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 1995, 251, 85–138. [Google Scholar] [CrossRef]
- Collins, L.S.; Coates, A.G.; Berggren, W.A.; Aubry, M.-P.; Zhang, J. The late Miocene Panama isthmian strait. Geology 1996, 24, 687–690. [Google Scholar] [CrossRef]
- Haug, G.H.; Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 1998, 393, 673–676. [Google Scholar] [CrossRef]
- Marshall, L.G. Land Mammals and the Great American Interchange. Am. Sci. 1988, 76, 380–388. [Google Scholar]
- Wright, J.D.; Miller, K.G. Control of North Atlantic Deep Water Circulation by the Greenland-Scotland Ridge. Paleoceanography 1996, 11, 157–170. [Google Scholar] [CrossRef]
- Poore, H.R.; Samworth, R.; White, N.J.; Jones, S.M.; McCave, I.N. Neogene overflow of Northern Component Water at the Greenland-Scotland Ridge. Geochem. Geophys. Geosyst. 2006, 7. [Google Scholar] [CrossRef]
- Thiede, J.; Myhre, A.M. The paleoceanographic history of the North Atlantic-Arctic gateways; synthesis of the Leg 151 drilling results. Proc. Ocean Drill. Program 1996, 151, 645. [Google Scholar] [CrossRef]
- Benjamin, M.T.; Johnson, N.M.; Naeser, C.W. Recent rapid uplift in the Bolivian Andes: Evidence from fission-track dating. Geology 1987, 15, 680–683. [Google Scholar] [CrossRef]
- Filippelli, G.M.; Delaney, M.L. The oceanic phosphorus cycle and continental weathering during the Neogene. Paleoceanography 1994, 9, 643–652. [Google Scholar] [CrossRef]
- Hoorn, C.; Guerrero, J.; Sarmiento, G.A.; Lorente, M.A. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 1995, 23, 237–240. [Google Scholar] [CrossRef]
- Hermoyian, C.S.; Owen, R.M. Late Miocene-early Pliocene biogenic bloom: Evidence from low-productivity regions of the Indian and Atlantic Oceans. Paleoceanography 2001, 16, 95–100. [Google Scholar] [CrossRef]
- Diester-Haass, L.; Billups, K.; Emeis, K.C. In search of the late Miocene–early Pliocene “biogenic bloom” in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088). Paleoceanography 2005, 20. [Google Scholar] [CrossRef]
- Filippelli, G.M. The Global Phosphorus Cycle: Past, Present, and Future. Elements 2008, 4, 89–95. [Google Scholar] [CrossRef]
- Shevenell, A.E.; Kennett, J.P.; Lea, D.W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Tian, J.; Shevenell, A.; Wang, P.; Zhao, Q.; Li, Q.; Cheng, X. Reorganization of Pacific Deep Waters linked to middle Miocene Antarctic cryosphere expansion: A perspective from the South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 284, 375–382. [Google Scholar] [CrossRef]
- Tzanova, A.; Herbert, T.D.; Peterson, L. Cooling Mediterranean Sea surface temperatures during the Late Miocene provide a climate context for evolutionary transitions in Africa and Eurasia. Earth Planet. Sci. Lett. 2015, 419, 71–80. [Google Scholar] [CrossRef]
- Herbert, T.D.; Lawrence, K.T.; Tzanova, A.; Peterson, L.C.; Caballero-Gill, R.; Kelly, C.S. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 2016, 9, 843. [Google Scholar] [CrossRef]
- Holbourn, A.E.; Kuhnt, W.; Clemens, S.C.; Kochhann, K.G.D.; Jöhnck, J.; Lübbers, J.; Andersen, N. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 2018, 9, 1584. [Google Scholar] [CrossRef]
- Holbourn, A.; Kuhnt, W.; Frank, M.; Haley, B.A. Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover. Earth Planet. Sci. Lett. 2013, 365, 38–50. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Besiou, E.; Antonarakou, A.; Zarkogiannis, S.D.; Kostis, A.; Mortyn, P.G.; Moissette, P.; Cornée, J.J.; Schulbert, C.; Drinia, H.; et al. Decoding sea surface and paleoclimate conditions in the eastern Mediterranean over the Tortonian-Messinian Transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 534, 109312. [Google Scholar] [CrossRef]
- Vasiliev, I.; Karakitsios, V.; Bouloubassi, I.; Agiadi, K.; Kontakiotis, G.; Antonarakou, A.; Triantaphyllou, M.; Gogou, A.; Kafousia, N.; de Rafélis, M.; et al. Large Sea Surface Temperature, Salinity, and Productivity-Preservation Changes Preceding the Onset of the Messinian Salinity Crisis in the Eastern Mediterranean Sea. Paleoceanogr. Paleoclimatol. 2019. [Google Scholar] [CrossRef]
- Warnke, D.A.; Allen, C.P.; Muller, D.W.; Hodell, D.A.; Brunner, C.A. Miocene-Pliocene Antarctic glacial evolution; a synthesis of ice-rafted debris, stable isotope, and planktonic foraminiferal indicators, ODP Leg 114. Antarct. Paleoenviron. Perspect. Glob. Chang. Part One 1992, 56, 311. [Google Scholar] [CrossRef]
- Flower, B.P.; Kennett, J.P. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 108, 537–555. [Google Scholar] [CrossRef]
- Larsen, H.C.; Saunders, A.D.; Clift, P.D.; Beget, J.; Wei, W.; Spezzaferri, S. Seven Million Years of Glaciation in Greenland. Science 1994, 264, 952–955. [Google Scholar] [CrossRef] [Green Version]
- Fronval, T.; Jansen, E. Late Neogene paleoclimates and paleoceanography in the Iceland-Norwegian Sea; evidence from the Iceland and Voring plateaus. Proc. Ocean Drill. Program 1996, 151, 455. [Google Scholar] [CrossRef]
- Thiede, J.; Winkler, A.; Wolf-Welling, T.; Eldholm, O.; Myhre, A.M.; Baumann, K.-H.; Henrich, R.; Stein, R. Late Cenozoic History of the polar North Atlantic: Results from Ocean Drilling. Quat. Sci. Rev. 1998, 17, 185–208. [Google Scholar] [CrossRef]
- Tian, J.; Yang, M.; Lyle, M.W.; Wilkens, R.; Shackford, J.K. Obliquity and long eccentricity pacing of the Middle Miocene climate transition. Geochem. Geophys. Geosyst. 2013, 14, 1740–1755. [Google Scholar] [CrossRef]
- Moran, K.; Backman, J.; Brinkhuis, H.; Clemens, S.C.; Cronin, T.; Dickens, G.R.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.W.; et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 2006, 441, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Darby, D.A. Arctic perennial ice cover over the last 14 million years. Paleoceanography 2008, 23. [Google Scholar] [CrossRef] [Green Version]
- Krylov, A.A.; Andreeva, I.A.; Vogt, C.; Backman, J.; Krupskaya, V.V.; Grikurov, G.E.; Moran, K.; Shoji, H. A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography 2008, 23. [Google Scholar] [CrossRef]
- John, C.d.M.; Karner, G.D.; Mutti, M. δ18O and Marion Plateau backstripping: Combining two approaches to constrain late middle Miocene eustatic amplitude. Geology 2004, 32, 829–832. [Google Scholar] [CrossRef]
- Holbourn, A.; Kuhnt, W.; Lyle, M.; Schneider, L.; Romero, O.; Andersen, N. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 2014, 42, 19–22. [Google Scholar] [CrossRef]
- Tian, J.; Ma, W.; Lyle, M.W.; Shackford, J.K. Synchronous mid-Miocene upper and deep oceanic δ13C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion. Earth Planet. Sci. Lett. 2014, 406, 72–80. [Google Scholar] [CrossRef]
- Hovan, S.A. Late Cenozoic atmospheric circulation intensity and climatic history recorded by eolian deposition in the eastern Equatorial Pacific Ocean, Leg 138. Proc. Ocean Drill. Program 1995, 138, 615. [Google Scholar] [CrossRef]
- Rea, D.K. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind. Rev. Geophys. 1994, 32, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Mourik, A.A.; Abels, H.A.; Hilgen, F.J.; Di Stefano, A.; Zachariasse, W.J. Improved astronomical age constraints for the middle Miocene climate transition based on high-resolution stable isotope records from the central Mediterranean Maltese Islands. Paleoceanography 2011, 26. [Google Scholar] [CrossRef]
- Rousselle, G.; Beltran, C.; Sicre, M.-A.; Raffi, I.; De Rafélis, M. Changes in sea-surface conditions in the Equatorial Pacific during the middle Miocene–Pliocene as inferred from coccolith geochemistry. Earth Planet. Sci. Lett. 2013, 361, 412–421. [Google Scholar] [CrossRef]
- Shevenell, A.E.; Kennett, J.P.; Lea, D.W. Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion. Science 2004, 305, 1766–1770. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.G.; Fairbanks, R.G.; Mountain, G.S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 1987, 2, 1–19. [Google Scholar] [CrossRef]
- Westerhold, T.; Bickert, T.; Röhl, U. Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): New constrains on Miocene climate variability and sea-level fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 217, 205–222. [Google Scholar] [CrossRef]
- Miller, K.G.; Mountain, G.S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D. Cenozoic global sea level, sequences, and the New Jersey Transect: Results From coastal plain and continental slope drilling. Rev. Geophys. 1998, 36, 569–601. [Google Scholar] [CrossRef] [Green Version]
- Andersson, C.; Jansen, E. A Miocene (8–12 Ma) intermediate water benthic stable isotope record from the northeastern Atlantic, ODP Site 982. Paleoceanography 2003, 18. [Google Scholar] [CrossRef] [Green Version]
- Kastanja, M.M.; Diekmann, B.; Henrich, R. Controls on carbonate and terrigenous deposition in the incipient Benguela upwelling system during the middle to the late Miocene (ODP Sites 1085 and 1087). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 241, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Lyle, M.; Koizumi, I.; Delaney, M.L.; Barron, J.A. Sedimentary record of the California Current system, middle Miocene to Holocene; a synthesis of Leg 167 results. Proc. Ocean Drill. Program 2000, 167, 341. [Google Scholar] [CrossRef]
- Wright, J.D.; Miller, K.G.; Fairbanks, R.G. Early and Middle Miocene stable isotopes: Implications for Deepwater circulation and climate. Paleoceanography 1992, 7, 357–389. [Google Scholar] [CrossRef]
- Delaney, M.L. Miocene benthic foraminiferal Cd/Ca records: South Atlantic and western equatorial Pacific. Paleoceanography 1990, 5, 743–760. [Google Scholar] [CrossRef]
- Cortese, G.; Gersonde, R.; Hillenbrand, C.-D.; Kuhn, G. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth Planet. Sci. Lett. 2004, 224, 509–527. [Google Scholar] [CrossRef] [Green Version]
- Keller, G.; Barron, J.A. Paleoceanographic implications of Miocene deep-sea hiatuses. GSA Bull. 1983, 94, 590–613. [Google Scholar] [CrossRef]
- Lazarus, D.; Barron, J.; Renaudie, J.; Diver, P.; Türke, A. Cenozoic Planktonic Marine Diatom Diversity and Correlation to Climate Change. PLoS ONE 2014, 9, e84857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaudie, J. Quantifying the Cenozoic marine diatom deposition history: Links to the C and Si cycles. Biogeosciences 2016, 13, 6003–6014. [Google Scholar] [CrossRef] [Green Version]
- Baldauf, J.G.; Barron, J.A. Evolution of Biosiliceous Sedimentation Patterns—Eocene Through Quaternary: Paleoceanographic Response to Polar Cooling. In Geological History of the Polar Oceans: Arctic versus Antarctic; Bleil, U., Thiede, J., Eds.; Springer: Dordrecht, The Netherlands, 1990; pp. 575–607. [Google Scholar] [CrossRef]
- Diester-Haass, L.; Meyers, P.A.; Vidal, L. The late Miocene onset of high productivity in the Benguela Current upwelling system as part of a global pattern. Mar. Geol. 2002, 180, 87–103. [Google Scholar] [CrossRef]
- Norris, R.D.; Turner, S.K.; Hull, P.M.; Ridgwell, A. Marine Ecosystem Responses to Cenozoic Global Change. Science 2013, 341, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Santini, F.; Sorenson, L. First molecular timetree of billfishes (Istiophoriformes: Acanthomorpha) shows a Late Miocene radiation of marlins and allies. Ital. J. Zool. 2013, 80, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Schwarzhans, W.; Aguilera, O. Otoliths of the Myctophidae from the Neogene of tropical America. Palaeo-Ichthyologica 2013, 13, 83–150. [Google Scholar]
- Pyenson, N.D.; Vermeij, G.J. The rise of ocean giants: Maximum body size in Cenozoic marine mammals as an indicator for productivity in the Pacific and Atlantic Oceans. Biol. Lett. 2016, 12, 20160186. [Google Scholar] [CrossRef]
- Warheit, K.I. The seabird fossil record and the role of paleontology in understanding seabird community structure. In Biology of Marine Birds; Schreiber, E.A., Burger, J., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 17–55. [Google Scholar] [CrossRef]
- Brachert, T.C.; Bornemann, A.; Reuter, M.; Galer, S.J.; Grimm, K.I.; Fassoulas, C. Upwelling history of the Mediterranean Sea revealed by stunted growth in the planktic foraminifera Orbulina universa (early Messinian, Crete, Greece). Int. J. Earth Sci. 2015, 104, 263–276. [Google Scholar] [CrossRef]
- Sierro, F.J.; Flores, J.A.; Francés, G.; Vazquez, A.; Utrilla, R.; Zamarreño, I.; Erlenkeuser, H.; Barcena, M.A. Orbitally-controlled oscillations in planktic communities and cyclic changes in western Mediterranean hydrography during the Messinian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 190, 289–316. [Google Scholar] [CrossRef]
- Antonarakou, A.; Kontakiotis, G.; Zarkogiannis, S.; Mortyn, P.G.; Drinia, H.; Koskeridou, E.; Anastasakis, G. Planktonic foraminiferal abnormalities in coastal and open marine eastern Mediterranean environments: A natural stress monitoring approach in recent and early Holocene marine systems. J. Mar. Syst. 2018, 181, 63–78. [Google Scholar] [CrossRef]
- Schmidt, D.N.; Lazarus, D.; Young, J.R.; Kucera, M. Biogeography and evolution of body size in marine plankton. Earth-Sci. Rev. 2006, 78, 239–266. [Google Scholar] [CrossRef]
- Knappertsbusch, M. Morphologic Evolution of the Coccolithophorid Calcidiscus leptoporus from the Early Miocene to Recent. J. Paleontol. 2000, 74, 712–730. [Google Scholar] [CrossRef]
- Young, J. Size variation of Neogene Reticulofenestra coccoliths from Indian Ocean DSDP Cores. J. Micropalaeontol. 1990, 9, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Broecker, W.S.; Peng, T.-H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1987, 1, 15–29. [Google Scholar] [CrossRef]
- Bramlette, M.N. Pelagic sediments. In Oceanography; Sears, M., Ed.; American Association for the Advancement of Science: Washington, DC, USA, 1961; pp. 345–366. [Google Scholar]
- Berger, W.H. Biogenous Deep-Sea Sediments: Fractionation by Deep-Sea Circulation. GSA Bull. 1970, 81, 1385–1402. [Google Scholar] [CrossRef]
- Milliman, J.; Droxler, A. Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss. Geol. Rundsch. 1996, 85, 496–504. [Google Scholar] [CrossRef]
- Berger, W.H.; Wefer, G. Expeditions into the Past: Paleoceanographic Studies in the South Atlantic. In The South Atlantic: Present and Past Circulation; Springer: Berlin/Heidelberg, Germany, 1996; pp. 363–410. [Google Scholar] [CrossRef]
- Van Andel, T.H.; Thiede, J.; Sclater, J.G.; Hay, W.W. Depositional History of the South Atlantic Ocean during the Last 125 Million Years. J. Geol. 1977, 85, 651–698. [Google Scholar] [CrossRef]
- Hsü, K.J.; Wright, R. History of calcite dissolution of the South Atlantic Ocean. In South Atlantic Paleoceanography; Hsü, K.J., Weissert, H.J., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 149–187. [Google Scholar]
- Hagelberg, T.K.; Shackleton, N.J.; Pisias, N.G.; Mayer, L.A.; Janecek, T.R.; Baldauf, J.G.; Bloomer, S.F.; Dadey, K.A.; Emeis, K.-C.; Farrell, J.; et al. Development of composite depth sections for sites 844 through 854. Proc. Ocean Drill. Program 1991, 138, 79. [Google Scholar] [CrossRef]
- Kemp, A.E.S.; Baldauf, J.G.; Pearce, R.B. Origins and paleoceanographic significance of laminated diatom ooze from the eastern Equatorial Pacific Ocean. Proc. Ocean Drill. Program 1995, 138, 641. [Google Scholar] [CrossRef]
- Kemp, A.E.S.; Baldauf, J.G. Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature 1993, 362, 141–144. [Google Scholar] [CrossRef]
- Pellegrino, L.; Dela Pierre, F.; Natalicchio, M.; Carnevale, G. The Messinian diatomite deposition in the Mediterranean region and its relationships to the global silica cycle. Earth-Sci. Rev. 2018, 178, 154–176. [Google Scholar] [CrossRef]
- Kemp, A.E.S.; Pearce, R.B.; Grigorov, I.; Rance, J.; Lange, C.B.; Quilty, P.; Salter, I. Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Romero, O.E.; Thunell, R.C.; Astor, Y.; Varela, R. Seasonal and interannual dynamics in diatom production in the Cariaco Basin, Venezuela. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 571–581. [Google Scholar] [CrossRef]
- Romero, O.E.; Armand, L.K. Marine diatoms as indicators of modern changes in oceanographic conditions. In The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed.; Smol, J.P., Stoermer, E.F., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 373–400. [Google Scholar]
- Bacon, M.P. Glacial to interglacial changes in carbonate and clay sedimentation in the Atlantic Ocean estimated from 230Th measurements. Chem. Geol. 1984, 46, 97–111. [Google Scholar] [CrossRef]
- Francois, R.; Frank, M.; Rutgers van der Loeff, M.M.; Bacon, M.P. 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 2004, 19. [Google Scholar] [CrossRef] [Green Version]
- Marcantonio, F.; Anderson, R.F.; Stute, M.; Kumar, N.; Schlosser, P.; Mix, A. Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 1996, 383, 705–707. [Google Scholar] [CrossRef]
- Kienast, S.S.; Kienast, M.; Mix, A.C.; Calvert, S.E.; François, R. Thorium-230 normalized particle flux and sediment focusing in the Panama Basin region during the last 30,000 years. Paleoceanography 2007, 22. [Google Scholar] [CrossRef] [Green Version]
- Archer, D.E. Equatorial Pacific Calcite Preservation Cycles: Production or Dissolution? Paleoceanography 1991, 6, 561–571. [Google Scholar] [CrossRef]
- Tréguer, P.; Nelson, D.M.; Van Bennekom, A.J.; DeMaster, D.J.; Leynaert, A.; Quéguiner, B. The Silica Balance in the World Ocean: A Reestimate. Science 1995, 268, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Pearce, R.B.; Kemp, A.E.S.; Baldauf, J.G.; King, S.C. High-resolution sedimentology and micropaleontology of laminated diatomaceous sediments from the eastern Equatorial Pacific Ocean. Proc. Ocean Drill. Program 1995, 138, 647. [Google Scholar] [CrossRef]
- Wise, S.W. Chalk Formation: Early Diagenesis. In The Fate of Fossil Fuel CO2 in the Oceans; Andersen, N., Ed.; Springer: New York, NY, USA, 1977; p. 749. [Google Scholar]
- Dittert, N.; Baumann, K.-H.; Bickert, T.; Henrich, R.; Huber, R.; Kinkel, H.; Meggers, H. Carbonate Dissolution in the Deep-Sea: Methods, Quantification and Paleoceanographic Application. In Use of Proxies in Paleoceanography: Examples from the South Atlantic; Fischer, G., Wefer, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 255–284. [Google Scholar] [CrossRef]
- Berger, W.H.; Bonneau, M.C.; Parker, F.L. Foraminifera on the deep-sea floor: Lysocline and dissolution rate. Oceanol. Acta 1982, 5, 249–258. [Google Scholar]
- Peterson, L.C.; Prell, W.L. Carbonate dissolution in Recent sediments of the eastern equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline. Mar. Geol. 1985, 64, 259–290. [Google Scholar] [CrossRef]
- Le, J.; Shackleton, N.J. Carbonate Dissolution Fluctuations in the Western Equatorial Pacific During the Late Quaternary. Paleoceanography 1992, 7, 21–42. [Google Scholar] [CrossRef]
- Conan, S.M.H.; Ivanova, E.M.; Brummer, G.J.A. Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Mar. Geol. 2002, 182, 325–349. [Google Scholar] [CrossRef]
- Gibbs, S.J.; Shackleton, N.J.; Young, J.R. Identification of dissolution patterns in nannofossil assemblages: A high-resolution comparison of synchronous records from Ceara Rise, ODP Leg 154. Paleoceanography 2004, 19. [Google Scholar] [CrossRef]
- Zachos, J.C.; Kroon, D.; Blum, P.; Bowles, J.; Gaillot, P.; Hasegawa, T.; Hathorne, E.C.; Hodell, D.A.; Kelly, D.C.; Jung, J.-H.; et al. Proceedings of the Ocean Drilling Program; Initial Reports; Early Cenozoic Extreme Climates; the Walvis Ridge Transect; Covering Leg 208 of the Cruises of the Drilling Vessel JOIDES Resolution; Rio de Janeiro, Brazil, to Rio de Janeiro, Brazil; sites 1262-1267, 6 March–6 May 2003; Ocean Drilling Program: College Station, TX, USA, 2004. [Google Scholar] [CrossRef]
- Berger, W.H.; Leckie, R.M.; Janecek, T.R.; Stax, R.; Takayama, T. Neogene carbonate sedimentation on Ontong Java Plateau; highlights and open questions. Proc. Ocean Drill. Program 1993, 130, 711–744. [Google Scholar] [CrossRef]
- Flores, J.A.; Sierro, F.J.; Raffi, I. Evolution of the calcareous nannofossil assemblage as a response to the paleoceanographic changes in the eastern Equatorial Pacific Ocean from 4 to 2 Ma (Leg 138, sites 849 and 852). Proc. Ocean Drill. Program 1995, 138, 163. [Google Scholar] [CrossRef]
- Shackleton, N.J.; Crowhurst, S.; Hagelberg, T.; Pisias, N.G.; Schneider, D.A. A new late Neogene time scale; application to Leg 138 sites. Proc. Ocean Drill. Program 1995, 138, 73. [Google Scholar] [CrossRef]
- Backman, J.; Raffi, I. Calibration of Miocene nannofossil events to orbitally tuned cyclostratigraphies from Ceara Rise. Proc. Ocean Drill. Program 1997, 154, 83. [Google Scholar] [CrossRef]
- Berggren, W.A.; Kent, D.V.; Swisher, C.C., III; Aubry, M.-P. A Revised Cenozoic Geochronology and Chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation; Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J., Eds.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1995; Volume 54. [Google Scholar]
- Nathan, S.A.; Leckie, R.M. Early history of the Western Pacific Warm Pool during the middle to late Miocene (~13.2–5.8 Ma): Role of sea-level change and implications for equatorial circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 274, 140–159. [Google Scholar] [CrossRef]
- Fornaciari, E. Calcareous nannofossil biostratigraphy of the California margin. Proc. Ocean Drill. Program 2000, 167, 3. [Google Scholar] [CrossRef]
- Cande, S.C.; Kent, D.V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. Solid Earth 1995, 100, 6093–6095. [Google Scholar] [CrossRef] [Green Version]
- Vincent, E.; Toumarkine, M. Data report; Miocene planktonic foraminifers from the eastern Equatorial Pacific. Proc. Ocean Drill. Program 1995, 138, 895. [Google Scholar] [CrossRef]
- Shackleton, N.J.; Hall, M.A. Stable isotope records in bulk sediments (Leg 138). Proc. Ocean Drill. Program 1995, 138, 797. [Google Scholar] [CrossRef]
- Raffi, I.; Flores, J.-A. Pleistocene through Miocene calcareous nannofossils from eastern Equatorial Pacific Ocean (Leg 138). Proc. Ocean Drill. Program 1995, 138, 233. [Google Scholar] [CrossRef]
- Mix, A.C.; Tiedemann, R.; Blum, P.; Abrantes, F.F.; Benway, H.; Cacho-Lascorz, I.; Chen, M.-T.; Delaney, M.L.; Flores, J.-A.; Giosan, L.; et al. Proceedings of the Ocean Drilling Program, Initial Reports, Southeast Pacific Paleoceanographic Transects; Covering Leg 202 of the Cruises of the Drilling Vessel JOIDES Resolution; Valparaiso, Chile, to Balboa, Panama; Sites 1232-1242, 29 March–30 May 2002; Ocean Drilling Program: College Station, TX, USA, 2003. [Google Scholar] [CrossRef]
- Lyle, M.; Koizumi, I.; Richter, C.; Behl, R.J.; Boden, P.; Caulet, J.-P.; Delaney, M.L.; deMenocal, P.; Desmet, M.; Fornaciari, E.; et al. Proceedings of the Ocean Drilling Program; Initial Reports, California Margin; Covering Leg 167 of the Cruises of the Drilling Vessel JOIDES Resolution, Acapulco, Mexico, to San Francisco, California, Sites 1010-1022, 20 April–16 June 1996; Ocean Drilling Program: College Station, TX, USA, 1997; p. 1378. [Google Scholar] [CrossRef]
- Lyle, M. Neogene carbonate burial in the Pacific Ocean. Paleoceanography 2003, 18. [Google Scholar] [CrossRef]
- Berger, W.H. Produktivität des Ozeans aus geologischer Sicht: Denkmodelle und Beispiele [Ocean Productivity from the Viewpoint of Geology: Concepts and Examples]. Zeitschrift der Deutschen Geologischen Gesellschaft 1991, 149–178. [Google Scholar] [CrossRef]
- Preiss-Daimler, I.V.; Henrich, R.; Bickert, T. The final Miocene carbonate crash in the Atlantic: Assessing carbonate accumulation, preservation and production. Mar. Geol. 2013, 343, 39–46. [Google Scholar] [CrossRef]
- Shackleton, N.J.; Crowhurst, S. Sediment fluxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. Proc. Ocean Drill. Program 1997, 154, 69. [Google Scholar] [CrossRef]
- Kameo, K.; Sato, T. Biogeography of Neogene calcareous nannofossils in the Caribbean and the eastern equatorial Pacific—floral response to the emergence of the Isthmus of Panama. Mar. Micropaleontol. 2000, 39, 201–218. [Google Scholar] [CrossRef]
- Kameo, K.; Bralower, T.J. Neogene calcareous nannofossil biostratigraphy of sites 998, 999, and 1000, Caribbean Sea. Proc. Ocean Drill. Program 2000, 165, 3. [Google Scholar] [CrossRef]
- Rio, D.; Fornaciari, E.; Raffi, I. Late Oligocene through early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (Leg 115). Proc. Ocean Drill. Program 1990, 115, 175. [Google Scholar] [CrossRef]
- Ravelo, A.C.; Dekens, P.S.; McCarthy, M. Evidence for El Niño-like conditions during the Pliocene. GSA Today 2006, 16, 4–11. [Google Scholar] [CrossRef]
- Rippert, N.; Nürnberg, D.; Raddatz, J.; Maier, E.; Hathorne, E.; Bijma, J.; Tiedemann, R. Constraining foraminiferal calcification depths in the western Pacific warm pool. Mar. Micropaleontol. 2016, 128, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Dugdale, R.C.; Wischmeyer, A.G.; Wilkerson, F.P.; Barber, R.T.; Chai, F.; Jiang, M.S.; Peng, T.H. Meridional asymmetry of source nutrients to the equatorial Pacific upwelling ecosystem and its potential impact on ocean–atmosphere CO2 flux; a data and modeling approach. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 2513–2531. [Google Scholar] [CrossRef]
- Goodman, P.J.; Hazeleger, W.; Vries, P.D.; Cane, M. Pathways into the Pacific Equatorial Undercurrent: A Trajectory Analysis. J. Phys. Oceanogr. 2005, 35, 2134–2151. [Google Scholar] [CrossRef] [Green Version]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, K.M.; Joos, F.; Lehner, F.; Raible, C.C. Detecting changes in marine responses to ENSO from 850 to 2100 C.E.: Insights from the ocean carbon cycle. Geophys. Res. Lett. 2015, 42, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.G.; Pagani, M.; Henderiks, J.; Ren, H. A long history of equatorial deep-water upwelling in the Pacific Ocean. Earth Planet. Sci. Lett. 2017, 467, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vincent, E. Neogene carbonate stratigraphy of Hess Rise (central North Pacific) and paleoceanographic implications. Proc. Ocean Drill. Program 1981, 62, 571. [Google Scholar] [CrossRef]
- Ren, J.; Gersonde, R.; Esper, O.; Sancetta, C. Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 402, 81–103. [Google Scholar] [CrossRef]
- Kennett, J.P.; Keller, G.; Srinivasan, M.S. Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region. In The Miocene Ocean: Paleoceanography and Biogeography; Kennett, J.P., Ed.; Geological Society of America: Boulder, CO, USA, 1985; Volume 163, pp. 197–236. [Google Scholar]
- Li, Q.; Li, B.; Zhong, G.; McGowran, B.; Zhou, Z.; Wang, J.; Wang, P. Late Miocene development of the western Pacific warm pool: Planktonic foraminifer and oxygen isotopic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 237, 465–482. [Google Scholar] [CrossRef]
- Chavez, F.P.; Pennington, J.T.; Castro, C.G.; Ryan, J.P.; Michisaki, R.P.; Schlining, B.; Walz, P.; Buck, K.R.; McFadyen, A.; Collins, C.A. Biological and chemical consequences of the 1997–1998 El Niño in central California waters. Prog. Oceanogr. 2002, 54, 205–232. [Google Scholar] [CrossRef]
- Takesue, R.K.; van Geen, A.; Carriquiry, J.D.; Ortiz, E.; Godínez-Orta, L.; Granados, I.; Saldívar, M.; Ortlieb, L.; Escribano, R.; Guzman, N.; et al. Influence of coastal upwelling and El Niño–Southern Oscillation on nearshore water along Baja California and Chile: Shore-based monitoring during 1997–2000. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- de Villiers, S. Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline. Deep Sea Res. Part I Oceanogr. Res. Pap. 2005, 52, 671–680. [Google Scholar] [CrossRef]
- deMenocal, P.B.; Oppo, D.W.; Fairbanks, R.G.; Prell, W.L. Pleistocene δ13C Variability of North Atlantic Intermediate Water. Paleoceanography 1992, 7, 229–250. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Johnson, M.W.; Fleming, R.H. The Oceans: Their Physics, Chemistry, and General Biology; Prentice-Hall, Inc.: New York, NY, USA, 1942. [Google Scholar]
- Haug, G.H.; Tiedemann, R.; Zahn, R.; Ravelo, A.C. Role of Panama uplift on oceanic freshwater balance. Geology 2001, 29, 207–210. [Google Scholar] [CrossRef]
- Haddad, G.A.; Droxler, A.W. Metastable CaCO3 dissolution at intermediate water depths of the Caribbean and western North Atlantic: Implications for intermediate water circulation during the past 200,000 years. Paleoceanography 1996, 11, 701–716. [Google Scholar] [CrossRef]
- Dickens, G.R.; O’Neil, J.R.; Rea, D.K.; Owen, R.M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 1995, 10, 965–971. [Google Scholar] [CrossRef]
- Dickens, G.R. Methane oxidation during the late Palaeocene thermal maximum. Bulletin de la Société Géologique de France 2000, 171, 37–49. [Google Scholar]
- Chepstow-Lusty, A.; Backman, J.; Shackleton, N.J. Palaeoclimatic control of Upper Pliocene Discoaster assemblages in the North Atlantic. J. Micropalaeontol. 1991, 9, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Nisancioglu, K.H.; Raymo, M.E.; Stone, P.H. Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway. Paleoceanography 2003, 18. [Google Scholar] [CrossRef] [Green Version]
- Heinze, C.; Crowley, T.J. Sedimentary response to ocean gateway circulation changes. Paleoceanography 1997, 12, 742–754. [Google Scholar] [CrossRef]
- Farrell, J.W.; Prell, W.L. Pacific CaCO3 Preservation and δ18O Since 4 Ma: Paleoceanic and Paleoclimatic Implications. Paleoceanography 1991, 6, 485–498. [Google Scholar] [CrossRef]
- Siesser, W.G. Late Miocene Origin of the Benguela Upswelling System off Northern Namibia. Science 1980, 208, 283–285. [Google Scholar] [CrossRef]
- Boltovskoy, E.; Totah, V. Preservation index and preservation potential of some foraminiferal species. J. Foraminifer. Res. 1992, 22, 267–273. [Google Scholar] [CrossRef]
- Nguyen, T.M.P.; Petrizzo, M.R.; Speijer, R.P. Experimental dissolution of a fossil foraminiferal assemblage (Paleocene–Eocene Thermal Maximum, Dababiya, Egypt): Implications for paleoenvironmental reconstructions. Mar. Micropaleontol. 2009, 73, 241–258. [Google Scholar] [CrossRef] [Green Version]
- Roters, B.; Henrich, R. The middle to late Miocene climatic development of Southwest Africa derived from the sedimentological record of ODP Site 1085A. Int. J. Earth Sci. 2010, 99, 459–471. [Google Scholar] [CrossRef]
- Oppo, D.W.; Fairbanks, R.G. Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the Southern Ocean. Earth Planet. Sci. Lett. 1987, 86, 1–15. [Google Scholar] [CrossRef]
- Butzin, M.; Lohmann, G.; Bickert, T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records. Paleoceanography 2011, 26. [Google Scholar] [CrossRef]
- Gupta, A.K.; Singh, R.K.; Joseph, S.; Thomas, E. Indian Ocean high-productivity event (10–8 Ma): Linked to global cooling or to the initiation of the Indian monsoons? Geology 2004, 32, 753–756. [Google Scholar] [CrossRef]
- Woodruff, F.; Savin, S.M. Miocene deepwater oceanography. Paleoceanography 1989, 4, 87–140. [Google Scholar] [CrossRef]
- Smart, C.W.; Thomas, E.; Ramsay, A.T.S. Middle–late Miocene benthic foraminifera in a western equatorial Indian Ocean depth transect: Paleoceanographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 247, 402–420. [Google Scholar] [CrossRef]
- Dickens, G.R.; Owen, R.M. The Latest Miocene–Early Pliocene biogenic bloom: A revised Indian Ocean perspective. Mar. Geol. 1999, 161, 75–91. [Google Scholar] [CrossRef]
- Singh, R.K.; Gupta, A.K. Systematic decline in benthic foraminiferal species diversity linked to productivity increases over the last 26 Ma in the Indian Ocean. J. Foraminifer. Res. 2005, 35, 219–227. [Google Scholar] [CrossRef]
- Vincent, E.; Toumarkine, M. Neogene planktonic foraminifers from the western tropical Indian Ocean, Leg 115. Proc. Ocean Drill. Program 1990, 115, 795. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Pagani, M.; Liu, Z.; Bohaty, S.M.; DeConto, R. A 40-million-year history of atmospheric CO2. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20130096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, P.N.; Palmer, M.R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 2000, 406, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Mutti, M. Bulk δ18O and δ13C records from Site 999, Colombian Basin, and Site 1000, Nicaraguan Rise (latest Oligocene to middle Miocene); diagenesis, link to sediment parameters, and paleoceanography. Proc. Ocean Drill. Program 2000, 165, 275. [Google Scholar] [CrossRef]
- Shackleton, N.J.; Hall, M.A. The late Miocene stable isotope record, Site 926. Proc. Ocean Drill. Program 1997, 154, 367. [Google Scholar] [CrossRef]
Region | ODP Site | Depth (m) | Preservation Data Sources | MAR Data Sources | Age Model/Biostratigraphy—Source | |
---|---|---|---|---|---|---|
Leg | Site | |||||
East Pacific | ||||||
Equatorial | 844 | 3415 | ^ Farrell, et al. [4] † Vincent and Toumarkine [118] | °,§ Farrell, et al. [4] | Shackleton and Hall [119]; Raffi and Flores [120] | |
Equatorial | 846 | 3296 | ||||
850 | 3786 | |||||
Equatorial | 1241 | 2027 | * Mix, et al. [121] | °,§ Mix, et al. [121] | Mix, et al. [121] | |
Peru | 1237 | 3212 | *,† This study | ° This study | Mix, et al. [121] | |
California | 1010 | 3464 | * Lyle, et al. [122] | ° Lyle [123] | Fornaciari [116] | |
West Pacific | 130 | 806 | 2521 | * Nathan and Leckie [115] | ° Berger [124] | Nathan and Leckie [115] |
Atlantic | ||||||
Equatorial | 154 | 926 | 3598 | * Preiss-Daimler, et al. [125]; † Shackleton and Crowhurst [126] | ° Preiss-Daimler, et al. [125]; ° King, et al. [6] | Shackleton and Crowhurst [126]; Backman and Raffi [113] |
Benguela upwelling | 175 | 1085 | 1713 | Benthos/Plankton–ratio Diester-Haass, et al. [8] | ° Kastanja, et al. [60] | Westerhold, et al. [57] |
Walvis Ridge | 208 | 1265 | 3083 | *,† Kastanja and Henrich [9] | ° Kastanja and Henrich [9] | Zachos, et al. [109] |
Caribbean | 165 | 999 | 2828 | † Roth, et al. [5]; ^ Kameo and Sato [127]; ɛNd- Newkirk and Martin [15] | ° Roth, et al. [5] | Kameo and Bralower [128] |
998 | 3180 | |||||
Indian Ocean | ||||||
Mascarene Plateau | 115 | 707 | 1541 | ° Backman and Raffi [113] | Rio, et al. [129] 1 | |
Mascarene Plateau | 709 | 3038 | † Vincent and Toumarkine [118] | ° Backman and Raffi [113] | Rio, et al. [129] 1 | |
Mascarene Plateau | 710 | 3812 | † Vincent and Toumarkine [118] | ° Backman and Raffi [113] | Rio, et al. [129] 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preiss-Daimler, I.; Zarkogiannis, S.D.; Kontakiotis, G.; Henrich, R.; Antonarakou, A. Paleoceanographic Perturbations and the Marine Carbonate System during the Middle to Late Miocene Carbonate Crash—A Critical Review. Geosciences 2021, 11, 94. https://doi.org/10.3390/geosciences11020094
Preiss-Daimler I, Zarkogiannis SD, Kontakiotis G, Henrich R, Antonarakou A. Paleoceanographic Perturbations and the Marine Carbonate System during the Middle to Late Miocene Carbonate Crash—A Critical Review. Geosciences. 2021; 11(2):94. https://doi.org/10.3390/geosciences11020094
Chicago/Turabian StylePreiss-Daimler, Inga, Stergios D. Zarkogiannis, George Kontakiotis, Rüdiger Henrich, and Assimina Antonarakou. 2021. "Paleoceanographic Perturbations and the Marine Carbonate System during the Middle to Late Miocene Carbonate Crash—A Critical Review" Geosciences 11, no. 2: 94. https://doi.org/10.3390/geosciences11020094
APA StylePreiss-Daimler, I., Zarkogiannis, S. D., Kontakiotis, G., Henrich, R., & Antonarakou, A. (2021). Paleoceanographic Perturbations and the Marine Carbonate System during the Middle to Late Miocene Carbonate Crash—A Critical Review. Geosciences, 11(2), 94. https://doi.org/10.3390/geosciences11020094