Post-Impact Faulting of the Holfontein Granophyre Dike of the Vredefort Impact Structure, South Africa, Inferred from Remote Sensing, Geophysics, and Geochemistry
Abstract
:1. Introduction
2. General Geology
2.1. Geology of the Vredefort Impact Structure
2.2. Holfontein Granophyre Dike: Field Observations
3. Methods and Samples
3.1. Field and Aerial Observations
3.2. Sampling
3.3. Ground Magnetic Survey
3.4. Electrical Resistivity Tomography (ERT) Survey
3.5. Optical Microscopy and Scanning Electron Microscopy (SEM)
3.6. Major and Trace Element Laboratory Analyses
3.7. Isotope Geochemistry
4. Results
4.1. Field and Aerial Observations
4.2. Ground Magnetic Survey
4.3. Electrical Resistivity Tomography Survey
4.4. Optical Microscopy and SEM
4.4.1. Granophyre
4.4.2. Host Granites
4.5. Major and Trace Element Results
4.6. Oxygen Isotopes
5. Discussion
5.1. ERT Profiles and Magnetics
5.2. Oxygen Isotopes
5.3. Comparison of the Dike Segments
5.4. Timing of the Faulting
5.5. Observations Based on a Comparison of the Datasets
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grieve, R.; Therriault, A. Vredefort, Sudbury, Chicxulub: Three of a Kind? Annu. Rev. Earth Planet. Sci. 2000, 28, 305–338. [Google Scholar] [CrossRef]
- Huber, M.S.; Kovaleva, E.; Riller, U. Modeling the geochemical evolution of impact melts in terrestrial impact basins: Vredefort granophyre dikes and Sudbury offset dikes. Meteorit. Planet. Sci. 2020, 55, 2320–2337. [Google Scholar] [CrossRef]
- Therriault, A.M.; Reimold, W.U.; Reid, A.M. Field relations and petrography of the Vredefort Granophyre. S. Afr. J. Geol. 1996, 99, 1–21. [Google Scholar]
- Mccarthy, T.; Stanistreet, I.; Robb, L. Geological studies related to the origin of the Witwatersrand Basin and its mineralization: An introduction and a strategy for research and exploration. S. Afr. J. Geol. 1990, 93, 1–4. [Google Scholar]
- Therriault, A.M.; Grieve, R.A.F.; Reimold, W.U. Original size of the Vredefort structure: Implications for the geological evolution of the Witwatersrand Basin. Meteorit. Planet. Sci. 1997, 32, 71–77. [Google Scholar] [CrossRef]
- Pilles, E.A.; Osinski, G.R.; Grieve, R.A.F.; Smith, D.; Bailey, J. Formation of large-scale impact melt dikes: A case study of the Foy Offset Dike at the Sudbury impact structure, Canada. Earth Planet. Sci. Lett. 2018, 495, 224–233. [Google Scholar] [CrossRef]
- Bailey, J.; Lafrance, B.; McDonald, A.M.; Fedorowich, J.S.; Kamo, S.; Archibald, D.A. Mazatzal-Labradorian-age (1.7-1.6 Ga) ductile deformation of the South Range Sudbury impact structure at the Thayer Lindsley mine, Ontario. Can. J. Earth Sci. 2004, 41, 1491–1505. [Google Scholar] [CrossRef]
- Card, K.D.; Gupta, V.K.; McGrath, P.H.; Grant, F.S. The Sudbury Structure: Its Regional Geological and Geophysical Setting. In The Geology and Ore deposits of the Sudbury Structure; Ontario Geological Survery: Toronto, ON, Canada, 1984; pp. 25–44. [Google Scholar]
- Moser, D.E. Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa. Geology 1997, 25, 7–10. [Google Scholar] [CrossRef]
- Simpson, C. The structure of the rim synclinorium of the vredefort dome. Trans. Geol. Soc. S. Afr. 1978, 81, 115–121. [Google Scholar]
- Colliston, W.P. A model of compressional tectonics for the origin of the Vredefort structure. Tectonophysics 1990, 171, 115–118. [Google Scholar] [CrossRef]
- Therriault, A.M.; Reimold, W.U.; Reid, A.M. Geochemistry and impact origin of the Vredefort Granophyre. S. Afr. J. Geol. 1997, 100, 115–122. [Google Scholar]
- Kovaleva, E.; Huber, M.S.; Zaccarini, F. Petrography and geochemistry of coarse-crystalline veins within vredefort granophyre, vredefort impact structure, South Africa. S. Afr. J. Geol. 2018, 121, 383–402. [Google Scholar] [CrossRef]
- Cooper, M.R. Tectonic cycles in southern Africa. Earth Sci. Rev. 1990, 28, 321–364. [Google Scholar] [CrossRef]
- Wichman, R.W.; Schultz, P.H. Floor-fractured crater models of the Sudbury Structure, Canada: Implications for initial crater size and crater modification. Meteoritics 1993, 28, 222–231. [Google Scholar] [CrossRef]
- Lieger, D.; Riller, U. Emplacement history of Granophyre dikes in the Vredefort Impact Structure, South Africa, inferred from geochemical evidence. Icarus 2012, 219, 168–180. [Google Scholar] [CrossRef]
- Huber, M.S.; Kovaleva, E.; Clark, M.D.; Fourie, F. Evaluating the emplacement mechanisms of Vredefort impact melt dikes. In Proceedings of the 11th Planetary Crater Consortium, Honolulu, HI, USA, 5–7 August 2020; p. 2. [Google Scholar]
- Henkel, H.; Reimold, W.U. Integrated geophysical modelling of a giant, complex impact structure: Anatomy of the Vredefort Structure, South Africa. Tectonophysics 1998, 287, 1–20. [Google Scholar] [CrossRef]
- Hart, R.J.; Welke, H.J.; Nicolaysen, L.O. Geochronology of the deep profile through Archean basement at Vredefort, with implications for early crustal evolution. J. Geophys. Res. 1981, 86, 10663–10680. [Google Scholar] [CrossRef]
- Stepto, D. The geology and gravity field in the central core of the Vredefort structure. Tectonophysics 1990, 171, 75–103. [Google Scholar] [CrossRef]
- Hart, R.J.; Andreoli, M.A.G.; Tredoux, M.; De Wit, M.J. Geochemistry across an exposed section of Archaean crust at Vredefort, South Africa: With implications for mid-crustal discontinuities. Chem. Geol. 1990, 82, 21–50. [Google Scholar] [CrossRef]
- Bisschoff, A.A. The history and origin of the Vredefort Dome (South Africa). S. Afr. J. Sci. 1988, 84, 413–417. [Google Scholar]
- Lana, C.; Gibson, R.L.; Kisters, A.F.M.; Reimold, W.U. Archean crustal structure of the Kaapvaal craton, South Africa - evidence from the Vredefort dome. Earth Planet. Sci. Lett. 2003, 206, 133–144. [Google Scholar] [CrossRef]
- Bisschoff, A.A. The dioritic rocks of the Vredefort Dome. S. Afr. J. Geol. 1972, 75, 31–45. [Google Scholar]
- Huber, M.S.; Kovaleva, E. Identifying Gaps in the Investigation of the Vredefort Granophyre Dikes: A Systematic Literature Review. Geosciences 2020, 10, 306. [Google Scholar] [CrossRef]
- Harris, C.; le Roux, P.; Cochrane, R.; Martin, L.; Duncan, A.R.; Marsh, J.S.; le Roex, A.P.; Class, C. The oxygen isotope composition of Karoo and Etendeka picrites: High δ18O mantle or crustal contamination? Contrib. Mineral. Petrol. 2015, 170, 8. [Google Scholar] [CrossRef]
- Bas, M.J.L.; Maitre, R.W.L.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Barker, F. Trondhjemite: Definition, Environment and Hypotheses of Origin. In Developments in Petrology; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1979; Volume 6, pp. 1–12. [Google Scholar]
- Harris, C.; Fourie, D.S.; Fagereng, A. Stable isotope evidence for impact-related pseudotachylite formation at Vredefort by local melting of dry rocks. S. Afr. J. Geol. 2013, 116, 101–118. [Google Scholar] [CrossRef]
- Fourie, F.D.; Huber, M.S.; Kovaleva, E. Geophysical characterization of the Daskop granophyre dyke and surrounding host rocks, Vredefort impact structure, South Africa. Meteorit. Planet. Sci. 2019, 54, 1579–1593. [Google Scholar] [CrossRef]
- Reimold, W.U.; Hoffmann, M.; Zaag, P.T.; Schmitt, R.-T.; Hauser, N.; Mohr-Westerheide, T. A geochemical contribution to the discussion about the genesis of impact-related pseudotachylitic breccias: Studies of PTB in the Otavi and Kudu Quarries of the Vredefort Dome support the “In Situ Formation” hypothesis. S. Afr. J. Geol. 2016, 119, 453–472. [Google Scholar] [CrossRef]
- Carporzen, L.; Gilder, S.A.; Hart, R.J. Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature 2005, 435, 198–201. [Google Scholar] [CrossRef]
- Hart, R.; Carporzen, L.; Gilder, S.; Muundjua, M.; Galdeano, A. Paleomagnetism of Vredefort: Plasma, Lightning, or? In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 5–9 December 2005; p. GP33A-0095. [Google Scholar]
- Hart, S.R.J.; Cloete, M. Impact related magnetic rocks from the Vredefort Impact Structure. Meteorit. Planet. Sci. Suppl. 1999, 34, A50. [Google Scholar]
- Cloete, M.; Hart, R.J.; Schmid, H.K.; Drury, M.; Demanet, C.M.; Sankar, K.V. Characterization of magnetite particles in shocked quartz by means of electron- and magnetic force microscopy: Vredefort, South Africa. Contrib. Mineral. Petrol. 1999, 137, 232–245. [Google Scholar] [CrossRef]
- Hart, R.J.; Hargraves, R.B.; Andreoli, M.A.G.; Tredoux, M.; Moctar Doucouré, C. Magnetic anomaly near the center of the Vredefort structure: Implications for impact-related magnetic signatures. Geology 1995, 23, 277. [Google Scholar] [CrossRef]
- Rao, M. Intense random magnetism in the vredefort dome. Geol. Soc. India 2006, 68, 154. [Google Scholar]
- Muundjua, M.; Hart, R.J.; Gilder, S.A.; Carporzen, L.; Galdeano, A. Magnetic imaging of the Vredefort impact crater, South Africa. Earth Planet. Sci. Lett. 2007, 261, 456–468. [Google Scholar] [CrossRef]
- Harris, C.; Smith, H.S.; Milner, S.C.; Erlank, A.J.; Duncan, A.R.; Marsh, J.S.; Ikin, N.P. Oxygen isotope geochemistry of the Mesozoic volcanics of the Etendeka Formation, Namibia. Contrib. Mineral. Petrol. 1989, 102, 454–461. [Google Scholar] [CrossRef]
- Koeberl, C.; Reimold, W.U.; Shirey, S.B. Re-Os isotope and geochemical study of the Vredefort Granophyre: Clues to the origin of the Vredefort structure, South Africa. Geology 1996, 24, 913–916. [Google Scholar] [CrossRef] [Green Version]
- McKeegan, K.D.; Leshin, L.A. Stable isotope variations in extraterrestrial materials. Rev. Mineral. Geochem. 2001, 43, 278–318. [Google Scholar] [CrossRef] [Green Version]
- Reimold, W.U.; Hauser, N.; Hansen, B.T.; Thirlwall, M.; Hoffmann, M. The impact pseudotachylitic breccia controversy: Insights from first isotope analysis of Vredefort impact-generated melt rocks. Geochim. Cosmochim. Acta 2017, 214, 266–281. [Google Scholar] [CrossRef]
- Lafrance, B.; Bygnes, L.; McDonald, A.M. Emplacement of metabreccia along the Whistle offset dike, Sudbury: Implications for post-impact modification of the Sudbury impact structure. Can. J. Earth Sci. 2014, 51, 466–484. [Google Scholar] [CrossRef]
- Huber, M.S.; Kovaleva, E.; Clark, M.D.; Prevec, S.A. Inhomogeneous distribution of lithic clasts within the Daskop Granophyre Dike, Vredefort Impact Structure: Implications for emplacement of impact melt in large impact structures. In Large Meteorite Impacts and Planetary Evolution VI, Geological Society of America Special Paper 550 (In Press); Reimold, W.U., Koeberl, C., Eds.; The Geological Sociey of America: Boulder, CO, USA, 2021. [Google Scholar]
- Prevec, S.A.; Büttner, S.H. Multiphase emplacement of impact melt sheet into the footwall: Offset dykes of the Sudbury Igneous Complex, Canada. Meteorit. Planet. Sci. 2018, 53, 1301–1322. [Google Scholar] [CrossRef]
- Zieg, M.J.; Marsh, B.D. The Sudbury Igneous Complex: Viscous emulsion differentiation of a superheated impact melt sheet. Bull. Geol. Soc. Am. 2005, 117, 1427–1450. [Google Scholar] [CrossRef]
- Lightfoot, P.G.; Keays, R.R.; Morrison, G.G.; Bite, A.; Farrell, K.P. Geochemical relationships in the sudbury igneous complex: Origin of the main mass and offset dikes. Econ. Geol. 1997, 92, 289–307. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Keays, R.R.; Morrison, G.G.; Bite, A.; Farrell, K.P. Geologic and geochemical relationships between the contact sublayer, inclusions, and the main mass of the Sudbury Igneous Complex; a case study of the Whistle Mine Embayment. Econ. Geol. 1997, 92, 647–673. [Google Scholar] [CrossRef]
Holfontein Granophyre Dike—North Segment | Holfontein Granophyre Dike—South Segment | Granitoids | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HGP18-01 | HGP18-02 | HGP18-03 | HGP18-04 | HGP18-05 | HGP18-06 | HGP18-07B | HGP18-08 | HGP18-09 | HGP18-10 | HGP18-11 | HGP18-12 | HGP18-13 | HGP18-14 | HGP18-15 | HGP18-16 | HGP18-17 | HGP18-18 | HGP18-19 | HGP18-20 | HGP18-G1 | 18-12-G1A | 18-12-G1B | HGP18-G2 | 18-12-G2A | 18-12-G2B | 18-12-G3 | |
Lat | −27.0139 | −27.01441 | −27.01452 | −27.01463 | −27.01504 | −27.01535 | −27.01545 | −27.01552 | −27.01591 | −27.01606 | −27.01677 | −27.01662 | −27.0166 | −27.01663 | −27.01635 | −27.01622 | −27.01627 | −27.01606 | −27.0161 | −27.01605 | −27.016054 | −27.016078 | −27.016078 | −27.015918 | −27.051998 | −27.051998 | −27.051496 |
Long | 27.37869 | 27.37837 | 27.37831 | 27.37825 | 27.37787 | 27.37790 | 27.37771 | 27.37778 | 27.37769 | 27.37749 | 27.37728 | 27.37752 | 27.37756 | 27.37757 | 27.37778 | 27.37785 | 27.37784 | 27.37801 | 27.37807 | 27.37814 | 27.37754 | 27.37725 | 27.37725 | 27.37798 | 27.37791 | 27.37791 | 27.37920 |
SiO2 | 66.6 | 65.6 | 65.8 | 66.8 | 65.7 | 66.7 | 65.7 | 67.0 | 67.7 | 66.8 | 67.4 | 66.6 | 66.1 | 66.9 | 66.6 | 67.1 | 66.8 | 67.3 | 66.9 | 67.5 | 69.2 | 70.4 | 72.6 | 69.8 | 64.5 | 64.4 | 66.1 |
TiO2 | 0.51 | 0.56 | 0.52 | 0.47 | 0.54 | 0.52 | 0.52 | 0.48 | 0.52 | 0.49 | 0.46 | 0.50 | 0.46 | 0.49 | 0.5 | 0.46 | 0.49 | 0.47 | 0.47 | 0.48 | 0.29 | 0.49 | 0.50 | 0.50 | 0.93 | 1.18 | 0.75 |
Al2O3 | 12.6 | 12.6 | 12.6 | 12.7 | 12.4 | 12.7 | 12.0 | 12.8 | 13.0 | 12.6 | 12.6 | 12.6 | 12.6 | 12.7 | 12.6 | 12.5 | 12.6 | 12.6 | 12.7 | 12.6 | 16.9 | 15.9 | 14.4 | 15.9 | 16.5 | 16.8 | 16.2 |
Fe2O3T | 7.22 | 7.20 | 7.19 | 7.02 | 7.28 | 7.22 | 6.83 | 6.91 | 7.24 | 7.03 | 6.89 | 7.27 | 7.33 | 7.15 | 7.14 | 6.95 | 7.12 | 6.95 | 7.08 | 6.99 | 2.01 | 3.20 | 2.77 | 2.87 | 5.49 | 5.88 | 4.21 |
MnO | 0.14 | 0.14 | 0.14 | 0.13 | 0.13 | 0.14 | 0.13 | 0.13 | 0.13 | 0.14 | 0.13 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.13 | 0.14 | 0.13 | 0.02 | 0.04 | 0.04 | 0.03 | 0.05 | 0.07 | 0.04 |
MgO | 3.62 | 3.20 | 3.50 | 3.38 | 3.82 | 3.32 | 3.14 | 3.16 | 3.24 | 3.29 | 3.21 | 3.51 | 4.19 | 3.64 | 3.77 | 3.57 | 3.33 | 3.43 | 3.56 | 3.52 | 0.77 | 0.62 | 0.68 | 0.62 | 1.44 | 1.54 | 1.16 |
CaO | 3.62 | 3.73 | 3.67 | 3.54 | 3.59 | 3.67 | 3.57 | 3.47 | 3.68 | 3.62 | 3.47 | 3.63 | 3.77 | 3.66 | 3.67 | 3.5 | 3.62 | 3.45 | 3.58 | 3.53 | 3.01 | 2.93 | 2.44 | 2.26 | 3.20 | 3.57 | 3.20 |
Na2O | 2.79 | 2.77 | 2.8 | 2.68 | 2.67 | 2.87 | 2.5 | 2.65 | 2.61 | 2.76 | 2.76 | 2.89 | 2.85 | 2.87 | 2.99 | 2.67 | 2.75 | 2.83 | 2.61 | 2.53 | 5.07 | 4.30 | 4.30 | 3.79 | 3.96 | 4.39 | 3.80 |
K2O | 2.29 | 2.32 | 2.27 | 2.34 | 2.31 | 2.32 | 2.21 | 2.38 | 2.36 | 2.35 | 2.34 | 2.27 | 2.12 | 2.36 | 2.31 | 2.31 | 2.34 | 2.33 | 2.34 | 2.38 | 2.22 | 1.58 | 1.89 | 3.62 | 3.05 | 2.28 | 2.40 |
P2O5 | 0.10 | 0.12 | 0.11 | 0.09 | 0.11 | 0.11 | 0.11 | 0.10 | 0.11 | 0.10 | 0.09 | 0.10 | 0.09 | 0.10 | 0.10 | 0.09 | 0.10 | 0.09 | 0.10 | 0.10 | 0.09 | 0.08 | 0.05 | 0.19 | 0.41 | 0.44 | 0.33 |
LOI | 0.13 | 0.21 | 0.01 | 0.00 | 0.01 | 0.02 | 0.10 | 0.01 | 0.22 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.07 | 0.01 | 0.00 | 0.00 | 0.00 | 0.83 | 0.70 | 0.67 | 0.78 | 0.79 | 0.65 | 0.86 |
Total | 99.7 | 98.4 | 98.6 | 99.1 | 98.6 | 99.6 | 93.8 | 99.1 | 100.7 | 99.3 | 99.4 | 99.5 | 99.6 | 99.9 | 99.8 | 99.3 | 99.3 | 98.9 | 99.3 | 99.7 | 100.5 | 100.2 | 100.3 | 100.3 | 100.4 | 101.3 | 99.0 |
Sc | 16 | 15 | 20 | 20 | 18 | 18 | 12 | 17 | 12 | 16 | 17 | 20 | 16 | 17 | 17 | 15 | 15 | 17 | 20 | 19 | 4 | 0 | 0 | 0 | 5 | 6 | 4 |
V | 87 | 91 | 88 | 82 | 92 | 87 | 87 | 84 | 87 | 85 | 84 | 88 | 85 | 88 | 85 | 83 | 84 | 85 | 85 | 84 | 5 | 35 | 26 | 27 | 56 | 53 | 49 |
Cr | 250 | 199 | 229 | 254 | 244 | 232 | 200 | 250 | 222 | 237 | 246 | 244 | 244 | 247 | 235 | 240 | 244 | 259 | 254 | 255 | 7 | 11 | 6 | 12 | 20 | 20 | 16 |
Co | 27 | 25 | 27 | 27 | 27 | 27 | 25 | 27 | 28 | 26 | 29 | 28 | 28 | 27 | 27 | 28 | 26 | 25 | 27 | 26 | 9 | 13 | 13 | 12 | 24 | 24 | 20 |
Ba | 471 | 471 | 467 | 457 | 452 | 462 | 448 | 488 | 461 | 464 | 464 | 464 | 441 | 453 | 473 | 458 | 452 | 467 | 458 | 468 | 867 | 538 | 709 | 1495 | 1410 | 1118 | 986 |
Ni | 121 | 101 | 113 | 119 | 117 | 117 | 103 | 121 | 112 | 115 | 118 | 121 | 123 | 117 | 115 | 123 | 117 | 124 | 121 | 119 | 7 | 5 | 9 | 10 | 9 | 14 | 12 |
Cu | 53 | 52 | 54 | 53 | 53 | 56 | 54 | 57 | 51 | 54 | 53 | 55 | 57 | 54 | 54 | 51 | 53 | 57 | 54 | 52 | 5 | 15 | 14 | 10 | 21 | 38 | 6 |
Zn | 65 | 58 | 58 | 45 | 66 | 59 | 57 | 61 | 66 | 55 | 56 | 59 | 53 | 54 | 61 | 69 | 56 | 66 | 60 | 59 | 31 | 64 | 63 | 39 | 71 | 84 | 60 |
Rb | 66 | 66 | 65 | 69 | 66 | 67 | 67 | 67 | 67 | 68 | 69 | 65 | 60 | 69 | 67 | 67 | 68 | 68 | 67 | 67 | 33 | 23 | 30 | 80 | 56 | 39 | 61 |
Sr | 254 | 263 | 260 | 251 | 256 | 256 | 255 | 267 | 252 | 252 | 249 | 251 | 259 | 250 | 252 | 247 | 251 | 254 | 255 | 257 | 760 | 670 | 628 | 761 | 798 | 839 | 706 |
Y | 17 | 18 | 17 | 16 | 17 | 17 | 17 | 16 | 17 | 17 | 16 | 16 | 16 | 16 | 16 | 17 | 16 | 16 | 16 | 16 | 3 | 3 | 3 | 8 | 12 | 13 | 10 |
Zr | 144 | 151 | 144 | 142 | 148 | 144 | 148 | 147 | 145 | 144 | 141 | 140 | 130 | 143 | 143 | 142 | 143 | 145 | 144 | 144 | 135 | 347 | 276 | 341 | 334 | 393 | 298 |
Nb | 7 | 8 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 8 | 9 | 10 | 16 | 21 | 10 |
Mo | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 4 | 2 | 2 | 1 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Pb | 14 | 10 | 11 | 12 | 12 | 13 | 12 | 12 | 11 | 12 | 13 | 10 | 12 | 13 | 12 | 11 | 11 | 13 | 12 | 14 | 12 | 37 | 24 | 34 | 19 | 18 | 19 |
Th | 6 | 7 | 6 | 7 | 6 | 7 | 6 | 7 | 6 | 6 | 7 | 6 | 6 | 6 | 7 | 7 | 7 | 6 | 8 | 6 | b.d.l. | 68 | 32 | 31 | 15 | 13 | 13 |
U | 2 | 3 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 3 | b.d.l. | b.d.l. | 4 | b.d.l. | 2 | 2 | 3 | 2 | b.d.l. | b.d.l. | 3 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 1 | b.d.l. | 3 | b.d.l. | b.d.l. |
d18O | 7.4 | 6.9 | 7.1 | 7.0 | 8.6 | 7.6 | 7.8 | 7.8 | 7.7 | 8.7 | 7.5 | 7.3 | 7.5 | 7.6 | 7.8 | 7.3 | 7.6 | 7.4 | 7.1 | 7.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, M.D.; Kovaleva, E.; Huber, M.S.; Fourie, F.; Harris, C. Post-Impact Faulting of the Holfontein Granophyre Dike of the Vredefort Impact Structure, South Africa, Inferred from Remote Sensing, Geophysics, and Geochemistry. Geosciences 2021, 11, 96. https://doi.org/10.3390/geosciences11020096
Clark MD, Kovaleva E, Huber MS, Fourie F, Harris C. Post-Impact Faulting of the Holfontein Granophyre Dike of the Vredefort Impact Structure, South Africa, Inferred from Remote Sensing, Geophysics, and Geochemistry. Geosciences. 2021; 11(2):96. https://doi.org/10.3390/geosciences11020096
Chicago/Turabian StyleClark, Martin D., Elizaveta Kovaleva, Matthew S. Huber, Francois Fourie, and Chris Harris. 2021. "Post-Impact Faulting of the Holfontein Granophyre Dike of the Vredefort Impact Structure, South Africa, Inferred from Remote Sensing, Geophysics, and Geochemistry" Geosciences 11, no. 2: 96. https://doi.org/10.3390/geosciences11020096
APA StyleClark, M. D., Kovaleva, E., Huber, M. S., Fourie, F., & Harris, C. (2021). Post-Impact Faulting of the Holfontein Granophyre Dike of the Vredefort Impact Structure, South Africa, Inferred from Remote Sensing, Geophysics, and Geochemistry. Geosciences, 11(2), 96. https://doi.org/10.3390/geosciences11020096