Sedimentology and Stratigraphy of an Upper Permian Sedimentary Succession: Northern Sydney Basin, Southeastern Australia
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Sedimentary Facies and Facies Associations
4.1. Facies Association FA1: Fluvial Channels
4.1.1. Description
4.1.2. Interpretation
4.2. Facies Association FA2: Weakly Tidally-Influenced Channels (Upper Delta-Plain)
4.2.1. Description
4.2.2. Interpretation
4.3. Facies Association FA3: Tidally-Influenced Channels (Lower Delta-Plain)
4.3.1. Description
4.3.2. Interpretation
4.4. Facies Association FA4: Overbank Deposits
4.4.1. Description
4.4.2. Interpretation
4.5. Facies Association FA5: Coal-Prone Floodplain Deposits
4.5.1. Description
4.5.2. Interpretation
4.6. Facies Association FA6: Delta Front Deposits
4.6.1. Description
4.6.2. Interpretation
4.7. Facies Association FA7: Prodelta Deposits
4.7.1. Description
4.7.2. Interpretation
5. Stratigraphy
6. Discussion
6.1. Fluvial, Tidal and Wave Contribution on Sedimentation and Palaeogeographic Implications
6.2. Sequence Stratigraphic Implications
7. Conclusions
- The studied sedimentary rocks are composed of fifteen facies and are grouped into seven facies associations that correspond to deltaic (prodelta, delta-front, lower and upper delta-plain) and fluvial depositional environments.
- These Lower Permian sedimentary rocks reflect the variable temporal balance in the impact of storm/wave and tidal processes. The deltaic system records the prevalence of tidal currents during the deposition, with abundance of tidal sedimentary structures.
- A tidally-influenced, regressive fluvio-deltaic depositional setting is envisaged based on the: (1) Stratigraphic evolution that illustrates a large-scale shoaling upward trend, from prodelta deposits, through delta-front and delta-plain sedimentary rocks to fluvial environments of deposition, (2) General coarsening upward trend that implies progradation, and (3) Lack of deepening upward successions.
- This deltaic system illustrates an up-section deceleration in the tidal influence, with an associated increase in the fluvial energy. As such, sedimentary structures of tidal origin are abundant in the prodelta and lower delta-plain deposits, become less frequent in the upper delta-plain sediments, and eventually become almost absent in the overlying fluvial system.
- This system occurs along the entire studied region, which is volcanically active. Tuff beds are common in the succession and occur at several stratigraphic levels. However, the fluvio-deltaic boundary is characterized by intense volcanism that is recorded throughout the study area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Martinius, A.W.; Kaas, I.; Naess, A.; Helgesen, G.; Kjaerefjord, J.M.; Keith, D.A. Sedimentology of heterolithic and tide-dominated Tilje Formation (Early Jurassic, Halten Terrace, offshore mid-Norway). In Sedimentary Environments Offshore Norway-Paleozoic to Recent: Norwegian Petroleum Foundation Special Publication; Martinsen, O.J., Dreyer, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 10, pp. 103–144. [Google Scholar]
- Legler, B.; Johnson, H.D.; Hampson, G.J.; Massart, B.Y.G.; Jackson, C.A.L.; Jackson, M.D.; El-Barkooky, A.; Ravnas, R. Facies model of a fine-grained, tide-dominated delta: Lower Dir Abu Lifa Member (Eocene), Western Desert, Egypt. Sedimentology 2013, 60, 1313–1356. [Google Scholar] [CrossRef]
- Boyd, R.; Dalrymple, R.W.; Zaitlin, B.A. Estuarine and Incised-Valley Facies Models. Facies Models Revisit. 2006, 84, 171–235. [Google Scholar]
- Breckenridge, J.; Maravelis, A.G.; Catuneanu, O.; Ruming, K.; Holmes, E.; Collins, W.J. Outcrop analysis and facies model of an Upper Permian tidally influenced fluvio-deltaic system: Northern Sydney Basin, SE Australia. Geol. Mag. 2019, 156, 1715–1741. [Google Scholar] [CrossRef]
- Willis, B.J.; Gabel, S.L. Sharp-based, tide-dominated deltas of the Sego sandstone, Book Cliffs, Utah, USA. Sedimentology 2001, 46, 479–506. [Google Scholar] [CrossRef]
- Pontén, A.; Plink-Björklund, P. Depositional environments in an extensive tide-influenced delta plain, Middle Devonian Gauja Formation, Devonian Baltic Basin. Sedimentology 2007, 54, 969–1006. [Google Scholar] [CrossRef]
- Pontén, A.; Plink-Björklund, P. Regressive to transgressive transits reflected in tidal bars, Middle Devonian Baltic Basin. Sediment. Geol. 2009, 218, 48–60. [Google Scholar] [CrossRef]
- Porebski, S.J.; Steel, R.J. Deltas and sea-level change. J. Sediment. Res. 2006, 76, 390–403. [Google Scholar] [CrossRef]
- Ainsworth, R.B.; Vakarelov, B.K.; Nanson, R.A. Dynamic spatial and temporal prediction of changes in depositional processes on clastic shorelines: Toward improved subsurface uncertainty reduction and management. AAPG Bull. 2011, 95, 267–297. [Google Scholar] [CrossRef]
- Plink-Björklund, P. Effects of tides on deltaic deposition: Causes and responses. Sediment. Geol. 2012, 279, 107–133. [Google Scholar] [CrossRef]
- Rossi, V.M.; Steel, R.J. The role of tidal, wave and river currents in the evolution of mixed-energy deltas: Example from the Lajas Formation (Argentina). Sedimentology 2016, 63, 824–864. [Google Scholar] [CrossRef] [Green Version]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine facies models: Conceptual basis and stratigraphic implications. J. Sediment. Petrol. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Plink-Björklund, P. Stacked fluvial and tide-dominated estuarine deposits in high-frequency (fourth-order) sequences of the Eocene Central Basin, Spitsbergen. Sedimentology 2005, 52, 391–428. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Choi, K. Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth Sci. Rev. 2007, 81, 135–174. [Google Scholar] [CrossRef]
- Stewart, R.; Adler, D. New South Wales Petroleum Potential. Coal and Petroleum Geology Branch Bulletin 1, 5–36; New South Wales Department of Mineral Resources: Sydney, Australia, 1995.
- Alder, J.; Hawley, S.; Maung, T.; Scott, J.; Shaw, R.; Sinelnikov, A.; Kouzmina, G. Prospectivity of the Offshore Sydney Basin: A New Perspective. APPEA J. 1998, 38, 68–92. [Google Scholar] [CrossRef]
- Montoya, D. Coal Seam Gas Royalties in Australian States & Territories; NSW Parliament: Sydney, Australia, 2012.
- Maravelis, A.; Chamilaki, E.; Pasadakis, N.; Zelilidis, A.; Collins, W.J. Hydrocarbon generation potential of a Lower Permian sedimentary succession (Mount Agony Formation): Southern Sydney Basin, New South Wales, Southeast Australia. Int. J. Coal Geol. 2017, 183, 52–64. [Google Scholar] [CrossRef]
- Maravelis, A.; Chamilaki, E.; Pasadakis, N.; Vassiliou, A.; Zelilidis, A. Organic geochemical characteristics and paleodepositional conditions of an Upper Carboniferous mud-rich succession (Yagon Siltstone): Myall Trough, southeast Australia. J. Pet. Sci. Eng. 2017, 158, 322–335. [Google Scholar] [CrossRef]
- Palozzi, J.; Pantopoulos, G.; Maravelis, A.G.; Nordsvan, A.; Zelilidis, A. Sedimentological analysis and bed thickness statistics from a Carboniferous deep-water channel-levee complex: Myall Trough, SE Australia. Sediment. Geol. 2018, 364, 160–179. [Google Scholar] [CrossRef]
- Holz, M.; Kalkreuth, W.; Banerjee, I. Sequence stratigraphy of paralic coal-bearing strata: An overview. Int. J. Coal Geol. 2002, 48, 147–179. [Google Scholar] [CrossRef]
- McIlroy, D.; Flint, S.S.; Howell, J.A.; Timms, N. Sedimentology of the tide-dominated Jurassic Lajas Formation, Neuqu en Basin, Argentina. Geol. Soc. Lond. Spec. Publ. 2005, 252, 83–107. [Google Scholar] [CrossRef]
- Desjardins, P.R.; Buatois, L.A.; Pratt, B.R.; Mangano, G. Forced regressive tidal flats: Response to falling sea level in tide-dominated settings. J. Sediment. Res. 2012, 82, 149–162. [Google Scholar] [CrossRef]
- Chen, S.; Steel, R.J.; Dixon, J.F.; Osman, A. Facies and architecture of a tide-dominated segment of the Late Pliocene Orinoco Delta (Morne L’Enfer Formation) SW Trinidad. Mar. Pet. Geol. 2014, 57, 208–232. [Google Scholar] [CrossRef]
- Lv, D.; Chen, J. Depositional environments and sequence stratigraphy of the Late Carboniferous À Early Permian coal-bearing successions (Shandong Province, China): Sequence development in an epicontinental basin. J. Asian Earth Sci. 2014, 79, 16–30. [Google Scholar] [CrossRef]
- Zelilidis, A.; Kontopoulos, N. Plio-Pleistocene alluvial architecture in marginal extensional narrow sub-basins: Examples from southwest Greece. Geol. Mag. 1999, 136, 241–262. [Google Scholar] [CrossRef]
- Lan, C.; Yang, M.; Zhang, Y. Impact of sequence stratigraphy, depositional facies and diagenesis on reservoir quality: A case study on the Pennsylvanian Taiyuan sandstones, northeastern Ordos Basin, China. Mar. Pet. Geol. 2016, 69, 216–230. [Google Scholar] [CrossRef]
- Warbrooke, P.R. Depositional Environments of the Upper Tomago and Lower Newcastle Coal Measures, New South Wales. Ph.D. Thesis, University of Newcastle, Callaghan, Australia, 1981. [Google Scholar]
- Diessel, C.F.K. Coal-Bearing Depositional Systems; Springer: Berlin/Heidelberg, Germany, 1992; p. 721. [Google Scholar]
- Agnew, D.; Bocking, M.; Brown, K.; Ives, M.; Johnson, D.; Howes, M.; Preston, B.; Rigby, R.; Warbrooke, P.; Weber, C.R. Sydney Basin—Newcastle Coalfield. In Geology of Australian Coal Basins; Ward, C.R., Harrington, H.J., Mallett, C.W., Beeston, J.W., Eds.; Coal Geology Group, Special Publication; Geological Society of Australia Inc.: Hornsby, Australia, 1995; Volume 1, pp. 197–212. [Google Scholar]
- Herbert, C. Sequence stratigraphy of the Late Permian Coal Measures in the Sydney Basin. Aust. J. Earth Sci. 1995, 42, 391–405. [Google Scholar] [CrossRef]
- Herbert, C. Relative sea level control of deposition in the Late Permian Newcastle Coal Measures of the Sydney Basin, Australia. Sediment. Geol. 1997, 107, 167–187. [Google Scholar] [CrossRef]
- Stevenson, D. Broke Drilling Programme Geological Report; Geological Survey Report No. GS 1999/277; Department of Mineral Resources: St. Leonards, Australia, 1999.
- Creech, M.K.; Ives, M.; Stevenson, D.; Brunton, J.; Rigby, R.; Leary, S.; Graham, P.; Smith, C.; Atkins, B.; Knight, C.; et al. A revision of the stratigraphy of the Wollombi Coal Measures. Minfo 2004, 81, 24–25. [Google Scholar]
- Fielding, C.R.; Frank, T.D.; Tevyaw, A.P.; Savatic, K.; Vajda, V.; McLoughlin, S.; Crowley, J.L. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 2021, 68, 30–62. [Google Scholar] [CrossRef]
- Fielding, C.R.; Frank, T.D.; McLoughlin, S.; Vajda, V.; Mays, C.; Tevyaw, A.P.; Winguth, A.; Winguth, C.; Nicoll, R.S.; Bocking, M.; et al. Age and pattern of southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 2019, 10, 385. [Google Scholar] [CrossRef]
- McLoughlin, S.; Nicoll, R.S.; Crowley, J.L.; Vajda, V.; Mays, C.; Fielding, C.R.; Frank, T.D.; Wheeler, A.; Bocking, M. Age and Paleoenvironmental Significance of the Frazer Beach Member—A New Lithostratigraphic Unit Overlying the End-Permian Extinction Horizon in the Sydney Basin, Australia. Front. Earth Sci. 2021, 8, 600976. [Google Scholar] [CrossRef]
- Metcalfe, I.; Crowley, J.L.; Nicoll, R.S.; Schmitz, M. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 2015, 28, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Maravelis, A.G.; Breckenridge, J.; Ruming, K.; Holmes, E.; Amelin, Y.; Collins, W.J. Re-assessing the Upper Permian Stratigraphic Succession of the Northern Sydney Basin, Australia, by CA-IDTIMS. Geosciences 2020, 10, 474. [Google Scholar] [CrossRef]
- Hawley, S.P.; Glen, R.A.; Baker, C.J. Newcastle Coalfield Regional Geology Sheet 1:100 000; New South Wales Department of Mineral Resources: Sydney, Australia, 1995.
- Percival, I.G.; Meakin, N.S.; Sherwin, L.; Vanderlaan, T.A.; Flitcroft, P.A. Permian fossils and palaeoenvironments of the northern Sydney Basin, New South Wales. Q. Notes 2012, 138, 1–22. [Google Scholar]
- Crawford, T.J.; Meffre, S.; Squire, R.J.; Barron, L.M.; Falloon, T.J. Middle and Late Ordovician magmatic evolution of the Macquarie Arc, Lachlan Orogen, New South Wales. Aust. J. Earth Sci. 2007, 54, 181–214. [Google Scholar] [CrossRef]
- Scheibner, E. Explanatory Notes on the Tectonic Map of New South Wales, Scale 1:1,000,000; New South Wales Geological Survey: Sydney, Australia, 1976; p. 283.
- Jones, J.G.; Conaghan, P.J.; McDonnell, K.L.; Flood, P.H.; Royce, K. Papuan analogue and a foreland basin model for the Bowen–Sydney Basin. In The Phanerozoic Earth History of Australia; Veevers, J.J., Ed.; Oxford University Press: Oxford, UK, 1984; pp. 243–261. [Google Scholar]
- Danis, C.; Daczko, N.R.; Lackie, M.; Craven, S.J. Retrograde metamorphism of the Wongwibinda Complex, New England Fold Belt and the implications of 2.5D subsurface geophysical structure for the metamorphic history. Aust. J. Earth Sci. 2010, 57, 357–375. [Google Scholar] [CrossRef]
- Collins, W.J. A reassessment of the ‘Hunter-Bowen Orogeny’: Tectonic implications for the southern New England fold belt. Aust. J. Earth Sci. 1991, 38, 409–423. [Google Scholar] [CrossRef]
- Landenberger, B.; Farrell, T.; Offler, R.; Collins, W.; Whitford, D. Tectonic implications of Rb_Sr biotite ages for the Hillgrove Plutonic Suite, New England Fold Belt, NSW, Australia. Precambrian Res. 1995, 71, 251–263. [Google Scholar] [CrossRef]
- Belica, M.; Tohver, E.; Pisarevsky, S.; Jourdan, F.; Denyszyn, S.W.; George, A.D. Middle Permian paleomagnetism of the Sydney Basin, Eastern Gondwana: Testing Pangea models and the timing of the end of the Kiaman Reverse Superchron. Tectonophysics 2017, 699, 178–198. [Google Scholar] [CrossRef]
- Jenkins, R.B.; Offler, R. Metamorphism and deformation of an Early Permian extensional basin sequence: The Manning Group, southern New England Orogen. Aust. J. Earth Sci. 1996, 43, 423–435. [Google Scholar] [CrossRef]
- Williams, M.; Jones, B.G.; Carr, P. Geochemical consequences of the Permian–Triassic mass extinction in a non-marine succession, Sydney Basin, Australia. Chem. Geol. 2012, 326, 174–188. [Google Scholar] [CrossRef]
- Veevers, J.J.; Conaghan, P.J.; Powell, C.M. Eastern Australia, Permian–Triassic Pangean Basins and Foldbelts along the Panthalassan Margin of Gondwanaland; Geological Society of America: Boulder, CO, USA, 1994; Volume 174, pp. 11–171. [Google Scholar]
- Korsch, R.; Totterdell, J.M.; Cathro, D.L.; Nicoll, M.G. Early Permian East Australian Rift System. Aust. J. Earth Sci. 2009, 56, 381–400. [Google Scholar] [CrossRef]
- Li, P.; Rosenbaum, G.; Vasconcelos, P. Chronological constraints on the Permian geodynamic evolution of eastern Australia. Tectonophysics 2014, 617, 20–30. [Google Scholar] [CrossRef]
- Roberts, J.L.; Offler, R.; Fanning, M.; Fanning, C. Carboniferous to Lower Permian stratigraphy of the southern Tamworth Belt, southern New England Orogen, Australia: Boundary sequences of the Werrie and Rouchel blocks. Aust. J. Earth Sci. 2006, 53, 249–284. [Google Scholar] [CrossRef]
- Armstrong, M.; Bamberry, W.J.; Hutton, A.; Jones, B.G. Sydney Basin—Southern Coalfield 1995. In Geology of Australian Coal Basins; Ward, C.R., Harrington, H.J., Mallett, C.W., Beeston, J.W., Eds.; Geological Society of Australia Coal Geology Group: Sydney, Australia, 1995; Volume 1, pp. 213–230. [Google Scholar]
- Bamberry, W.J.; Hutton, A.C.; Jones, B.G. The Permian Illawarra Coal Measures, southern Sydney Basin, Australia: A case study of deltaic sedimentation. In Geology of Deltas; Oti, M., Postma, G., Eds.; Balkema: Rotterdam, The Netherlands, 1995; pp. 153–167. [Google Scholar]
- Veevers, J. Updated Gondwana (Permian–Cretaceous) earth history of Australia. Gondwana Res. 2006, 9, 231–260. [Google Scholar] [CrossRef]
- Jenkins, R.B.; Landenberger, B.; Collins, W.J. Late Palaeozoic retreating and advancing subduction boundary in the New England Fold Belt, New South Wales. Aust. J. Earth Sci. 2002, 49, 467–489. [Google Scholar] [CrossRef]
- McNally, G.H.; Branagan, D.F. Geotechnical consequences of the Newcastle Coal Measures rocks. Aust. J. Earth Sci. 2013, 61, 363–374. [Google Scholar] [CrossRef]
- Mantle, D.J.; Kelman, A.P.; Nicoll, R.S.; Laurie, J.R. Australian Biozonation Chart; Geoscience Australia: Canberra, Australia, 2010. Available online: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_70371 (accessed on 22 November 2020).
- Dehghani, M.H. Sedimentology, Genetic Stratigraphy and Depositional Environment of the Permo-Triassic Succession in the Southern Sydney Basin, Australia. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 1994. [Google Scholar]
- Retallack, G.J. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol. Soc. Am. Bull. 1999, 111, 52–70. [Google Scholar] [CrossRef]
- White, R.V.; Saunders, A. Volcanism, impact and mass extinctions: Incredible or credible coincidences? Lithos 2005, 79, 299–316. [Google Scholar] [CrossRef]
- Holcombe, R.; Stephens, C.; Fielding, C.; Gust, D.; Little, T.; Sliwa, R.; Kassan, J.; McPhie, J.; Ewart, A. Tectonic evolution of the northern New England Fold Belt: The Permian–Triassic Hunter–Bowen event. Tecton. Metallog. N. Engl. Orogen 1997, 19, 52–65. [Google Scholar]
- Li, P.F.; Rosenbaum, G.; Rubatto, D. Triassic asymmetric subduction rollback in the southern New England Orogen (eastern Australia): The end of the Hunter-Bowen Orogeny. Aust. J. Earth Sci. 2012, 59, 965–981. [Google Scholar] [CrossRef]
- Nichols, G.J.; Fisher, J.A. Processes, facies and architecture of fluvial distributary system deposits. Sediment. Geol. 2007, 195, 75–90. [Google Scholar] [CrossRef]
- Catuneanu, O.; Khalifa, M.A.; Wanas, H.A. Sequence stratigraphy of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt. Sediment. Geol. 2016, 190, 121–137. [Google Scholar] [CrossRef]
- Di Celma, C.; Cantalamessa, G.; Landini, W.; Ragaini, L. Stratigraphic evolution from shoreface to shelf-indenting channel depositional systems during transgression: Insights from the lower Pliocene Súa Member of the basal Upper Onzole Formation, Borbon Basin, northwest Ecuador. Sediment. Geol. 2010, 223, 162–179. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Boutelier, D.; Catuneanu, O.; Seymour, K.S.; Zelilidis, A. A review of tectonics and sedimentation in a forearc setting: Hellenic Thrace Basin, north Aegean Sea and northern Greece. Tectonophysics 2016, 674, 1–19. [Google Scholar] [CrossRef]
- Lloret, J.; Ronchi, A.; López-Gómez, J.; Arche, A.; De la Horra, R.; Barrenechea, J.; Gretter, N. Syn-tectonic sedimentary evolution of the continental late Palaeozoic-early Mesozoic Erill Castell-Estac Basin and its significance in the development of the central Pyrenees Basin. Sediment. Geol. 2018, 374, 134–157. [Google Scholar] [CrossRef]
- Miall, A.D. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Nemec, W.; Postma, G. Quaternary alluvial fans in southwestern Crete: Sedimentation processes and geomorphic evolution. Alluvial Sedimentation—Special Publications. Int. J. Sedimentol. 1993, 17, 235–276. [Google Scholar]
- Nemec, W.; Steel, R.J. Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass-flow deposits. Sedimentol. Gravels Conglom. 1984, 10, 1–31. [Google Scholar]
- Collinson, J.D. Alluvial Sediments; Blackwell Science: Hoboken, NJ, USA, 1996. [Google Scholar]
- Collinson, J.D.; Mountney, N.P.; Thompson, D. Sedimentary Structures, 3rd ed.; Terra Publishing: Harpenden, UK, 2006. [Google Scholar]
- Moretti, M.; Ronchi, A. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia). Sediment. Geol. 2011, 235, 200–209. [Google Scholar] [CrossRef]
- Bridge, J.S. Fluvial Facies Models: Recent Developments; Facies Models Revisited; Special Publication; SEPM: Tulsa, OK, USA, 2006; Volume 84, pp. 85–170. [Google Scholar]
- Allen, J.R.L. Sedimentary Processes and Facies in the Gironde Estuary: A Recent Model for Macrotidal Estuarine Systems. Can. Soc. Pet. Geol. Spec. Publ. 1991, 16, 29–39. [Google Scholar]
- Allen, J.R.L. Sand waves: A model of origin and internal structure. Sediment. Geol. 1980, 26, 281–328. [Google Scholar] [CrossRef]
- Marchetti, L.; Ronchi, A.; Santi, G.; Voigt, S. The Gerola Valley site (Orobic Basin, Northern Italy): A key for the understanding of late Early Permian tetrapod ichnofaunas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 439, 95–116. [Google Scholar] [CrossRef]
- Berra, F.; Felletti, F. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): Stratigraphic significance. Sediment. Geol. 2011, 235, 249–263. [Google Scholar] [CrossRef]
- Mellere, D.; Steel, R.J. Tidal Sedimentation in Inner Hebrides Half Grabens, Scotland: The Mid-Jurassic Bearreraig Sandstone Formation. Geol. Soc. Lond. Spec. Publ. 1996, 117, 49–79. [Google Scholar] [CrossRef]
- Visser, M.J. Neap-Spring cycles reflected in Holocene subtidal large-scale bedform deposits: A preliminary note. Geology 1980, 8, 543–546. [Google Scholar] [CrossRef]
- Nio, S.D.; Yang, C.S. Sea-level fluctuations and geometric variability of tide-dominated sandbodies. Sediment. Geol. 1991, 70, 161–193. [Google Scholar] [CrossRef]
- Hampton, B.A.; Horton, B.K. Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology 2007, 54, 1121–1148. [Google Scholar] [CrossRef]
- Buatois, L.A.; Santiago, N.; Herrera, M.; Plink-Björklund, P.; Steel, S.; Espin, M.; Parra, K. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline. Sedimentology 2012, 59, 1568–1612. [Google Scholar] [CrossRef]
- Guion, P.D.; Fulton, I.M.; Jones, N.S. Sedimentary facies of the coalbearing Westphalian A and B north of the Wales-Brabant High. In European Coal Geology; Whateley, M.K.G., Spears, D.A., Eds.; Special Publication No. 82; Geological Society of London: London, UK, 1995; pp. 45–78. [Google Scholar]
- Davies, R.; Howell, J.; Boyd, R.; Flint, S.; Diessel, C. High-resolution sequence stratigraphic correlation between shallow-marine and terrestrial strata: Examples from the Sunnyside Member of the Cretaceous Blackhawk Formation, Book Cliffs, eastern Utah. Am. Assoc. Pet. Geol. 2006, 90, 1121–1140. [Google Scholar] [CrossRef]
- Myrow, P.M.; Southard, J.B. Combined-flow model for vertical stratification sequences in shallow marine storm-deposited beds. J. Sediment. Petrol. 1991, 61, 202–210. [Google Scholar]
- Ghani, M.; Bhattacharya, J.P. Basic Building Blocks and Process Variability of a Cretaceous Delta: Internal Facies Architecture Reveals a More Dynamic Interaction of River, Wave, and Tidal Processes Than Is Indicated by External Shape. J. Sediment. Res. 2007, 77, 284–302. [Google Scholar] [CrossRef] [Green Version]
- Miall, A.D. Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits. Earth-Sci. Rev. 1985, 22, 261–308. [Google Scholar] [CrossRef]
- Leckie, D.A.; Walker, R.G. Storm and tide dominated shorelines in Late Cretaceous Moosebar-Lower Gates Interval—Outcrop equivalents of deep basin gas traps in western Canada. Am. Assoc. Pet. Geol. 1982, 66, 138–157. [Google Scholar]
- De Raaf, J.F.M.; Boersma, J.R.; Van Gelder, A. Wave generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sedimentology 1977, 4, 1–52. [Google Scholar]
- Dumas, S.; Arnott, R.W.C. Origin of hummocky and swaley crossstratification: The controlling influence of unidirectional current strength and aggradation. Geology 2006, 34, 1073–1076. [Google Scholar] [CrossRef]
- Pemberton, G.S.; Spila, M.; Pulham, A.J.; Saunders, T.; MacEachern, J.A.; Robbins, D.; Sinclair, I.K. Ichnology and Sedimentology of Shallow Marine to Marginal Marine Systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin; Short Course Notes 15; Geological Association of Canada: St. John’s, NL, Canada, 2002; p. 343. [Google Scholar]
- MacEachern, J.A.; Bann, K.L. The role of ichnology in refining shallow marine facies models. In Recent Advances in Models of Siliciclastic ShallowMarine Stratigraphy; Hampson, G.J., Steel, R.J., Burgess, P.M., Dalrymple, R.W., Eds.; SEPM: Tulsa, OK, USA, 2008; Volume 90, pp. 73–116. [Google Scholar]
- Eide, C.H.; Howell, J.A.; Buckley, S.J.; Martinius, A.W.; Oftedal, B.T.; Henstra, G.A. Facies model for a coarse-grained, tide-influenced delta: Gule Horn Formation (Early Jurassic), Jameson Land, Greenland. Sedimentology 2016, 63, 1474–1506. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, J.P.; MacEachern, J.A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. J. Sediment. Res. 2009, 79, 184–209. [Google Scholar] [CrossRef]
- Nichols, G. Sedimentology and Stratigraphy; Blackwell Science Ltd.: London, UK, 2009; p. 335. [Google Scholar]
- Bowman, A.P.; Johnson, H.D. Storm-dominated shelf-edge delta successions in a high accommodation setting: The palaeo-Orinoco Delta (Mayaro Formation), Columbus Basin, South-East Trinidad. Sedimentology 2013, 61, 792–835. [Google Scholar] [CrossRef]
- Olariu, C.; Bhattacharya, J. Terminal Distributary Channels and Delta Front Architecture of River-Dominated Delta Systems. J. Sediment. Res. 2006, 76, 212–233. [Google Scholar] [CrossRef] [Green Version]
- Deveugle, P.E.K.; Jackson, M.D.; Hampson, G.J.; Farrell, M.E.; Sprague, A.R.; Stewart, J.; Calvert, C.S. Characterization of stratigraphic architecture and its impact on fluid flow in a fluvial-dominated deltaic reservoir analog: Upper Cretaceous Ferron Sandstone Member, Utah. AAPG Bull. 2011, 95, 693–727. [Google Scholar] [CrossRef]
- Tänavsuu-Milkeviciene, K.; Plink-Björklund, P. Recognizing tide-dominated versus tide-influenced deltas: Middle Devonian strata of the Baltic Basin. J. Sediment. Res. 2009, 79, 887–905. [Google Scholar] [CrossRef]
- Goodbred, S.L.J.R.; Saito, Y. Tide-dominated deltas. In Principles of Tidal Sedimentology; Davis, R.A., Dalrymple, R.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 129–149. [Google Scholar]
- Cattaneo, A.; Steel, R.J. Transgressive deposits: A review of their variability. Earth Sci. Rev. 2003, 62, 187–228. [Google Scholar] [CrossRef]
- Catuneanu, O.; Galloway, W.E.; Kendall, C.G.S.C.; Miall, A.D.; Posamentier, H.W.; Strasser, A.; Tucker, M.E. Sequence stratigraphy: Methodology and nomenclature. Newsl. Stratigr. 2011, 44, 173–245. [Google Scholar] [CrossRef] [Green Version]
- Zecchin, M.; Catuneanu, O. High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces. Mar. Pet. Geol. 2013, 39, 1–25. [Google Scholar] [CrossRef]
- Zecchin, M.; Catuneanu, O. High-resolution sequence stratigraphy of clastic shelves III: Applications to reservoir geology. Mar. Pet. Geol. 2015, 62, 161–175. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Catuneanu, O.; Nordsvan, A.; Landenberger, B.; Zelilidis, A. Interplay of tectonism and eustasy during the Early Permian icehouse: Southern Sydney Basin, southeast Australia. Geol. J. 2018, 53, 1372–1403. [Google Scholar] [CrossRef]
- Catuneanu, O. Model-independent sequence stratigraphy. Earth-Sci. Rev. 2019, 188, 312–388. [Google Scholar] [CrossRef]
- Willis, B.J.; Gabel, S.L. Formation of deep incisions into tide-dominated river deltas: Implications for the stratigraphy of the Sego Sandstone, Book Cliffs, Utah, USA. J. Sediment. Res. 2003, 73, 246–263. [Google Scholar] [CrossRef]
- Catuneanu, O.; Zecchin, M. Parasequences: Allostratigraphic misfits in sequence stratigraphy. Earth-Sci. Rev. 2020. [Google Scholar] [CrossRef]
- Catuneanu, O. Principles of Sequence Stratigraphy; Elsevier: Amsterdam, The Netherlands, 2006; p. 375. [Google Scholar]
- Conaghan, P.J.; Jones, J.G.; Mcdonnell, K.L.; Rouce, K. A dynamic fluvial model for the Sydney Basin. J. Geol. Soc. Aust. 1982, 29, 55–70. [Google Scholar] [CrossRef]
Facies | Sedimentary Structures | Depositional Process | Interpretation | Appearance |
---|---|---|---|---|
F1: Matrix- to clast-supported conglomerate | Structureless with occasional reverse to normal grading. | High energy unidirectional traction currents; weathering of source rock. | Fluvial channel created by high-flow bedload transport. | FA1, FA2 |
F2: Cross-stratified conglomerate | Conglomerated planar cross-stratification and trough cross-stratification | High energy traction currents; weathering of source rock. | Migration of 2D and 3D gravelly dunes in lower flow regime of tidally influenced channels. | FA1, FA2 |
F3: Structureless sandstone | Unstratified | Rapid suspension fallout. | Suspension deposition during flood events. | FA1, FA2, FA3, FA4, FA6 |
F4: Trough cross-bedded sandstone | Trough cross-stratification, commonly with mud drapes. | Unidirectional migration of 3D sand dunes. | Sand transportation in tidally influenced channels. | FA1, FA2, FA3, FA6 |
F5: Planar cross-stratified sandstone | Cross-stratified, commonly in sets, occasional mud drapes. | Mid to high energy, unidirectional traction sedimentation. | Migration of straight-crested sand dunes within tidally influenced channels. | FA1, FA2, FA3, FA6, FA7 |
F6: Parallel-laminated sandstone | Parallel lamination with occasional superimposed ripples. Rare mud drapes. | Low to mid energy, unidirectional traction sedimentation. | Planar bed deposition near or at the upper flow regime. | FA1, FA2, FA3, FA4, FA6, FA7 |
F7: Ripple cross-laminated sandstone | Asymmetrical ripples; frequent mud drapes. | Unidirectional traction sedimentation. | Migration of complex dunes in a tidally influenced sub-environment. | FA3, FA4, FA7 |
F8: Compound cross- stratified sandstone | Cross-stratification, reactivation surfaces and amalgamated surfaces; rare mud drapes | Low energy, unidirectional traction sedimentation. | Migration of weak currents in a tidally influenced depositional sub-environment. | FA1, FA2, FA3 |
F9: Hummocky and swaley cross-stratified sandstone | Concave and convex laminae structures over planar laminations. | Oscillatory wave motion in high-energy regimes. | Sandy infilling of scours created by storm-related events. | FA6, FA7 |
F10: Contorted sandstone | Overturned, folded, or disrupted cross-stratification. | Traction sedimentation and high sedimentation loading. | Deformation caused because of vertical shear forces. | FA2, FA3, |
F11: Heterolithic bedding | Wavy, flaser and lenticular horizontal laminations. Occasional mud drapes. | High to low energy tidal currents and slack water suspension fallout. | Bedload transport in lower to upper tidal flats or channels in low flow regimes. | FA2, FA3, FA4, FA5, FA6, FA7 |
F12: Structureless mudstone | Massive, with occasional weak parallel laminations. | Suspension sedimentation. | Deposition in slack water depositional environment. | FA1, FA2, FA3, FA4, FA5, FA7 |
F13: Parallel-laminated mudstone | Thin horizontal laminations, often with horizontal sandstone interbeds. | Unidirectional traction and suspension sedimentation. | Suspension sedimentation interrupted by storm-related events. | FA1, FA2, FA3, FA4, FA5, FA7 |
F14: Ripple cross-laminated mudstone | Fine- to medium-grained sandstone, including mud laminae or mud drapes. | Asymmetrically ripple cross lamination. Common mud drapes. | Migration of complex ripples in a tidally influenced environment | FA1, FA3, FA4, FA7 |
F15: Bioturbated mudstone | Horizontal laminations; sedimentary structures obliterated by high degree bioturbation in places. | Suspension sedimentation. | Preservation of trace fossils in high-nutrient slack water environment. | FA3 |
Characteristics | Lower Delta-Plain Deposits | Upper Delta-Plain Deposits |
---|---|---|
Sediment caliber | Lower: (Very fine- to medium-sand). | Higher: (Fine- to very coarse-sand and gravel). |
Sedimentary structures | Abundance of sedimentary structures that imply tidal influence: Mud drapes, bi-directional current ripples, flaser, wavy and lenticular bedding, spring-neap bundling of beds and thickly-stacked cross bedding. Planar cross-bedding also occurs. | Sedimentary structures that imply tidal influence are less often but still present: Mud drapes, and less often cross-bedding with mudstone intercalations. The main sedimentary structures include sandy and gravelly: trough cross-bedding and lamination, planar cross-bedding and lamination, parallel-stratification and lamination and clast imbrication. |
Sand to mud ratio | Lower: The depositional sub-environment includes sandy channelized depositional units, with overbank and floodplain deposits common, forming units of substantially thickness. | Higher: Overbank and floodplain deposits are rare, typically with thin-beds. The depositional sub-environment includes mostly sand- to gravel-rich channelized depositional units. |
Degree of amalgamation and erosion | Lower: The channelized units include amalgamation surfaces but usually form one-storey successions. The base of the channel-fill facies is occasionally erosional but is mostly sharp or conformable. | Higher: Amalgamation surfaces are abundant in the channelized units that form multi-storey successions. The base of the channel-fill facies is usually erosional but is often sharp and less commonly conformable. Scour and fill structures are often. |
Dominant physical process | Highly tidally-influenced: The river strength is less important allowing for the redistribution of sediments through tides. The wave action is of secondary importance. | Fluvial-dominated: The river currents are the principal processes that control the sediment deposition. The tides are less important and slightly modulate the succession. The wave action is of secondary importance. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melehan, S.; Botziolis, C.; Maravelis, A.G.; Catuneanu, O.; Ruming, K.; Holmes, E.; Collins, W.J. Sedimentology and Stratigraphy of an Upper Permian Sedimentary Succession: Northern Sydney Basin, Southeastern Australia. Geosciences 2021, 11, 273. https://doi.org/10.3390/geosciences11070273
Melehan S, Botziolis C, Maravelis AG, Catuneanu O, Ruming K, Holmes E, Collins WJ. Sedimentology and Stratigraphy of an Upper Permian Sedimentary Succession: Northern Sydney Basin, Southeastern Australia. Geosciences. 2021; 11(7):273. https://doi.org/10.3390/geosciences11070273
Chicago/Turabian StyleMelehan, Sean, Chrysanthos Botziolis, Angelos G. Maravelis, Octavian Catuneanu, Kevin Ruming, Erin Holmes, and William J. Collins. 2021. "Sedimentology and Stratigraphy of an Upper Permian Sedimentary Succession: Northern Sydney Basin, Southeastern Australia" Geosciences 11, no. 7: 273. https://doi.org/10.3390/geosciences11070273
APA StyleMelehan, S., Botziolis, C., Maravelis, A. G., Catuneanu, O., Ruming, K., Holmes, E., & Collins, W. J. (2021). Sedimentology and Stratigraphy of an Upper Permian Sedimentary Succession: Northern Sydney Basin, Southeastern Australia. Geosciences, 11(7), 273. https://doi.org/10.3390/geosciences11070273