Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East
Abstract
:1. Introduction
2. Study Area, Materials and Methods
3. Results and Discussion
3.1. Satellite Observations
3.2. Synoptic Meteorology
3.3. Model Simulations of AOD during Dust Events
3.3.1. Cyclonic Dust Storms
3.3.2. Post-Frontal Dust Storms
3.3.3. Pre-Frontal Dust Storms
3.3.4. Shamal Dust Storms
3.4. Model Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | BSC-DREAM8b-V2 | DREAM8-MACC | DREAMABOL | EMA-RegCM4 | MACC-ECMWF | NASA-GEOS | NCEP-NGAC | NMMB-BSC | NOA-WRF-Chem |
---|---|---|---|---|---|---|---|---|---|
Reference | [71,109] | [25] | [73] | [74] | [75] | [76] | [77] | [78] | [79] |
Meteorological driver | Eta/NCEP | NMME | BOLAM | RegCM4 | ECMWF | GEOS-5 | NEMS GFS | NMMB/ NCEP | WRF |
Meteorological initial condition | NCEP/GFS | ECMWF | NCEP (GFS) | NCEP/GFS | ECMWF/IFS | GEOS-5 Atmospheric Data Assimilation System | NCEP GDAS | NCEP/GFS | GFS |
Emission scheme | [25,110,111] | [25,110,111] | [25,110] | [74,85,112] | [27,75,113] | [27] | [27] | [25,85,111,114] | GOCART [27] |
Horizontal resolution | 8–10 km | ||||||||
Data Assimilation | No | No | No | No | Yes AOD550/MODIS | Yes MODIS | No | No | No |
Appendix A.1. BSC-DREAM8b-V2
Appendix A.2. DREAM8-MACC
Appendix A.3. DREAMABOL
Appendix A.4. EMA-RegCM4
Appendix A.5. MACC-ECMWF
Appendix A.6. NASA-GEOS
Appendix A.7. NCEP-NGAC
Appendix A.8. NMMB-BSC
Appendix A.9. NOA-WRF-Chem
References
- Gavrouzou, M.; Hatzianastassiou, N.; Gkikas, A.; Lolis, C.J.; Mihalopoulos, N.A. Climatological Assessment of Intense Desert Dust Episodes over the Broader Mediterranean Basin Based on Satellite Data. Remote Sens. 2021, 13, 2895. [Google Scholar] [CrossRef]
- Middleton, N.; Kang, U. Sand and dust storms: Impact mitigation. Sustainability 2017, 9, 1053. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, K. Transport of mineral dust and its impact on climate. Geosciences 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Wei, J.; Lau, W.K.M.; Pu, B.; Wang, C. Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges. Earth-Sci. Rev. 2021, 215, 103562. [Google Scholar] [CrossRef]
- Jin, Q.; Wei, J.; Yang, Z.-L. Positive response of Indian summer rainfall to Middle East dust. Geophys. Res. Lett. 2014, 41, 4068–4074. [Google Scholar] [CrossRef]
- Vinoj, V.; Rasch, P.J.; Wang, H.L.; Yoon, J.H.; Ma, P.L.; Landu, K.; Singh, B. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat. Geosci. 2014, 7, 308–313. [Google Scholar] [CrossRef]
- Middleton, N.; Yiallouros, P.; Kleanthous, S.; Kolokotroni, O.; Schwartz, J.; Dockery, D.W.; Demokritou, P.; Koutrakis, P. A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: The effect of short-term changes in air pollution and dust storms. Environ. Health 2008, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- De Longueville, F.; Hountondji, Y.-C.; Henry, S.; Ozer, P. What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions? Sci. Total Environ. 2010, 409, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, L.; Tong, D.Q.; Wu, G.; Dan, M.; Teng, B. A systematic review of global desert dust and associated human health effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.-J.; Cho, S.-H.; Chun, Y.; Lagarde, F.; Pershagen, G. Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ. Res. 2002, 90, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Sheen, P.-C.; Chen, E.-R.; Liu, Y.-K.; Wu, T.-N.; Yang, C.-Y. Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ. Res. 2004, 95, 151–155. [Google Scholar] [CrossRef]
- Nastos, P.T.; Kampanis, N.A.; Giaouzaki, K.N.; Matzarakis, A. Environmental impacts on human health during a Saharan dust episode at Crete Island, Greece. Meteorolog. Z. 2011, 20, 517–529. [Google Scholar] [CrossRef]
- Goudie, A.S. Desert dust and human health disorders. Environ. Intern. 2014, 63, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Ashley, W.S.; Strader, S.; Dziubla, D.C.; Haberlie, A. Driving blind: Weather-related vision hazards and fatal motor vehicle crashes. Bull. Amer. Meteorol. Soc. 2015, 96, 755–778. [Google Scholar] [CrossRef]
- Call, D.A.; Wilson, C.S.; Shourd, K.N. Hazardous weather conditions and multiple-vehicle chain-reaction crashes in the United States. Meteorol. Appl. 2018, 25, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Kandakji, T.; Lee, J.A.; Tatarko, J.; Blackwell III, J.; Gill, T.E.; Collins, J.D. Blowing dust and highway safety in the southwestern United States: Characteristics of dust emission “hotspots” and management implications. Sci. Total Environ. 2018, 621, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Bhattachan, A.; Okin, G.S.; Zhang, J.; Vimal, S.; Lettenmaier, D.P. Characterizing the role of wind and dust in traffic accidents in California. GeoHealth 2019, 3, 328–336. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Zhou, J.; Zhang, X.; Tang, K. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Reg. Environ. Chang. 2006, 6, 62–70. [Google Scholar] [CrossRef]
- Chen, L.; Gao, J.; Ji, Y.; Bai, Z.; Shi, M.; Liu, H. Effects of particulate matter of various sizes derived from suburban farmland, woodland and grassland on air quality of the central district in Tianjin, China. Aeros. Air Qual. Res. 2014, 14, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Jarrah, M.; Mayel, S.; Tatarko, J.; Funk, R.; Kuka, K. A review of wind erosion models: Data requirements, processes, and validity. Catena 2020, 187, 104388. [Google Scholar] [CrossRef]
- Gholami, H.; Rahimi, S.; Fathabadi, A.; Habibi, S.; Collins, A.L. Mapping the spatial sources of atmospheric dust using GLUE and Monte Carlo simulation. Sci. Total Environ. 2020, 723, 138090. [Google Scholar] [CrossRef] [PubMed]
- Gholami, H.; Mohamadifar, A.; Collins, A.L. Spatial mapping of the provenance of storm dust: Application of data mining and ensemble modelling. Atmos. Res. 2019, 233, 104716. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K. Impacts of sand storms/dust storms on agriculture. In Natural Disasters and Extreme Events in Agriculture; Springer: Berlin/Heidelberg, Germany, 2005; pp. 159–177. [Google Scholar]
- Hojan, M.; Rurek, M.; Więcław, M.; Krupa, A. Effects of extreme dust storm in agricultural areas (Poland, the Greater Lowland). Geosciences 2019, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Nickovic, S.; Kallos, G.; Papadopoulos, A.; Kakaliagou, O. A model for prediction of desert dust cycle in the atmosphere. J. Geophys. Res. Atmos. 2001, 106, 18113–18129. [Google Scholar] [CrossRef] [Green Version]
- Zender, C.S.; Bian, H.; Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. Atmos. 2003, 108, D14. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781–7816. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Ishizuka, M.; Mikami, M.; Leys, J.F. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. Atmos. 2011, 116, D8. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Sturman, A.; Zawar-Reza, P. Global distribution of mineral dust and its impact on radiative fluxes as simulated by WRF-Chem. Meteorol. Atmos. Phys. 2015, 127, 635–648. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Sepehr, A. Statistical evaluation of the dust events at selected stations in Southwest Asia: From the Caspian Sea to the Arabian Sea. Catena 2018, 165, 590–603. [Google Scholar] [CrossRef]
- Boloorani, A.D.; Papi, R.; Soleimani, M.; Karami, L.; Amiri, F.; Samany, N.N. Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena. Aeol. Res. 2021, 50, 100698. [Google Scholar] [CrossRef]
- Moridnejad, A.; Karimi, N.; Parisa, A. Newly desertified regions in Iraq and its surrounding areas: Significant novel sources of global dust particles. J. Arid Environ. 2015, 116, 1–10. [Google Scholar] [CrossRef]
- Beegum, S.N.; Gherboudj, I.; Chaouch, N.; Temimi, M.; Ghedira, H. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula. Atmos. Res. 2018, 199, 62–81. [Google Scholar] [CrossRef]
- Francis, D.; Chaboureau, J.-P.; Nelli, N.; Cuesta, J.; Alshamsi, N.; Temimi, M.; Pauluis, O.; Xue, L. Summertime Dust Storms over the Arabian Peninsula and Impacts on Radiation, Circulation, Cloud Development and Rain. Atmos. Res. 2021, 250, 105364. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Sciortino, M.; Kaskaoutis, D.G. Classification of weather clusters over the Middle East associated with high atmospheric dust-AODs in West Iran. Atmos. Res. 2021, 259, 105682. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Sciortino, M.; Saligheh, M.; Raziei, T.; Boloorani, A.D. Spatiotemporal regionalization of atmospheric dust based on multivariate analysis of MACC model over Iran. Atmos. Res. 2021, 249, 105322. [Google Scholar] [CrossRef]
- Alamodi, A.O. Synoptic and Dynamic Study of a Dust Storm Affected the Kingdom of Saudi Arabia. J. King Abdulaziz Univ. Meteorol. Environ. Arid Land Agric. Sci. 2011, 22, 209–226. [Google Scholar] [CrossRef]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. Synoptic analysis of dust storms in the Middle East. Asia-Pac. J. Atmos. Sci. 2013, 49, 279–286. [Google Scholar] [CrossRef]
- Middleton, N.J. A geography of dust storms in South-west Asia. J. Climatol. 1986, 6, 183–196. [Google Scholar] [CrossRef]
- Wilderson, W.D. Dust and Sand Forecasting in Iraq and Adjoining Countries. 1991. Available online: https://apps.dtic.mil/sti/citations/ADA247588 (accessed on 22 May 2021).
- Hermida, L.; Merino, A.; Sánchez, J.L.; Fernández-González, S.; García-Ortega, E.; López, L. Characterization of synoptic patterns causing dust outbreaks that affect the Arabian Peninsula. Atmos. Res. 2018, 199, 29–39. [Google Scholar] [CrossRef]
- Francis, D.; Alshamsi, N.; Cuesta, J.; Gokcen Isik, A.; Dundar, C. Cyclogenesis and Density Currents in the Middle East and the Associated Dust Activity in September 2015. Geosciences 2019, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Abdi Vishkaee, F.; Flamant, C.; Cuesta, J.; Oolman, L.; Flamant, P.; Khalesifard, H.R. Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study. J. Geophys. Res. Atmos. 2012, 117, D3. [Google Scholar] [CrossRef] [Green Version]
- Saeed, T.M.; Al-Dashti, H.; Spyrou, C. Aerosol’s optical and physical characteristics and direct radiative forcing during a shamal dust storm, a case study. Atmos. Chem. Phys. 2014, 14, 3751–3769. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Notaro, M.; Kalashnikova, O.V.; Garay, M.J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 2016, 121, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Hamzeh, N.H.; Karami, S.; Kaskaoutis, D.G.; Tegen, I.; Moradi, M.; Opp, C. Atmospheric dynamics and numerical simulations of six frontal dust storms in the Middle East region. Atmosphere 2021, 12, 125. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Alam, K.; Ranjbar, A. The study of a rare frontal dust storm with snow and rain fall: Model results and ground measurements. J. Atmos. Sol. -Terr. Phys. 2020, 197, 105149. [Google Scholar] [CrossRef]
- Boloorani, A.D.; Nabavi, S.O.; Bahrami, H.A.; Mirzapour, F.; Kavosi, M.; Abasi, E.; Azizi, R. Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis. J. Environ. Health Sci. Engin. 2014, 12, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Jumaily, K.J.; Ibrahim, M.K. Analysis of synoptic situation for dust storms in Iraq. Int. J. Energ. Env. 2013, 4, 851–858. [Google Scholar]
- Basart, S.; Vendrell, L.; Baldasano, J.M. High-resolution dust modelling over complex terrains in West Asia. Aeol. Res. 2016, 23, 37–50. [Google Scholar] [CrossRef]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. A quantitative evaluation of the 3–8 July 2009 Shamal dust storm. Aeol. Res. 2017, 24, 133–143. [Google Scholar] [CrossRef]
- Solomos, S.; Abuelgasim, A.; Spyrou, C.; Binietoglou, I.; Nickovic, S. Development of a dynamic dust source map for NMME-DREAM v1. 0 model based on MODIS Normalized Difference Vegetation Index (NDVI) over the Arabian Peninsula. Geosci. Model Develop. 2019, 12, 979–988. [Google Scholar] [CrossRef] [Green Version]
- Kontos, S.; Liora, N.; Giannaros, C.; Kakosimos, K.; Poupkou, A.; Melas, D. Modeling natural dust emissions in the central Middle East: Parameterizations and sensitivity. Atmos. Environ. 2018, 190, 294–307. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Alam, K.; Ranjbar, A. Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeol. Res. 2021, 50, 100679. [Google Scholar] [CrossRef]
- Ukhov, A.; Ahmadov, R.; Grell, G.; Stenchikov, G. Improving dust simulations in WRF-Chem v4. 1.3 coupled with the GOCART aerosol module. Geosci. Model Dev. 2021, 14, 473–493. [Google Scholar] [CrossRef]
- Flaounas, E.; Kotroni, V.; Lagouvardos, K.; Klose, M.; Flamant, C.; Giannaros, T.M. Sensitivity of the WRF-Chem (V3. 6.1) model to different dust emission parametrisation: Assessment in the broader Mediterranean region. Geosci. Model Dev. 2017, 10, 2925–2945. [Google Scholar] [CrossRef] [Green Version]
- Thoppil, P.G.; Hogan, P.J. Persian Gulf response to a wintertime shamal wind event. Deep Sea Res. Part I Oceanogr. Res. Pap. 2010, 57, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y. A model for mineral dust emission. J. Geophys. Res. Atmos. 2001, 106, 20239–20254. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Desert Dust in the Global System; Springer: Berlin, Germany, 2006; ISBN 978-3-642-06890-4. [Google Scholar]
- Notaro, M.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res. Atmos. 2013, 118, 6028–6043. [Google Scholar] [CrossRef]
- Vukmirović, Z.; Unkašević, M.; Lazić, L.; Tošić, I.; Rajšić, S.; Tasić, M. Analysis of the Saharan dust regional transport. Meteorol. Atmos. Phys. 2004, 85, 265–273. [Google Scholar] [CrossRef]
- Francis, D.; Flamant, C.; Chaboureau, J.-P.; Banks, J.; Cuesta, J.; Brindley, H.; Oolman, L. Dust emission and transport over Iraq associated with the summer Shamal winds. Aeol. Res. 2017, 24, 15–31. [Google Scholar] [CrossRef]
- Saeed, S.; Müller, W.A.; Hagemann, S.; Jacob, D. Circumglobal wave train and the summer monsoon over northwestern India and Pakistan: The explicit role of the surface heat low. Clim. Dyn. 2011, 37, 1045–1060. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. Numerical simulation of dust events in the Middle East. Aeolian Res. 2014, 13, 59–70. [Google Scholar] [CrossRef]
- Alharbi, B.H.; Maghrabi, A.; Tapper, N. The March 2009 Dust Event in Saudi Arabia: Precursor and Supportive Environment. Bull. Amer. Meteorol. Soc. 2013, 94, 515–528. [Google Scholar] [CrossRef]
- Fonseca, R.; Francis, D.; Weston, M.; Nelli, N.; Farah, S.; Wehbe, Y.; AlHosari, T.; Teixido, O.; Mohamed, R. Convection-Aerosol Interactions in the United Arab Emirates: A Sensitivity Study. Atmos. Chem. Phys. Discuss. 2021, 2021, 1–76, preprint. [Google Scholar] [CrossRef]
- Vukovic Vimic, A.; Cvetkovic, B.; Giannaros, T.M.; Shahbazi, R.; Sehat Kashani, S.; Prieto, J.; Kotroni, V.; Lagouvardos, K.; Pejanovic, G.; Petkovic, S.; et al. Numerical Simulation of Tehran Dust Storm on 2 June 2014: A Case Study of Agricultural Abandoned Lands as Emission Sources. Atmosphere 2021, 12, 1054. [Google Scholar] [CrossRef]
- Li, L.; Sokolik, I.N. Analysis of dust aerosol retrievals using satellite data in Central Asia. Atmosphere 2018, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Pérez, C.; Nickovic, S.; Pejanovic, G.; Baldasano, J.M.; Özsoy, E. Interactive dust-radiation modeling: A step to improve weather forecasts. J. Geophys. Res. Atmos. 2006, 111, D16206. [Google Scholar] [CrossRef] [Green Version]
- Basart, S.; Pérez, C.; Nickovic, S.; Cuevas, E.; Baldasano, J.M. Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus B Chem. Phys. Meteor. 2012, 64, 18539. [Google Scholar] [CrossRef] [Green Version]
- Binietoglou, I.; Basart, S.; Alados-Arboledas, L.; Amiridis, V.; Argyrouli, A.; Baars, H.; Baldasano, J.M.; Balis, D.; Belegante, L.; Bravo-Aranda, J.A.; et al. A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals. Atmos. Measur. Techn. 2015, 8, 3577–3600. [Google Scholar] [CrossRef] [Green Version]
- Zakey, A.S.; Solmon, F.; Giorgi, F. Implementation and testing of a desert dust module in a regional climate model. Atmos. Chem. Phys. 2006, 6, 4687–4704. [Google Scholar] [CrossRef] [Green Version]
- Morcrette, J.-J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, J.W.; Kaiser, M.; Razinger, M.; et al. Aerosol analysis and forecast in the European Centre for medium-range weather forecasts integrated forecast system: Forward modeling. J. Geophys. Res. Atmos. 2009, 114, D06206. [Google Scholar] [CrossRef]
- Colarco, P.; da Silva, A.; Chin, M.; Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. Atmos. 2010, 115, D14207. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Huang, H.-C.; Hou, Y.-T.; Tang, Y.; McQueen, J.; da Silva, A.; Chin, M.; Joseph, E.; Stockwell, W. Development of NCEP Global Aerosol Forecasting System: An overview and its application for improving weather and air quality forecasts. In NATO Science for Peace and Security Series: Air Pollution Modelling and Its Application XX; Springer: Dordrecht, The Netherlands, 2010; p. 451454. [Google Scholar]
- Pérez, C.; Haustein, K.; Janjic, Z.; Jorba, O.; Huneeus, N.; Baldasano, J.M.; Black, T.; Basart, S.; Nickovic, S.; Miller, R.L.; et al. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model–Part 1: Model description, annual simulations and evaluation. Atmos. Chem. Phys. 2011, 11, 13001–13027. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Kim, W.V.; Dutcher, S.T. Validation, stability, and consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue aerosol data over land. J. Geophys. Res. Atmos. 2019, 124, 4658–4688. [Google Scholar] [CrossRef]
- Salmabadi, H.; Khalidy, R.; Saeedi, M. Transport routes and potential source regions of the Middle Eastern dust over Ahvaz during 2005–2017. Atmos. Res. 2020, 241, 104947. [Google Scholar] [CrossRef]
- Ledari, D.G.; Hamidi, M.; Shao, Y. Evaluation of the 13 April 2011 frontal dust storm in west Asia. Aeol. Res. 2020, 44, 100592. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Mofidi, A.; Minvielle, F.; Chiapello, I.; Legrand, M.; Dumka, U.C.; Francois, P. Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer–The July 2016 case. Aeol. Res. 2019, 36, 27–44. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Houssos, E.E.; Rashki, A.; Francois, P.; Legrand, M.; Goto, D.; Bartzokas, A.; Kambezidis, H.D.; Takemura, T. The Caspian Sea–Hindu Kush Index (CasHKI): A regulatory factor for dust activity over southwest Asia. Glob. Planet. Chang. 2016, 137, 10–23. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. Atmos. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Cowie, S.M.; Marsham, J.H.; Knippertz, P. The importance of rare, high-wind events for dust uplift in northern Africa. Geophys. Res. Lett. 2015, 42, 8208–8215. [Google Scholar] [CrossRef]
- Tegen, I.; Miller, R. A general circulation model study on the interannual variability of soil dust aerosol. J. Geophys. Res. Atmos. 1998, 103, 25975–25995. [Google Scholar] [CrossRef]
- Menut, L. Sensitivity of hourly Saharan dust emissions to NCEP and ECMWF modeled wind speed. J. Geophys. Res. Atmos. 2008, 113, D16201. [Google Scholar] [CrossRef] [Green Version]
- Heinold, B.; Knippertz, P.; Marsham, J.H.; Fiedler, S.; Dixon, N.S.; Schepanski, K.; Laurent, B.; Tegen, I. The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations. J. Geophys. Res. Atmos. 2013, 118, 4385–4400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsham, J.H.; Knippertz, P.; Dixon, N.S.; Parker, D.J.; Lister, G.M.S. The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Knippertz, P.; Todd, M.C. Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Rev. Geophys. 2012, 50, RG1007. [Google Scholar] [CrossRef]
- Hashim, B.M.; Ajmi, R.N.; Abduljabbar, S.A. Identification of dust sources in Iraq using meteorological surface data and satellite data. J. Environ. Sci. Engin. 2013, 2, 299. [Google Scholar]
- Tegen, I.; Harrison, S.P.; Kohfeld, K.; Prentice, I.C.; Coe, M.; Heimann, M. Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. J. Geophys. Res. Atmos. 2002, 107, AAC-14. [Google Scholar] [CrossRef] [Green Version]
- Kok, J.F.; Albani, S.; Mahowald, N.M.; Ward, D.S. An improved dust emission model–Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmos. Chem. Phys. 2014, 14, 13043–13061. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Cakmur, R.V.; Miller, R.L.; Perlwitz, J.; Geogdzhayev, I.V.; Ginoux, P.; Koch, D.; Kohfeld, K.E.; Tegen, I.; Zender, C.S. Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. J. Geophys. Res. Atmos. 2006, 111, D06207. [Google Scholar] [CrossRef]
- Singh, C.; Singh, S.K.; Chauhan, P.; Budakoti, S. Simulation of an extreme dust episode using WRF-CHEM based on optimal ensemble approach. Atmos. Res. 2021, 249, 105296. [Google Scholar] [CrossRef]
- Sahraei, J.; Hassan, E.M.; Mohammadi, N. The Effect of the Zagros Mountain Range on Transporting Iraqi Dust to Western Iran using the WRF/Chem Model (Case Study). J. Geogr. Environ. Hazards 2020, 8, 119–134. [Google Scholar]
- Gandham, H.; Dasari, H.P.; Langodan, S.; Karumuri, R.K.; Hoteit, I. Major changes in extreme dust events dynamics over the Arabian Peninsula during 2003–2017 driven by atmospheric conditions. J. Geophys. Res. Atmos. 2020, 125, e2020JD032931. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Aldabash, M. Long-term AOD trend assessment over the Eastern Mediterranean region: A comparative study including a new merged aerosol product. Atmos. Environ. 2020, 238, 117736. [Google Scholar] [CrossRef]
- Carton, J.A.; Chepurin, G.A.; Chen, L.; Grodsky, S.A. Improved global net surface heat flux. J. Geophys. Res. Ocean. 2018, 123, 3144–3163. [Google Scholar] [CrossRef]
- Wu, J.; Zha, J.; Zhao, D. Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980–2011. Clim. Dyn. 2016, 46, 847–863. [Google Scholar] [CrossRef]
- Chock, G.Y.K.; Cochran, L. Modeling of topographic wind speed effects in Hawaii. J. Wind Engin. Ind. Aerodyn. 2005, 93, 623–638. [Google Scholar] [CrossRef]
- Archer, C.L. An introduction to meteorology for airborne wind energy. In Airborne Wind Energy; Springer: Berlin/Heidelberg, Germany, 2013; pp. 81–94. [Google Scholar]
- Giannakopoulou, E.M.; Toumi, R. The Persian Gulf summertime low-level jet over sloping terrain. Quart. J. R. Meteorol. Soc. 2012, 138, 145–157. [Google Scholar] [CrossRef]
- Malakooti, H.; Pakhirehzan, M.; Hassani, V.S. Observational and synoptic behavior of Shamal wind in the north west coast of Persian Gulf: Bushehr, Iran. Phys. Geogr. Res. Q. 2016, 48, 159–174. [Google Scholar]
- Jish Prakash, P.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2015, 15, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Notaro, M.; Liu, Z.; Wang, F.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Climatic controls on the interannual to decadal variability in Saudi Arabian dust activity: Toward the development of a seasonal dust prediction model. J. Geophys. Res. Atmos. 2015, 120, 1739–1758. [Google Scholar] [CrossRef]
- Konsta, D.; Binietoglou, I.; Gkikas, A.; Solomos, S.; Marinou, E.; Proestakis, E.; Basart, S.; Pérez García-Pando, C.; El-Askary, H.; Amiridis, V. Evaluation of the BSC-DREAM8b regional dust model using the 3D LIVAS-CALIPSO product. Atmos. Environ. 2018, 195, 46–62. [Google Scholar] [CrossRef]
- Shao, Y.; Raupach, M.R.; Findlater, P.A. Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. Atmos. 1993, 98, 12719–12726. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, S.C.; Gomes, L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J. Geophys. Res. Atmos. 2001, 106, 18075–18084. [Google Scholar] [CrossRef]
- Morcrette, J.-J.; Beljaars, A.; Benedetti, A.; Jones, L.; Boucher, O. Sea-salt and dust aerosols in the ECMWF IFS model. Geophys. Res. Lett. 2008, 35, L24813. [Google Scholar] [CrossRef]
- White, B.R. Soil transport by winds on Mars. J. Geophys. Res. Solid Earth 1979, 84, 4643–4651. [Google Scholar] [CrossRef]
- Giorgi, F. A particle dry-deposition parameterization scheme for use in tracer transport models. J. Geophys. Res. Atmos. 1986, 91, 9794–9806. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Soil Physics; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Mircea, M.; D’Isidoro, M.; Maurizi, A.; Tampieri, F.; Facchini, M.C.; Decesari, S.; Fuzzi, S. Saharan Dust Over Italy: Simulations with Regional Air Quality Model BOLCHEM. In Air Pollution Modeling and Its Application XIX; Springer: Dordrecht, The Netherlands, 2008; pp. 687–688. [Google Scholar]
- Maurizi, A.; Russo, F.; D’Isidoro, M.; Tampieri, F. Nudging technique for scale bridging in air quality/climate atmospheric composition modelling. Atmos. Chem. Phys. 2012, 12, 3677–3685. [Google Scholar] [CrossRef] [Green Version]
- Buzzi, A.; Ceccarelli, F.; Corazza, M.; Malguzzi, P.; Ratto, C.; Sacchetti, D.; Trovatore, E. Three dimensional forecast verification of the limited area model BOLAM using radiosoundings of MAP-SOP dataset. In EGS-AGU-EUG Joint Assembly; European Geophysical Society: Katlenburg-Lindau, Germany, 2003; p. 9588. [Google Scholar]
- Colarco, P.R.; Toon, O.B.; Holben, B.N. Saharan dust transport to the Caribbean during PRIDE: 1. Influence of dust sources and removal mechanisms on the timing and magnitude of downwind aerosol optical depth events from simulations of in situ and remote sensing observations. J. Geophys. Res. Atmos. 2003, 108, 8589. [Google Scholar] [CrossRef]
- Tegen, I.; Lacis, A.A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 1996, 101, 19237–19244. [Google Scholar] [CrossRef] [Green Version]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation, Kluwer Acad; Springer: Dordrecht, The Netherlands, 1997; ISBN 978-0-306-48100-0. [Google Scholar]
- Wesely, M.L.; Lesht, B.M. Comparison of RADM dry deposition algorithms with a site-specific method for inferring dry deposition. Water Air Soil Pollut. 1989, 44, 273–293. [Google Scholar] [CrossRef]
- Liu, H.; Jacob, D.J.; Bey, I.; Yantosca, R.M. Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. J. Geophys. Res. Atmos. 2001, 106, 12109–12128. [Google Scholar] [CrossRef] [Green Version]
- Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [Google Scholar] [CrossRef]
- Defries, R.S.; Townshend, J.R.G. Global land cover characterization from satellite data: From research to operational implementation? GCTE/LUCC Research Review. Glob. Ecol. Biogeogr. 1999, 8, 367–379. [Google Scholar] [CrossRef]
Type/Mechanism | Date |
---|---|
Cyclonic | 1 September 2015; 29 September 2016; 3 December 2016 |
Pre-Frontal | 13 April 2017; 30 March 2018; 14 March 2020 |
Post-Frontal | 17–18 February 2017; 2–3 November 2017; 8 January 2020 |
Shamal | 5 July 2017; 29 June 2018; 26 July 2018 |
Model | Cyclonic | Post-Front | Pre-Front | Shamal | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Correlation | p-Value | RMSE | Correlation | p-Value | RMSE | Correlation | p-Value | RMSE | Correlation | p-Value | RMSE | |
EMA_RegCM4 | 0.439 | <0.001 | 0.265 | 0.281 | <0.001 | 0.058 | 0.186 | <0.001 | 0.216 | 0.340 | <0.001 | 0.249 |
DREAM8_MACC | 0.718 | <0.001 | 0.206 | 0.553 | <0.001 | 0.283 | 0.348 | <0.001 | 0.283 | 0.447 | <0.001 | 0.404 |
MACC_ECMWF | 0.70 | <0.001 | 0.220 | 0.433 | <0.001 | 0.323 | 0.586 | <0.001 | 0.386 | 0.529 | <0.001 | 0.424 |
NMMB_BSC | 0.572 | <0.001 | 0.307 | 0.301 | <0.001 | 0.298 | 0.478 | <0.001 | 0.315 | 0.552 | <0.001 | 0.461 |
DREAM8b_V2 | 0.596 | <0.001 | 0.270 | 0.472 | <0.001 | 0.286 | 0.449 | <0.001 | 0.298 | 0.510 | <0.001 | 0.448 |
DREAMABOL | 0.541 | <0.001 | 0.232 | 0.442 | <0.001 | 0.351 | 0.398 | <0.001 | 0.220 | 0.497 | <0.001 | 0.453 |
NASA_GEOS | 0.703 | <0.001 | 0.254 | 0.555 | <0.001 | 0.399 | 0.623 | <0.001 | 0.323 | 0.579 | <0.001 | 0.485 |
NCEP_NGAC | 0.655 | <0.001 | 0.263 | 0.452 | <0.001 | 0.320 | 0.155 | <0.001 | 0.182 | 0.412 | <0.001 | 0.330 |
NOA-WRF-Chem | 0.492 | <0.001 | 0.194 | 0.433 | <0.001 | 0.263 | 0.557 | <0.001 | 0.282 | 0.593 | <0.001 | 0.469 |
BSC_DREAM8b_V2 | DREAMABOL | EMA-RegCM4 | NASA-GEOS | NCEP-NGAC | DREAM8-MACC | MACC-ECMWF | NMMB-BSC | NOA-WRF-CHEM | TERRA | |
---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.48 | 0.61 | 0.04 | 0.74 | 0.62 | 0.78 | 0.73 | 0.35 | 0.21 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karami, S.; Kaskaoutis, D.G.; Kashani, S.S.; Rahnama, M.; Rashki, A. Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East. Geosciences 2021, 11, 458. https://doi.org/10.3390/geosciences11110458
Karami S, Kaskaoutis DG, Kashani SS, Rahnama M, Rashki A. Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East. Geosciences. 2021; 11(11):458. https://doi.org/10.3390/geosciences11110458
Chicago/Turabian StyleKarami, Sara, Dimitris G. Kaskaoutis, Saviz Sehat Kashani, Mehdi Rahnama, and Alireza Rashki. 2021. "Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East" Geosciences 11, no. 11: 458. https://doi.org/10.3390/geosciences11110458
APA StyleKarami, S., Kaskaoutis, D. G., Kashani, S. S., Rahnama, M., & Rashki, A. (2021). Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East. Geosciences, 11(11), 458. https://doi.org/10.3390/geosciences11110458