Effects of Water on Natural Stone in the Built Environment—A Review
Abstract
:1. Introduction
2. Freeze–Thaw
3. Wetting
4. Erosion by Flowing Water
5. Water as Releaser of Pollutants from Stones
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- ICOMOS-ISCS—International Council on Monuments and Sites—International Scientific Committee for Stone Illustrated Glossary on Stone Deterioration Patterns. 2008. Available online: https://www.icomos.org/publications/monuments_and_sites/15/pdf/Monuments_and_Sites_15_ISCS_Glossary_Stone.pdf (accessed on 4 November 2021).
- Winkler, E.M. Stone in Architecture. Properties, Durability; 3rd Completely rev. and extended Edition; Springer: New York, NY, USA, 1997; p. 313. [Google Scholar]
- Siegesmund, S.; Snethlage, R. (Eds.) Stone in Architecture; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Deprez, M.; De Kock, T.; De Schutter, G.; Cnudde, V. A review on freeze-thaw action and weathering of rocks. Earth Sci. Rev. 2020, 203, 103143. [Google Scholar] [CrossRef]
- Jamshidi, A. Predicting the Strength of Granitic Stones after Freeze—Thaw Cycles: Considering the Petrographic Characteristics and a New Approach Using Petro-Mechanical Parameter. Rock Mech. Rock Eng. 2021, 54, 2829–2841. [Google Scholar] [CrossRef]
- Özvan, A.; Direk, N. The relationships among different abrasion tests on deteriorated and undeteriorated rocks. Bull. Int. Assoc. Eng. Geol. 2021, 80, 1745–1756. [Google Scholar] [CrossRef]
- Erguler, Z.; Shakoor, A. Relative contribution of various climatic processes in disintegration of clay-bearing rocks. Eng. Geol. 2009, 108, 36–42. [Google Scholar] [CrossRef]
- Ingham, J. Predicting the frost resistance of building stone. Q. J. Eng. Geol. Hydrogeol. 2005, 38, 387–399. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Benavente, D.; Gomez-Heras, M.; Marco-Castaño, L.; Garcia-Del-Cura, M.A. Non-linear decay of building stones during freeze–thaw weathering processes. Constr. Build. Mater. 2013, 38, 443–454. [Google Scholar] [CrossRef]
- Lubera, E. Frost weathering of selected rocks from the tatra mountains. Quaest. Geogr. 2014, 33, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Korneeva, E.; Vatin, N.; Dontsova, A. Mechanical properties of the Crimean limestone, treated with material based on silicic acids. Mag. Civ. Eng. 2019, 85, 59–70. [Google Scholar] [CrossRef]
- Rusin, Z.; Świercz, P. Frost resistance of rock materials. Constr. Build. Mater. 2017, 148, 704–714. [Google Scholar] [CrossRef]
- Koralay, T.; Çelik, S.B. Minero-petrographical, physical, and mechanical properties of moderately welded ignimbrite as a traditional building stone from Uşak Region (SW Turkey). Arab. J. Geosci. 2019, 12, 732. [Google Scholar] [CrossRef]
- Iucolano, F.; Colella, A.; Liguori, B.; Calcaterra, D. Suitability of silica nanoparticles for tuff consolidation. Constr. Build. Mater. 2019, 202, 73–81. [Google Scholar] [CrossRef]
- Freire-Lista, D.; Fort, R.; Varas-Muriel, M. Freeze–thaw fracturing in building granites. Cold Reg. Sci. Technol. 2015, 113, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Zhou, S.; Huang, B.; Jiang, N.; Xiong, M. Effect of Freeze–Thaw Temperature and Number of Cycles on the Physical and Mechanical Properties of Marble. Geotech. Geol. Eng. 2021, 39, 567–582. [Google Scholar] [CrossRef]
- Martins, L.; Vasconcelos, G.; Lourenco, P.; Palha, C. Influence of the Freeze-Thaw Cycles on the Physical and Mechanical Properties of Granites. J. Mater. Civ. Eng. 2016, 28, 04015201. [Google Scholar] [CrossRef] [Green Version]
- Fahey, B.D. Frost action and hydration as rock weathering mechanisms on schist: A laboratory study. Earth Surf. Process. Landf. 1983, 8, 535–545. [Google Scholar] [CrossRef]
- Uğur, I.; Toklu, H. Özer Effect of multi-cycle freeze-thaw tests on the physico-mechanical and thermal properties of some highly porous natural stones. Bull. Int. Assoc. Eng. Geol. 2019, 79, 255–267. [Google Scholar] [CrossRef]
- Fogue-Djombou, Y.I.; Corn, S.; Clerc, L.; Salze, D.; Garcia-Diaz, E. Freeze-thaw resistance of limestone roofing tiles assessed through impulse vibration monitoring and finite element modeling in relation to their microstructure. Constr. Build. Mater. 2019, 205, 656–667. [Google Scholar] [CrossRef]
- Germinario, L.; Török, Á. Variability of technical properties and durability in volcanic tuffs from the same quarry region—Examples from Northern Hungary. Eng. Geol. 2019, 262, 105319. [Google Scholar] [CrossRef]
- Dursun, F.; Topal, T. Durability assessment of the basalts used in the Diyarbakır City Walls, Turkey. Environ. Earth Sci. 2019, 78, 1–24. [Google Scholar] [CrossRef]
- Hashemi, M.; Goudarzi, M.B.; Jamshidi, A. Experimental investigation on the performance of Schmidt hammer test in durability assessment of carbonate building stones against freeze–thaw weathering. Environ. Earth Sci. 2018, 77, 684. [Google Scholar] [CrossRef]
- Heidari, M.; Chastre, C.; Torabi-Kaveh, M.; Ludovico-Marques, M.; Mohseni, H. Application of fuzzy inference system for determining weathering degree of some monument stones in Iran. J. Cult. Herit. 2017, 25, 41–55. [Google Scholar] [CrossRef]
- Heidari, M.; Torabi-Kaveh, M.; Mohseni, H. Assessment of the Effects of Freeze–Thaw and Salt Crystallization Ageing Tests on Anahita Temple Stone, Kangavar, West of Iran. Geotech. Geol. Eng. 2016, 35, 121–136. [Google Scholar] [CrossRef]
- Torabi-Kaveh, M.; Heidari, M.; Mohseni, H.; Ménendez, B. Role of petrography in durability of limestone used in construction of Persepolis complex subjected to artificial accelerated ageing tests. Environ. Earth Sci. 2019, 78, 297. [Google Scholar] [CrossRef]
- Heidari, M.; Torabi-Kaveh, M.; Chastre, C.; Ludovico-Marques, M.; Mohseni, H.; Akefi, H. Determination of weathering degree of the Persepolis stone under laboratory and natural conditions using fuzzy inference system. Constr. Build. Mater. 2017, 145, 28–41. [Google Scholar] [CrossRef]
- Mahmutoğlu, Y. Prediction of weathering by thermal degradation of a coarse-grained marble using ultrasonic pulse velocity. Environ. Earth Sci. 2017, 76, 435. [Google Scholar] [CrossRef]
- Sun, Q.; Dong, Z.; Jia, H. Decay of sandstone subjected to a combined action of repeated freezing–thawing and salt crystallization. Bull. Int. Assoc. Eng. Geol. 2019, 78, 5951–5964. [Google Scholar] [CrossRef]
- Montiel-Zafra, V.; Quesada, F.J.C.; Campos-Suñol, M.; Vera-Candeas, P.; Ruiz-Reyes, N. Monitoring the internal quality of ornamental stone using impact-echo testing. Appl. Acoust. 2019, 155, 180–189. [Google Scholar] [CrossRef]
- Cárdenes, V.; Mateos, F.J.; Fernández-Lorenzo, S. Analysis of the correlations between freeze–thaw and salt crystallization tests. Environ. Earth Sci. 2014, 71, 1123–1134. [Google Scholar] [CrossRef]
- Di Benedetto, C.; Cappelletti, P.; Favaro, M.; Graziano, S.F.; Langella, A.; Calcaterra, D.; Colella, A. Porosity as key factor in the durability of two historical building stones: Neapolitan Yellow Tuff and Vicenza Stone. Eng. Geol. 2015, 193, 310–319. [Google Scholar] [CrossRef]
- Ghobadi, M.H.; Babazadeh, R. Experimental Studies on the Effects of Cyclic Freezing–Thawing, Salt Crystallization, and Thermal Shock on the Physical and Mechanical Characteristics of Selected Sandstones. Rock Mech. Rock Eng. 2015, 48, 1001–1016. [Google Scholar] [CrossRef]
- Molina, E.; Benavente, D.; Sebastian, E.; Cultrone, G. The influence of rock fabric in the durability of two sandstones used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). Eng. Geol. 2015, 197, 67–81. [Google Scholar] [CrossRef]
- Benavente, D.; Martínez-Martínez, J.; Cueto, N.; Ordóñez, S.; Garcia-Del-Cura, M.A. Impact of salt and frost weathering on the physical and durability properties of travertines and carbonate tufas used as building material. Environ. Earth Sci. 2018, 77, 147. [Google Scholar] [CrossRef] [Green Version]
- Scrivano, S.; Gaggero, L.; Aguilar, J.G. An Experimental Investigation of the Effects of Grain Size and Pore Network on the Durability of Vicenza Stone. Rock Mech. Rock Eng. 2019, 52, 2935–2948. [Google Scholar] [CrossRef]
- Shekofteh, A.; Molina, E.; Rueda-Quero, L.; Arizzi, A.; Cultrone, G. The efficiency of nanolime and dibasic ammonium phosphate in the consolidation of beige limestone from the Pasargadae World Heritage Site. Archaeol. Anthr. Sci. 2019, 11, 5065–5080. [Google Scholar] [CrossRef]
- Karakaş, A.; Morali, G.; Coruk, Ö.; Bozkurtoğlu, E. Geomechanical, durability–hygrothermal and thermal shock properties of Kocaeli Kandira stone used as building stone in historical structures. Environ. Earth Sci. 2021, 80, 1–15. [Google Scholar] [CrossRef]
- Bozdağ, A.; Bayram, A.F.; Ince, I.; Asan, K. The relationship between weathering and welding degree of pyroclastic rocks in the Kilistra ancient city, Konya (Central Anatolia, Turkey). J. Afr. Earth Sci. 2016, 123, 1–9. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Sert, M. Accelerated aging laboratory tests for the evaluation of the durability of hydrophobic treated and untreated andesite with respect to salt crystallization, freezing–thawing, and thermal shock. Bull. Int. Assoc. Eng. Geol. 2020, 79, 3751–3770. [Google Scholar] [CrossRef]
- Török, Á.; Szemerey-Kiss, B. Freeze-thaw durability of repair mortars and porous limestone: Compatibility issues. Prog. Earth Planet. Sci. 2019, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.B.G.; Robinson, D.A. Experimental frost weathering of sandstone by various combinations of salts. Earth Surf. Process. Landf. 2001, 26, 811–818. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, H.; Taheri, A.; Ke, B.; Liu, C.; Yang, X. Degradation of physical and mechanical properties of sandstone subjected to freeze-thaw cycles and chemical erosion. Cold Reg. Sci. Technol. 2018, 155, 37–46. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, Y.; Shang, X.; Ye, P.; Zhou, R.; Gao, F. Deterioration of Physical and Mechanical Properties of Rocks by Cyclic Drying and Wetting. Geofluids 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Jiménez-González, I.; Rodríguez-Navarro, C.; Scherer, G.W. Role of clay minerals in the physicomechanical deterioration of sandstone. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Tiennot, M.; Mertz, J.-D.; Bourgès, A. Influence of Clay Minerals Nature on the Hydromechanical and Fracture Behaviour of Stones. Rock Mech. Rock Eng. 2019, 52, 1599–1611. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Cai, X.; Ma, D.; Chen, L.; Wang, S.; Tan, L. Dynamic tensile properties of sandstone subjected to wetting and drying cycles. Constr. Build. Mater. 2018, 182, 215–232. [Google Scholar] [CrossRef]
- Sumner, P.D.; Loubser, M.J. Experimental sandstone weathering using different wetting and drying moisture amplitudes. Earth Surf. Process. Landf. 2008, 33, 985–990. [Google Scholar] [CrossRef]
- Sebastián, E.; Cultrone, G.; Benavente, D.; Fernandez, L.L.; Elert, K.; Rodriguez-Navarro, C. Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J. Cult. Herit. 2008, 9, 66–76. [Google Scholar] [CrossRef]
- Ruedrich, J.; Bartelsen, T.; Dohrmann, R.; Siegesmund, S. Moisture expansion as a deterioration factor for sandstone used in buildings. Environ. Earth Sci. 2011, 63, 1545–1564. [Google Scholar] [CrossRef] [Green Version]
- An, W.-B.; Wang, L.; Chen, H. Mechanical Properties of Weathered Feldspar Sandstone after Experiencing Dry-Wet Cycles. Adv. Mater. Sci. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.; Hall, A. Weathering by wetting and drying: Some experimental results. Earth Surf. Process. Landf. 1996, 21, 365–376. [Google Scholar] [CrossRef]
- Trenhaile, A. Tidal wetting and drying on shore platforms: An experimental study of surface expansion and contraction. Geomorphology 2006, 76, 316–331. [Google Scholar] [CrossRef]
- Aly, N.; Wangler, T.; Török, Á. The effect of stylolites on the deterioration of limestone: Possible mechanisms of damage evolution. Environ. Earth Sci. 2018, 77, 565. [Google Scholar] [CrossRef]
- Mottershead, D.N. Rapid weathering of greenschists by coastal salt spray, east Prawle, south Devon: A preliminary report. Proc. Ussher Soc. 1982, 5, 347–353. [Google Scholar]
- Wells, T.; Binning, P.; Willgoose, G. The role of moisture cycling in the weathering of a quartz chlorite schist in a tropical environment: Findings of a laboratory simulation. Earth Surf. Process. Landf. 2005, 30, 413–428. [Google Scholar] [CrossRef]
- Aly, N.; Hamed, A.; El-Al, A.A. The Impact of Hydric Swelling on the Mechanical Behavior of Egyptian Helwan Limestone. Period. Polytech. Civ. Eng. 2020. [Google Scholar] [CrossRef] [Green Version]
- Pötzl, C.; Dohrmann, R.; Siegesmund, S. Clay swelling mechanism in tuff stones: An example of the Hilbersdorf Tuff from Chemnitz, Germany. Environ. Earth Sci. 2018, 77, 188. [Google Scholar] [CrossRef]
- Tiennot, M.; Mertz, J.-D.; Bourgès, A. Sensitivity of kersantite toughness to moisture: Influence of the phyllosilicates. Environ. Earth Sci. 2018, 77, 483. [Google Scholar] [CrossRef]
- Lubelli, B.; Nijland, T.G.; Tolboom, H.-J. Moisture induced weathering of volcanic tuffstone. Constr. Build. Mater. 2018, 187, 1134–1146. [Google Scholar] [CrossRef]
- Noor-E-Khuda, S.; Albermani, F. Flexural strength of weathered granites under wetting–drying cycles: Implications to steel structures. Adv. Steel Constr. 2019, 15, 225–231. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.; Alonso-Villar, E. Article 6. Stone durability of a surfactant-synthesised alkosylane consolidant on granites with different mineralogy and texture. Egypt. J. Archaeol. Restor. Stud. 2020, 10, 11–12. [Google Scholar] [CrossRef]
- Heap, M.J.; Gilg, H.A.; Hess, K.-U.; Mertens, L.; Pösges, G.; Reuschlé, T. Conservation and restoration of St. George’s church (Nördlingen, Germany), a 15th century Gothic church built using suevite from the Ries impact crater. J. Cult. Herit. 2020, 41, 256–263. [Google Scholar] [CrossRef]
- Hu, M.; Liu, Y.; Song, L.; Zhang, Y. Constitutive Model and Damage Evolution of Mudstone under the Action of Dry-Wet Cycles. Adv. Civ. Eng. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Nakano, M. Effects of slaking and degree of compaction on the mechanical properties of mudstones with varying slaking properties. Soils Found. 2019, 59, 56–66. [Google Scholar] [CrossRef]
- Zeng, L.; Luo, J.-T.; Liu, J.; Gao, Q.-F.; Bian, H.-B. Disintegration Characteristics and Mechanisms of Carbonaceous Mudstone Subjected to Load and Cyclic Drying–Wetting. J. Mater. Civ. Eng. 2021, 33, 04021195. [Google Scholar] [CrossRef]
- Beck, K.; Almukhtar, M. Cyclic wetting–drying ageing test and patina formation on tuffeau limestone. Environ. Earth Sci. 2014, 71, 2361–2372. [Google Scholar] [CrossRef]
- Bustamante, R.; Vázquez, P.; Rodríguez-Monteverde, P.; Monjo, J. Adapted ageing tests for the evaluation of alabaster used in the restoration of Bishop’s Palace of Tarazona. Mater. De Construcción 2020, 70, 219. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Li, F.; Gao, Q.-F.; Yao, X.; Wang, G. Insight into the fracturing of silty mudstone in cyclic hydrothermal environments based on computed tomography. Transp. Geotech. 2021, 26, 100432. [Google Scholar] [CrossRef]
- Vallejo, L.; Welsh, R.; Lovell, C.; Robinson, M. The Influence of Fabric and Composition on the Durability of Appalachian Shales. In Rock for Erosion Control; ASTM International: West Conshohocken, PA, USA, 2009; p. 15. [Google Scholar]
- Santi, P.M. Improving the Jar Slake, Slake Index, and Slake Durability Tests for Shales. Environ. Eng. Geosci. 1998, IV, 385–396. [Google Scholar] [CrossRef]
- Chaney, R.; Demars, K.; Santi, P.; Higgins, J. Methods for Predicting Shale Durability in the Field. Geotech. Test. J. 1998, 21, 195. [Google Scholar] [CrossRef]
- Youn, H.; Tonon, F. Effect of air-drying duration on the engineering properties of four clay-bearing rocks in Texas. Eng. Geol. 2010, 115, 58–67. [Google Scholar] [CrossRef]
- Venter, J.P. Free-Swell Properties of Some South African Mudrocks. In Proceedings of the ISRM International Symposium, Tokyo, Japan, 21–24 September 1981. ISRM-IS-1981-040. [Google Scholar]
- Phien-Wej, N.; Peiris, N.I.C.; Jinye, L. Slaking and Swelling Behaviour of Sedimentary Rocks of the Lam Ta Khong Pumped Storage Project, Thailand. In Proceedings of the 8th ISRM Congress, Tokyo, Japan, 25–29 September 1995. ISRM-8CONGRESS-1995-227. [Google Scholar]
- Germinario, L.; Oguchi, C.T.; Tamura, Y.; Ahn, S.; Ogawa, M. Taya Caves, a Buddhist marvel hidden in underground Japan: Stone properties, deterioration, and environmental setting. Herit. Sci. 2020, 8, 1–20. [Google Scholar] [CrossRef]
- Bonazza, A.; Vidorni, G.; Natali, I.; Ciantelli, C.; Giosuè, C.; Tittarelli, F. Durability assessment to environmental impact of nano-structured consolidants on Carrara marble by field exposure tests. Sci. Total. Environ. 2017, 575, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Gulotta, D.; Bontempi, E.; Bugini, R.; Goidanich, S.; Toniolo, L. The deterioration of metamorphic serpentinites used in historical architecture under atmospheric conditions. Q. J. Eng. Geol. Hydrogeol. 2017, 50, 402–411. [Google Scholar] [CrossRef]
- Gulotta, D.; Villa, F.; Cappitelli, F.; Toniolo, L. Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere. Sci. Total. Environ. 2018, 639, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Waragai, T.; Hiki, Y. Influence of microclimate on the directional dependence of sandstone pillar weathering in Angkor Wat temple, Cambodia. Prog. Earth Planet. Sci. 2019, 6, 10. [Google Scholar] [CrossRef]
- Bello, M.A.; Martin, L.; Martin, A. Decay and treatment of Macael white marble. Stud. Conserv. 1992, 37, 193–200. [Google Scholar] [CrossRef]
- Sarró, M.I.; Garcia, A.M.; Rivalta, V.M.; Moreno, D.A.; Arroyo, I. Biodeterioration of the Lions Fountain at the Alhambra Palace, Granada (Spain). Build. Environ. 2006, 41, 1811–1820. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Alves, C. Decay effects of pollutants on stony materials in the built environment. Environ. Chem. Lett. 2011, 10, 131–143. [Google Scholar] [CrossRef]
- De Azcona Fraile, M.C.L.; González, R.F.; Martín, F.M. Conservation of the stone in Cibeles Fountain, Madrid (Spain). Mater. De Construcción 2002, 265, 65–76. [Google Scholar]
- Freire-Lista, D.M.; Fort, R. Historical Quarries, Decay and Petrophysical Properties of Carbonate Stones Used in the Historical Center of Madrid (Spain). AIMS Geosci. 2017, 3, 284–303. [Google Scholar] [CrossRef]
- De Azcona, M.C.L.; Gonzalez, R.F.; Martín, F.M. La conservación de los materiales pétreos en la Fuente de Cibeles, Madrid (España). Mater. De Construcción 2002, 52, 65–75. [Google Scholar] [CrossRef]
- Ďoubal, J. The restoration of the Stone Fountain in Kutná Hora: An assessment of the contemporary intervention within the context of repairs throughout history. Stud. Conserv. 2017, 62, 371–383. [Google Scholar] [CrossRef]
- Dreesen, R.; Nielsen, P.; Lagrou, D. The staining of blue stone limestones petrographically unraveled. Mater. Charact. 2007, 58, 1070–1081. [Google Scholar] [CrossRef]
- Cárdenes, V.; Cnudde, J.P.; Wichert, J.; Large, D.; López-Mungira, A.; Cnudde, V. Roofing slate standards: A critical review. Constr. Build. Mater. 2016, 115, 93–104. [Google Scholar] [CrossRef]
- Cárdenes, V.; Mateos, F.J.; Rubio-Ordoñez, A.; Monterroso, C. Ensayos normativos para la caracterización de patologías en pizarras para cubiertas. Mater. De Construcción 2011, 62, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Zha, J.; Wei, S.; Wang, C.; Li, Z.; Cai, Y.; Ma, Q. Weathering mechanism of red discolorations on Limestone object: A case study from Lingyan Temple, Jinan, Shandong Province, China. Herit. Sci. 2020, 8, 1–12. [Google Scholar] [CrossRef]
- Germinario, L.; Siegesmund, S.; Maritan, L.; Simon, K.; Mazzoli, C. Trachyte weathering in the urban built environment related to air quality. Herit. Sci. 2017, 5, 85–93. [Google Scholar] [CrossRef]
- Germinario, L.; Oguchi, C.T. Underground salt weathering of heritage stone: Lithological and environmental constraints on the formation of sulfate efflorescences and crusts. J. Cult. Herit. 2021, 49, 85–93. [Google Scholar] [CrossRef]
- Arnold, A.; Zehnder, K. Monitoring wall paintings affected by soluble salts. In The Conservation of Wall Paintings; Getty Conservation Institute: Los Angeles, CA, USA, 1991; p. 103. Available online: https://www.getty.edu/publications/virtuallibrary/089236162X.html (accessed on 1 January 2011).
- Heiss, K.; Skalli, M.; Zallmanzig, J. Diagnosis study of the St. Marienkirche, Lippstadt, a mediaeval greensandstone monument, for conservatory planning. In Science, Technology and European Cultural Heritage; Baer, N.S., Sabbioni, C., Sors, A.I., Eds.; Butterworth Heinemann: Oxford, UK, 1991; pp. 939–942. [Google Scholar]
- Wüst, R.A.; Schlüchterb, C. The Origin of Soluble Salts in Rocks of the Thebes Mountains, Egypt: The Damage Potential to Ancient Egyptian Wall Art. J. Archaeol. Sci. 2000, 27, 1161–1172. [Google Scholar] [CrossRef]
Reference | Rock Type | Comparison |
---|---|---|
Cárdenes et al. [31] | Dolostone, limestone, sandstone | Freeze–thaw—straight fractures; salt crystallization—disaggregation. Results of an alteration index based on visual assessment of effects were generally similar or higher for freeze–thaw, but for three carbonate rocks, salt crystallization caused higher decay than freeze–thaw. |
DiBenedetto et al. [32] | Limestone | Higher salt mass loss with salt crystallization (73%) than freeze–thaw (6%). |
Ghobadi and Babazadeh [33] | Sandstone | Higher mass loss for salt crystallization (up to almost 50% but some specimens were destroyed before the 15th cycle) than for freeze–thaw (up to 4% but some of these specimens broke before the 30th cycle). |
Molina et al. [34] | Sandstone | Mass gain in freeze–thaw and mass loss with salt crystallization (up to slightly over 40%). |
Heidari et al. [25] | Limestone | Development of microcracks and fractures along stylolites in freeze–thaw. No mass loss assessment for freeze–thaw. Minor mass loss (up to 0.6%) for sodium sulfate with clear erosion and negligible for magnesium sulfate (up to 0.03%). |
Benavente et al. [35] | Limestone | Some erosive effects and fractures for both but mass loss achieved higher values with salt crystallization (up to 2.4%) than with freeze tests (up to 1.7%). |
Scrivano et al. [36] | Limestone | Under freeze–thaw, some blocks broke and had irregular mass variation but higher variation around 5%. Mass loss for salt crystallization around 30–35%. |
Shekofteh et al. [37] | Limestone | Higher mass loss in salt crystallization tests (around 20%) than in freeze–thaw tests (lower than 3%). |
Torabi-Kaveh et al. [26] | Limestone | Specimen broke under freeze–thaw (this was not observed in salt crystallization tests). No mass loss assessment for freeze–thaw. Negligible mass loss for salt crystallization tests with either magnesium sulfate or sodium sulfate (up to 0.1%). |
Karakaş et al. [38] | Limestone | Mass loss under freeze–thaw was much higher than with calcium chloride or sodium sulfate but even so very low (0.1%). |
Reference | Rock Type | Comparison |
---|---|---|
DiBenedetto et al. [32] | Pyroclastic rocks. | Disintegration with salt crystallization (at 9th cycle) and breaking along cracks for freeze–thaw (at 20th cycle). |
Bozdağ et al. [39] | Pyroclastic rocks | Specimen breaking for freeze–thaw and for salt crystallization (generally higher erosion for salt crystallization, which achieved considerable breakage of the specimens). |
Dursun and Topal [22] | Lavic rocks | Freeze–thaw: spalling and flaking at the edges for the massive type; granular surface for the vesicular type. Salt crystallization (magnesium sulfate): flaking and chipping off along specimens’ edges, which are smoothed off, surface cavities and breakage along rock structural discontinuities in the massive type; flaking, spongy appearance and total disintegrated for the vesicular type. |
Germinario and Török [21] | Pyroclastic rocks | Freeze–thaw tests were stopped after 8 cycles due to physical degradation for two types (but mass loss < 5%) while the other two types did not show major changes after 90 cycles. Mass loss was higher (for any type) with salt crystallization tests. |
Çelik and Sert [40] | Lavic rock | Low mass loss in each case (below 1.0%) but results for sodium sulfate were around 8 times higher. |
Reference | Rock Type | Other Solutions | Comparison |
---|---|---|---|
Williams and Robinson [42] | Sandstone | Ammonium alum, aluminim alum, calcium sulfate, potassium alum, sodium chloride, a mixture of ammonium alum and ammonium alum, mixtures of calcium sulfate with each of the alum salts and also ammonium potassium alum, a mixture of calcium sulfate and sodium chloride. | Most salt solutions caused a higher mass loss (highest value for sodium chloride that achieved around 94%) than pure water (mean mass loss of around 3.6%) but calcium sulfate caused a similar mean mass loss and some salt solutions (aluminim alum and a mixture of aluminim alum with calcium sulfate) achieved less mass loss than the tests with water. |
Zhang et al. [43] | Sandstone | Sodium chloride, sodium hydroxide, sulphuric acid. | Higher mass loss using solutions of sodium hydroxide (around 7%) and sodium chloride (4%) than with sulphuric acid (almost 1%) and water (which caused almost no variation). |
Sun et al. [29] | Sandstone | Magnesium sulfate (with two concentrations). | All specimens showed mass loss and increasing roughness but those with magnesium sulfate suffered higher variations (but mass loss was not higher than 2.4%). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, C.; Figueiredo, C.A.M.; Sanjurjo-Sánchez, J.; Hernández, A.C. Effects of Water on Natural Stone in the Built Environment—A Review. Geosciences 2021, 11, 459. https://doi.org/10.3390/geosciences11110459
Alves C, Figueiredo CAM, Sanjurjo-Sánchez J, Hernández AC. Effects of Water on Natural Stone in the Built Environment—A Review. Geosciences. 2021; 11(11):459. https://doi.org/10.3390/geosciences11110459
Chicago/Turabian StyleAlves, Carlos, Carlos A. M. Figueiredo, Jorge Sanjurjo-Sánchez, and Ana C. Hernández. 2021. "Effects of Water on Natural Stone in the Built Environment—A Review" Geosciences 11, no. 11: 459. https://doi.org/10.3390/geosciences11110459
APA StyleAlves, C., Figueiredo, C. A. M., Sanjurjo-Sánchez, J., & Hernández, A. C. (2021). Effects of Water on Natural Stone in the Built Environment—A Review. Geosciences, 11(11), 459. https://doi.org/10.3390/geosciences11110459