Short-Term Meteorological and Environmental Signals Recorded in a Firn Core from a High-Accumulation Site on Plateau Laclavere, Antarctic Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fieldwork and Laboratory Analysis
2.2. Age Model Construction and Time Series Analysis
3. Results
3.1. Firn Core Age Model
3.2. Firn Core Stratigraphy and Accumulation Rates
3.3. Firn Core Records of Black Carbon (BC), Non-Sea-Salt Sulphur (nssS) and the Non-Sea-Salt Sulphur—Sea-Salt Sodium Ratio (nssS/ssNa)
3.4. Firn Core and Precipitation Stable Water Isotopes
3.5. Cross-Correlation Analysis
4. Discussion
4.1. Environmental Signals Recorded in Firn Core OH-12
4.2. Accumulation Rates
4.3. Comparison of Precipitation and Firn Core Stable Water Isotopes
4.4. Relation between Firn Core and Meteorological Records
4.5. Relation between Firn Core Records and Sea Ice Extent
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, J.; Marshall, G.J.; Clem, K.; Colwell, S.; Phillips, T.; Lu, H. Antarctic temperature variability and change from station data. Int. J. Clim. 2020, 40, 2986–3007. [Google Scholar] [CrossRef]
- Thomas, E.R.; Tetzner, D.R. The Climate of the Antarctic Peninsula during the Twentieth Century: Evidence from Ice Cores. In Antarctica-A Key to Global Change; Kanao, M., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Jones, M.E.; Bromwich, D.H.; Nicolas, J.P.; Carrasco, J.; Plavcová, E.; Zou, X.; Wang, S.-H. Sixty Years of Widespread Warming in the Southern Middle and High Latitudes (1957–2016). J. Clim. 2019, 32, 6875–6898. [Google Scholar] [CrossRef]
- Turner, J.; Lachlan-Cope, T.; Colwell, S.; Marshall, G.J. A positive trend in western Antarctic Peninsula precipitation over the last 50 years reflecting regional and Antarctic-wide atmospheric circulation changes. Ann. Glaciol. 2005, 41, 85–91. [Google Scholar] [CrossRef]
- Thomas, E.R.; van Wessem, J.M.; Roberts, J.; Isaksson, E.; Schlosser, E.; Fudge, T.J.; Vallelonga, P.; Medley, B.; Lenaerts, J.; Bertler, N.; et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past 2017, 13, 1491–1513. [Google Scholar] [CrossRef]
- Medley, B.; Thomas, E.R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Chang. 2019, 9, 34–39. [Google Scholar] [CrossRef]
- Pritchard, H.D.; Vaughan, D.G. Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Cook, A.J.; Vaughan, D.G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 2010, 4, 77–98. [Google Scholar] [CrossRef]
- Pritchard, H.D.; Ligtenberg, S.R.M.; Fricker, H.A.; Vaughan, D.G.; van den Broeke, M.R.; Padman, L. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 2012, 484, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.J.; Holland, P.R.; Meredith, M.P.; Murray, T.; Luckman, A.; Vaughan, D.G. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 2016, 353, 283–286. [Google Scholar] [CrossRef] [PubMed]
- The IMBIE Team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 2018, 558, 219–222. [Google Scholar] [CrossRef]
- Stenni, B.; Curran, M.A.J.; Abram, N.J.; Orsi, A.; Goursaud, S.; Masson-Delmotte, V.; Neukom, R.; Goosse, H.; Divine, D.; van Ommen, T.; et al. Antarctic climate variability on regional and continental scales over the last 2000 years. Clim. Past 2017, 13, 1609–1634. [Google Scholar] [CrossRef]
- Mulvaney, R.; Abram, N.J.; Hindmarsh, R.C.A.; Arrowsmith, C.; Fleet, L.; Triest, J.; Sime, L.C.; Alemany, O.; Foord, S. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 2012, 489, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.W.J.; Solomon, S. Interpretation of Recent Southern Hemisphere Climate Change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the Southern Annular Mode from Observations and Reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Dickens, W.A.; Kuhn, G.; Leng, M.J.; Graham, A.G.C.; Dowdeswell, J.A.; Meredith, M.P.; Hillenbrand, C.-D.; Hodgson, D.A.; Roberts, S.; Sloane, H.; et al. Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode. Sci. Rep. 2019, 9, 14606. [Google Scholar] [CrossRef] [PubMed]
- Clem, K.R.; Renwick, J.A.; McGregor, J.; Fogt, R.L. The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res. Atmos. 2016, 121, 9324–9341. [Google Scholar] [CrossRef]
- Marshall, G.J.; Orr, A.; Van Lipzig, N.P.M.; King, J.C. The Impact of a Changing Southern Hemisphere Annular Mode on Antarctic Peninsula Summer Temperatures. J. Clim. 2006, 19, 5388–5404. [Google Scholar] [CrossRef]
- Turner, J.; Barrand, N.E.; Bracegirdle, T.J.; Convey, P.; Hodgson, D.A.; Jarvis, M.; Jenkins, A.; Marshall, G.; Meredith, M.P.; Roscoe, H.; et al. Antarctic climate change and the environment: An update. Polar Rec. 2014, 50, 237–259. [Google Scholar] [CrossRef]
- Orr, A.; Cresswell, D.; Marshall, G.J.; Hunt, J.C.R.; Sommeria, J.; Wang, C.G.; Light, M. A ‘low-level’ explanation for the recent large warming trend over the western Antarctic Peninsula involving blocked winds and changes in zonal circulation. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Cavalieri, D.J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 871–880. [Google Scholar] [CrossRef]
- Porter, S.E.; Parkinson, C.L.; Mosley-Thompson, E. Bellingshausen Sea ice extent recorded in an Antarctic Peninsula ice core. J. Geophys. Res. Atmos. 2016, 121, 13886–13900. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, J.; Mohan, R. Seasonal sea-ice variability and its trend in the Weddell Sea sector of West Antarctica. Environ. Res. Lett. 2021, 16, 024046. [Google Scholar] [CrossRef]
- Turner, J.; Phillips, T.; Hosking, J.S.; Marshall, G.J.; Orr, A. The Amundsen Sea low. Int. J. Climatol. 2013, 33, 1818–1829. [Google Scholar] [CrossRef]
- Murphy, E.J.; Clarke, A.; Abram, N.; Turner, J. Variability of sea-ice in the northern W eddell S ea during the 20th century. J. Geophys. Res. Oceans 2014, 119, 4549–4572. [Google Scholar] [CrossRef]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.; Navarro, F.J.; Hrbáček, F.; Hernández, A.; Nývlt, D.; Pereira, P.; Ruiz-Fernández, J.; Trigo, R. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ. 2017, 580, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, D.; Bromwich, D.H.; Carrasco, J.; Hines, K.M.; Maureira, J.C.; Rondanelli, R. Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data. Adv. Atmos. Sci. 2020, 37, 477–493. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Nicolas, J.P.; Monaghan, A.J.; Lazzara, M.A.; Keller, L.M.; Weidner, G.A.; Wilson, A.B. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 2012, 6, 139–145. [Google Scholar] [CrossRef]
- Goodwin, B.P.; Mosley-Thompson, E.; Wilson, A.B.; Porter, S.E.; Sierra-Hernandez, M.R. Accumulation Variability in the Antarctic Peninsula: The Role of Large-Scale Atmospheric Oscillations and Their Interactions. J. Clim. 2016, 29, 2579–2596. [Google Scholar] [CrossRef]
- Fernandoy, F.; Tetzner, D.; Meyer, H.; Gacitúa, G.; Hoffmann, K.; Falk, U.; Lambert, F.; MacDonell, S. New insights into the use of stable water isotopes at the northern Antarctic Peninsula as a tool for regional climate studies. Cryosphere 2018, 12, 1069–1090. [Google Scholar] [CrossRef]
- Fernandoy, F.; Meyer, H.; Tonelli, M. Stable water isotopes of precipitation and firn cores from the northern Antarctic Peninsula region as a proxy for climate reconstruction. Cryosphere 2012, 6, 313–330. [Google Scholar] [CrossRef]
- Cárdenas, C.; Johnson, E.; Fernandoy, F.; Meyer, H.; Cereceda, F.; Vidal, V. Preliminary results of the superficial and subglacier topography survey using Radio Echo Sounding at the La Claveré Plateau, Antarctic Peninsula. In Proceedings of the SCAR Open Science Conference, Auckland, New Zealand, 1–3 September 2014. [Google Scholar]
- Freitag, J.; Kipfstuhl, S.; Laepple, T. Core-scale radioscopic imaging: A new method reveals density–calcium link in Antarctic firn. J. Glaciol. 2013, 59, 1009–1014. [Google Scholar] [CrossRef]
- van Geldern, R.; Barth, J.A. Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS). Limnol. Oceanogr. Methods 2012, 10, 1024–1036. [Google Scholar] [CrossRef]
- Röthlisberger, R.; Bigler, M.; Hutterli, M.; Sommer, S.; Stauffer, B.; Junghans, H.G.; Wagenbach, D. Technique for Continuous High-Resolution Analysis of Trace Substances in Firn and Ice Cores. Environ. Sci. Technol. 2000, 34, 338–342. [Google Scholar] [CrossRef]
- McConnell, J.R.; Lamorey, G.W.; Lambert, S.W.; Taylor, K.C. Continuous Ice-Core Chemical Analyses Using Inductively Coupled Plasma Mass Spectrometry. Environ. Sci. Technol. 2002, 36, 7–11. [Google Scholar] [CrossRef]
- Röthlisberger, R.; Mulvaney, R.; Wolff, E.W.; Hutterli, M.A.; Bigler, M.; Sommer, S.; Jouzel, J. Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate. Geophys. Res. Lett. 2002, 29, 24-1–24-4. [Google Scholar] [CrossRef]
- Sigl, M.; McConnell, J.R.; Layman, L.; Maselli, O.; McGwire, K.C.; Pasteris, D.R.; Dahl-Jensen, D.; Steffensen, J.P.; Vinther, B.; Edwards, R.; et al. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J. Geophys. Res. Atmos. 2013, 118, 1151–1169. [Google Scholar] [CrossRef]
- Bowen, H. Environmental Chemistry of the Elements; Academic Press: London, UK; New York, NY, USA, 1979. [Google Scholar]
- McConnell, J.R.; Edwards, R.; Kok, G.L.; Flanner, M.G.; Zender, C.S.; Saltzman, E.S.; Banta, J.R.; Pasteris, D.R.; Carter, M.M.; Kahl, J.D.W. 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing. Science 2007, 317, 1381–1384. [Google Scholar] [CrossRef] [PubMed]
- Bond, T.; Doherty, S.; Fahey, D.; Forster, P.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.; Ghan, S.; Kaercher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Delmas, R.J.; Legrand, M.; Aristarain, A.J.; Zanolini, F. Volcanic deposits in Antarctic snow and ice. J. Geophys. Res. 1985, 90, 901–912. [Google Scholar] [CrossRef]
- Cole-Dai, J.; Mosley-Thompson, E.; Thompson, L.G. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores. J. Geophys. Res. 1997, 102, 16761–16771. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Merlivat, L.; Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res. 1979, 84, 5029–5033. [Google Scholar] [CrossRef]
- Uemura, R.; Matsui, Y.; Yoshimura, K.; Motoyama, H.; Yoshida, N. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J. Geophys. Res. 2008, 113, D19114. [Google Scholar] [CrossRef]
- Stenni, B.; Masson-Delmotte, V.; Selmo, E.; Oerter, H.; Meyer, H.; Röthlisberger, R.; Jouzel, J.; Cattani, O.; Falourd, S.; Fischer, H.; et al. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quat. Sci. Rev. 2010, 29, 146–159. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- McConnell, J.R.; Winterle, J.R.; Stewart, R.W.; Bales, R.C.; Thompson, A.M. Physically based inversion of surface snow concentrations of H2O2 to atmospheric concentrations at South Pole. Geophys. Res. Lett. 1997, 24, 441–444. [Google Scholar] [CrossRef]
- Riedel, K.; Weller, R.; Schrems, O.; König-Langlo, G. Variability of tropospheric hydroperoxides at a coastal surface site in Antarctica. Atmos. Environ. 2000, 34, 5225–5234. [Google Scholar] [CrossRef]
- Lee, M.; Heikes, B.G.; O’Sullivan, D.W. Hydrogen peroxide and organic hydroperoxide in the troposphere: A review. Atmospheric Environ. 2000, 34, 3475–3494. [Google Scholar] [CrossRef]
- Stewart, R.W. The annual cycle of hydrogen peroxide: An indicator of chemical instability? Atmos. Chem. Phys. Discuss. 2004, 4, 933–946. [Google Scholar] [CrossRef]
- Frey, M.M.; Bales, R.C.; McConnell, J.R. Climate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Trouet, V.; van Oldenborgh, G.J. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Res. 2013, 69, 3–13. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.; Gloersen, P.; Comiso, J.C.; Zwally, H.J. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res. Space Phys. 1999, 104, 15803–15814. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L.; DiGirolamo, N.; Ivanoff, A. Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea Ice Data Records. IEEE Geosci. Remote Sens. Lett. 2011, 9, 233–236. [Google Scholar] [CrossRef]
- McConnell, J.R.; Bales, R.C.; Stewart, R.W.; Thompson, A.M.; Albert, M.R.; Ramos, R. Physically based modeling of atmosphere-to-snow-to-firn transfer of H2O2 at South Pole. J. Geophys. Res. 1998, 103, 10561–10570. [Google Scholar] [CrossRef]
- Thomas, E.R.; Bracegirdle, T.J. Improving ice core interpretation using in situ and reanalysis data. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Sinclair, K.E.; Bertler, N.A.N.; Trompetter, W.J. Synoptic controls on precipitation pathways and snow delivery to high-accumulation ice core sites in the Ross Sea region, Antarctica. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Casado, M.; Münch, T.; Laepple, T. Climatic information archived in ice cores: Impact of intermittency and diffusion on the recorded isotopic signal in Antarctica. Clim. Past 2020, 16, 1581–1598. [Google Scholar] [CrossRef]
- Das, S.B.; Alley, R.B. Characterization and formation of melt layers in polar snow: Observations and experiments from West Antarctica. J. Glaciol. 2005, 51, 307–312. [Google Scholar] [CrossRef]
- Orsi, A.J.; Kawamura, K.; Fegyveresi, J.; Headly, M.A.; Alley, R.B.; Severinghaus, J.P. Differentiating bubble-free layers from melt layers in ice cores using noble gases. J. Glaciol. 2015, 61, 585–594. [Google Scholar] [CrossRef]
- Global Volcanism Program. Puyehue-Cordón Caulle (357150). In Volcanoes of the World; Venzke, E., Ed.; Smithsonian Institution: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Koffman, B.G.; Dowd, E.G.; Osterberg, E.C.; Ferris, D.G.; Hartman, L.H.; Wheatley, S.D.; Kurbatov, A.V.; Wong, G.J.; Markle, B.; Dunbar, N.W.; et al. Rapid transport of ash and sulfate from the 2011 Puyehue-Cordón Caulle (Chile) eruption to West Antarctica. J. Geophys. Res. Atmos. 2017, 122, 8908–8920. [Google Scholar] [CrossRef]
- Bègue, N.; Vignelles, D.; Berthet, G.; Portafaix, T.; Payen, G.; Jégou, F.; Benchérif, H.; Jumelet, J.; Vernier, J.-P.; Lurton, T.; et al. Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption. Atmospheric Chem. Phys. Discuss. 2017, 17, 15019–15036. [Google Scholar] [CrossRef]
- Bègue, N.; Shikwambana, L.; Bencherif, H.; Pallotta, J.; Sivakumar, V.; Wolfram, E.; Mbatha, N.; Orte, F.; Du Preez, D.J.; Ranaivombola, M.; et al. Statistical analysis of the long-range transport of the 2015 Calbuco volcanic plume from ground-based and space-borne observations. Ann. Geophys. 2020, 38, 395–420. [Google Scholar] [CrossRef]
- Global Volcanism Program. Calbuco. In Volcanoes of the World; Venzke, E., Ed.; Smithsonian Institution: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Ivy, D.J.; Solomon, S.; Kinnison, D.; Mills, M.J.; Schmidt, A.; Neely, R.R. The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model. Geophys. Res. Lett. 2017, 44, 2556–2561. [Google Scholar] [CrossRef]
- Evangelista, H.; Sodré, E.D.; Lima, A.C.M. Preliminary Investigation on the Atmospheric Dispersion of Pollutants Due to Ferraz Fire. INCT-APA 2013, 35–42. [Google Scholar] [CrossRef]
- Wolff, E.; Cachier, H. Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. J. Geophys. Res. 1998, 103, 11033–11041. [Google Scholar] [CrossRef]
- Pereira, E.B.; Evangelista, H.; Pereira, K.C.D.; Cavalcanti, I.F.A.; Setzer, A.W. Apportionment of black carbon in the South Shetland Islands, Antarctic Peninsula. J. Geophys. Res. 2006, 111, D03303. [Google Scholar] [CrossRef]
- Fiebig, M.; Lunder, C.R.; Stohl, A. Tracing biomass burning aerosol from South America to Troll Research Station, Antarctica. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Jumelet, J.; Klekociuk, A.R.; Alexander, S.P.; Bekki, S.; Hauchecorne, A.; Vernier, J.P.; Fromm, M.; Keckhut, P. Detection of Aerosols in Antarctica from Long-Range Transport of the 2009 Australian Wildfires. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Mattar, C.; Santamaría-Artigas, A.; Durán-Alarcón, C. Estimación del área quemada en el Parque Nacional Torres del Paine utilizando datos de teledetección. Rev. Teledetec. 2012, 38, 36–50. [Google Scholar]
- Medina, R.C. Mega Wildfire in the World Biosphere Reserve (UNESCO), Torres del Paine National Park, Patagonia—Chile 2012: Work Experience in Extreme Behavior Conditions in the Context of Global Warming. In Proceedings of the Fourth International Symposium on Fire Economics, Planning, and Policy: Climate Change and Wildfires, General Technical Report PSW-GTR-245; González-Cabán, A., Ed.; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2013; pp. 191–201. [Google Scholar]
- Otero, L.A.; Roberto Ristori, P.; Garcia Ferreyra, M.F.; Aguirre, D.; Raponi, M.M.; Omar Salvador, J.; DElia, R.; Martorella, E.; Pereyra, A.F.; Vilar, O.; et al. Biomass Burning Detection at Comodoro Rivadavia and Trelew on March 1st, 2015. In Proceedings of the 2018 IEEE Biennial Congress of Argentina (ARGENCON), San Miguel de Tucumán, Argentina, 6–8 June 2018; pp. 1–8. [Google Scholar]
- Liu, P.; Kaplan, J.O.; Mickley, L.J.; Li, Y.; Chellman, N.J.; Arienzo, M.M.; Kodros, J.K.; Pierce, J.R.; Sigl, M.; Freitag, J.; et al. Improved estimates of preindustrial biomass burning reduce the magnitude of aerosol climate forcing in the Southern Hemisphere. Sci. Adv. 2021, 7, eabc1379. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. In Climate Change in Continental Isotopic Records; Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S., Eds.; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Cuffey, K.M.; Steig, E.J. Isotopic diffusion in polar firn: Implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland. J. Glaciol. 1998, 44, 273–284. [Google Scholar] [CrossRef]
- Neumann, T.A.; Albert, M.R.; Lomonaco, R.; Engel, C.; Courville, Z.; Perron, F. Experimental determination of snow sublimation rate and stable-isotopic exchange. Ann. Glaciol. 2008, 49, 1–6. [Google Scholar] [CrossRef]
- Neumann, T.A.; Waddington, E.D.; Steig, E.J.; Grootes, P.M. Non-climate influences on stable isotopes at Taylor Mouth, Antarctica. J. Glaciol. 2005, 51, 248–258. [Google Scholar] [CrossRef]
- Ritter, F.; Steen-Larsen, H.C.; Werner, M.; Masson-Delmotte, V.; Orsi, A.; Behrens, M.; Birnbaum, G.; Freitag, J.; Risi, C.; Kipfstuhl, S. Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica. Cryosphere 2016, 10, 1647–1663. [Google Scholar] [CrossRef]
- Town, M.S.; Warren, S.G.; Walden, V.P.; Waddington, E.D. Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Neumann, T.A.; Waddington, E.D. Effects of firn ventilation on isotopic exchange. J. Glaciol. 2004, 50, 183–194. [Google Scholar] [CrossRef]
- Severinghaus, J.P.; Albert, M.; Courville, Z.; Fahnestock, M.A.; Kawamura, K.; Montzka, S.; Mühle, J.; Scambos, T.A.; Shields, E.; Shuman, C.A.; et al. Deep air convection in the firn at a zero-accumulation site, central Antarctica. Earth Planet. Sci. Lett. 2010, 293, 359–367. [Google Scholar] [CrossRef]
- van Lipzig, N.P.M.; King, J.C.; Lachlan-Cope, T.A.; van den Broeke, M.R. Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. J. Geophys. Res. 2004, 109, D24. [Google Scholar] [CrossRef]
- Casado, M.; Landais, A.; Picard, G.; Münch, T.; Laepple, T.; Stenni, B.; Dreossi, G.; Ekaykin, A.; Arnaud, L.; Genthon, C.; et al. Archival processes of the water stable isotope signal in East Antarctic ice cores. Cryosphere 2018, 12, 1745–1766. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Hou, S.; Ekaykin, A.; Jouzel, J.; Aristarain, A.; Bernardo, R.T.; Bromwich, D.; Cattani, O.; Delmotte, M.; Falourd, S.; et al. A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling. J. Clim. 2008, 21, 3359–3387. [Google Scholar] [CrossRef]
- Münch, T.; Kipfstuhl, S.; Freitag, J.; Meyer, H.; Laepple, T. Regional climate signal vs. local noise: A two-dimensional view of water isotopes in Antarctic firn at Kohnen Station, Dronning Maud Land. Clim. Past 2016, 12, 1565–1581. [Google Scholar] [CrossRef]
- Bozkurt, D.; Rondanelli, R.; Marín, J.C.; Garreaud, R. Foehn Event Triggered by an Atmospheric River Underlies Record-Setting Temperature Along Continental Antarctica. J. Geophys. Res. Atmos. 2018, 123, 3871–3892. [Google Scholar] [CrossRef]
- Goursaud, S.; Masson-Delmotte, V.; Favier, V.; Preunkert, S.; Fily, M.; Gallée, H.; Jourdain, B.; Legrand, M.; Magand, O.; Minster, B.; et al. A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica. Cryosphere 2017, 11, 343–362. [Google Scholar] [CrossRef]
- Goursaud, S.; Masson-Delmotte, V.; Favier, V.; Preunkert, S.; Legrand, M.; Minster, B.; Werner, M. Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adélie Land, coastal Antarctica. Cryosphere 2019, 13, 1297–1324. [Google Scholar] [CrossRef]
- Jouzel, J.; Merlivat, L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res. 1984, 89, 11749–11757. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Delmotte, M.; Morgan, V.; Etheridge, D.; van Ommen, T.; Tartarin, S.; Hoffmann, G. Recent southern Indian Ocean climate variability inferred from a Law Dome ice core: New insights for the interpretation of coastal Antarctic isotopic records. Clim. Dyn. 2003, 21, 153–166. [Google Scholar] [CrossRef]
- Barrett, B.S.; Campos, D.A.; Veloso, J.V.; Rondanelli, R. Extreme temperature and precipitation events in March 2015 in central and northern Chile. J. Geophys. Res. Atmos. 2016, 121, 4563–4580. [Google Scholar] [CrossRef]
- Wille, J.D.; Favier, V.; Dufour, A.; Gorodetskaya, I.V.; Turner, J.; Agosta, C.; Codron, F. West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci. 2019, 12, 911–916. [Google Scholar] [CrossRef]
- van den Broeke, M. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett. 2005, 32, L12815. [Google Scholar] [CrossRef]
- Jakobs, C.L.; Reijmer, C.H.; van den Broeke, M.R.; van de Berg, W.J.; van Wessem, J.M. Spatial Variability of the Snowmelt-Albedo Feedback in Antarctica. J. Geophys. Res. Earth Surf. 2021, 126. [Google Scholar] [CrossRef]
- Noone, D. Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J. Geophys. Res. 2004, 109, 5029–5033. [Google Scholar] [CrossRef]
Year | Accumulation Rate (kg m−2 a−1) |
---|---|
2012 | 2390 |
2013 | 2890 |
2014 | 2470 |
2015 | 2260 |
2012–2015 | 2500 |
Sampling Period | 01/2008–03/2009 (15 Months) | 03/2014–11/2014 (9 Months) | 12/2015–12/2017 (25 Months) | 2008–2017 (49 Months) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n (samples) | 139 (139) | 72 (94) | 83 (133) | 294 (366) | ||||||||
Stable water isotope composition | δ18O (‰) | δD (‰) | d excess (‰) | δ18O (‰) | δD (‰) | d excess (‰) | δ18O (‰) | δD (‰) | d excess (‰) | δ18O (‰) | δD (‰) | d excess (‰) |
Min | −19.4 | −150.6 | −6.6 | −18.4 | −148.4 | −8.9 | −22.1 | −181.6 | −9.8 | −22.1 | −181.6 | −9.8 |
Mean | −9.2 | −70.5 | 2.7 | −10.1 | −81.9 | −0.9 | −9.2 | −74.5 | −1.0 | −9.4 | −74.4 | 0.8 |
Max | −3.8 | −21.8 | 22.3 | −1.3 | −16.0 | 13.3 | −0.9 | −11.8 | 22.4 | −0.9 | −11.8 | 22.4 |
Sdev | 3.3 | 26.4 | 4.2 | 4.4 | 34.2 | 5.7 | 4.3 | 33.4 | 5.7 | 3.9 | 30.8 | 5.3 |
δ18O (‰) | δD (‰) | d Excess (‰) | |
---|---|---|---|
Min | −19.4 | −148.0 | 1.4 |
Mean | −12.4 | −92.0 | 6.8 |
Max | −7.0 | −49.3 | 15.2 |
Sdev | 2.4 | 19.2 | 2.1 |
Year | 2012 | 2013 | 2014 | 2015 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
δ18O (‰) | δD(‰) | d excess (‰) | δ18O (‰) | δD(‰) | d excess (‰) | δ18O (‰) | δD(‰) | d excess (‰) | δ18O (‰) | δD(‰) | d excess (‰) | |
Min | −16.0 | −123.1 | 3.2 | −18.5 | −145.5 | 2.7 | −19.4 | −148.0 | 1.6 | −18.0 | −138.4 | 1.4 |
Mean | −12.5 | −92.8 | 6.9 | −12.4 | −92.4 | 6.9 | −12.7 | −95.0 | 7.0 | −12.0 | −89.0 | 7.1 |
Max | −9.5 | −63.6 | 13.3 | −7.2 | −49.3 | 10.8 | −7.8 | −54.3 | 15.2 | −7.0 | −49.9 | 11.7 |
Sdev | 1.5 | 13.0 | 2.1 | 2.8 | 22.5 | 1.9 | 2.5 | 20.2 | 2.4 | 5.4 | 39.8 | 3.3 |
δ18O | δD | d Excess | Tmean ERA5 | SIE BA | SIE Weddell | |
---|---|---|---|---|---|---|
MLT | ||||||
r | 0.07 | 0.07 | 0.04 | 0.53 | −0.59 | −0.56 |
p | 0.66 | 0.64 | 0.77 | 0.0001 | 0 | 0 |
δ18O | ||||||
r | 1 | 0.99 | −0.03 | 0.06 | 0.03 | 0.02 |
p | 0 | 0 | 0.86 | 0.67 | 0.85 | 0.91 |
δD | ||||||
r | 1 | 0.08 | 0.02 | 0.05 | 0.03 | |
p | 0 | 0.59 | 0.88 | 0.75 | 0.85 | |
d excess | ||||||
r | 1 | −0.38 | 0.18 | 0.10 | ||
p | 0 | 0.01 | 0.21 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann-Abdi, K.; Fernandoy, F.; Meyer, H.; Freitag, J.; Opel, T.; McConnell, J.R.; Schneider, C. Short-Term Meteorological and Environmental Signals Recorded in a Firn Core from a High-Accumulation Site on Plateau Laclavere, Antarctic Peninsula. Geosciences 2021, 11, 428. https://doi.org/10.3390/geosciences11100428
Hoffmann-Abdi K, Fernandoy F, Meyer H, Freitag J, Opel T, McConnell JR, Schneider C. Short-Term Meteorological and Environmental Signals Recorded in a Firn Core from a High-Accumulation Site on Plateau Laclavere, Antarctic Peninsula. Geosciences. 2021; 11(10):428. https://doi.org/10.3390/geosciences11100428
Chicago/Turabian StyleHoffmann-Abdi, Kirstin, Francisco Fernandoy, Hanno Meyer, Johannes Freitag, Thomas Opel, Joseph R. McConnell, and Christoph Schneider. 2021. "Short-Term Meteorological and Environmental Signals Recorded in a Firn Core from a High-Accumulation Site on Plateau Laclavere, Antarctic Peninsula" Geosciences 11, no. 10: 428. https://doi.org/10.3390/geosciences11100428
APA StyleHoffmann-Abdi, K., Fernandoy, F., Meyer, H., Freitag, J., Opel, T., McConnell, J. R., & Schneider, C. (2021). Short-Term Meteorological and Environmental Signals Recorded in a Firn Core from a High-Accumulation Site on Plateau Laclavere, Antarctic Peninsula. Geosciences, 11(10), 428. https://doi.org/10.3390/geosciences11100428