Tomographic Experiments for Defining the 3D Velocity Model of an Unstable Rock Slope to Support Microseismic Event Interpretation
Abstract
:1. Introduction
2. The Study Site
3. Microseismic Monitoring System
4. Source Selection for Tomographic Survey
4.1. Data Acquisition
4.2. Performance Comparison of Different Sources
5. Seismic Tomographic Survey
5.1. Data Acquisition and First Arrival Picking
5.2. Seismic Travel-Time Inversion
5.3. Sensitivity Test
6. Localization of Seismic Shots
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arosio, D.; Longoni, L.; Papini, M.; Scaioni, M.; Zanzi, L.; Alba, M. Towards rockfall forecasting through observing deformations and listening to microseismic emissions. Nat. Hazards Earth Syst. Sci. 2009, 9, 1119–1131. [Google Scholar] [CrossRef]
- Scavia, C.; Barbero, M.; Castelli, M.; Marchelli, M.; Peila, D.; Torsello, G.; Vallero, G. Evaluating rockfall risk: Some critical aspects. Geosciences 2020, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Arosio, D.; Munda, S.; Tresoldi, G.; Papini, M.; Longoni, L.; Zanzi, L. A customized resistivity system for monitoring saturation and seepage in earthen levees: Installation and validation. Open Geosci. 2017, 9, 457–467. [Google Scholar] [CrossRef]
- Tresoldi, G.; Arosio, D.; Hojat, A.; Longoni, L.; Papini, M.; Zanzi, L. Long-term hydrogeophysical monitoring of the internal conditions of river levees. Eng. Geol. 2019, 259, 105139. [Google Scholar] [CrossRef]
- Hojat, A.; Arosio, D.; Longoni, L.; Papini, M.; Tresoldi, G.; Zanzi, L. Installation and validation of a customized resistivity system for permanent monitoring of a river embankment. In Proceedings of the EAGE-GSM 2nd Asia Pacific Meeting on Near Surface Geoscience and Engineering, Kuala Lumpur, Malaysia, 22–26 April 2019; European Association of Geoscientists and Engineers (EAGE): Kuala Lumpur, Malaysia, 2019. [Google Scholar] [CrossRef]
- Hojat, A.; Arosio, D.; Loke, M.H.; Longoni, L.; Papini, M.; Tresoldi, G.; Zanzi, L. Assessment of 3D geometry effects on 2D ERT data of a permanent monitoring system along a river embankment. In Proceedings of the EAGE-GSM 2nd Asia Pacific Meeting on Near Surface Geoscience and Engineering, Kuala Lumpur, Malaysia, 22–26 April 2019; European Association of Geoscientists and Engineers (EAGE): Kuala Lumpur, Malaysia, 2019. [Google Scholar] [CrossRef]
- Hojat, A.; Arosio, D.; Ivanov, V.I.; Longoni, L.; Papini, M.; Scaioni, M.; Tresoldi, G.; Zanzi, L. Geoelectrical characterization and monitoring of slopes on a rainfall-triggered landslide simulator. J. Appl. Geophys. 2019, 170, 103844. [Google Scholar] [CrossRef]
- Ivanov, V.; Arosio, D.; Tresoldi, G.; Hojat, A.; Zanzi, L.; Papini, M.; Longoni, L. Investigation on the role ofwater for the stability of shallow landslides-insights from experimental tests. Water 2020, 12, 1203. [Google Scholar] [CrossRef] [Green Version]
- Arosio, D.; Longoni, L.; Papini, M.; Zanzi, L. Analysis of Microseismic Activity Within Unstable Rock Slopes. In Modern Technologies for Landslide Monitoring and Prediction; Scaioni, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 141–154. [Google Scholar]
- Zhang, Z.; Arosio, D.; Hojat, A.; Taruselli, M.; Zanzi, L. Construction of a 3D velocity model for microseismic event location on a monitored rock slope. In Proceedings of the EAGE-GSM 2nd Asia Pacific Meeting on Near Surface Geoscience and Engineering, Kuala Lumpur, Malaysia, 22–26 April 2019; European Association of Geoscientists and Engineers (EAGE): Kuala Lumpur, Malaysia, 2019. [Google Scholar] [CrossRef]
- Walter, M.; Joswig, M. Seismic monitoring of fracture processes generated by a creeping landslide in the Vorarlberg Alps. First Break 2008, 26. [Google Scholar] [CrossRef]
- Walter, M.; Joswig, M. Seismic characterization of slope dynamics caused by softrock-landslides: The Super-Sauze case study. In Landslide Processes: From Geomorpholgic Mapping to Dynamic Modelling; Malet, J.P., Remaıtre, A., Boogard, T., Eds.; CERG Editions: Strassbourg, France, 2009. [Google Scholar]
- Senfaute, G.; Duperret, A.; Lawrence, J.A. Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs: A case study at Mesnil-Val, Normandie, NW France. Nat. Hazards Earth Syst. Sci. 2009, 9, 1625–1641. [Google Scholar] [CrossRef]
- Amitrano, D.; Arattano, M.; Chiarle, M.; Mortara, G.; Occhiena, C.; Pirulli, M.; Scavia, C. Microseismic activity analysis for the study of the rupture mechanisms in unstable rock masses. Nat. Hazards Earth Syst. Sci. 2010, 10, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Weber, S.; Faillettaz, J.; Meyer, M.; Beutel, J.; Vieli, A. Acoustic and Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH). J. Geophys. Res. Earth Surf. 2018, 123, 1363–1385. [Google Scholar] [CrossRef]
- Taruselli, M.; Arosio, D.; Longoni, L.; Papini, M.; Zanzi, L. Seismic noise spectral analysis techniques to monitor unstable rock blocks. In Proceedings of the EAGE-GSM 2nd Asia Pacific Meeting on Near Surface Geoscience and Engineering, Kuala Lumpur, Malaysia, 22–26 April 2019; European Association of Geoscientists and Engineers (EAGE): Kuala Lumpur, Malaysia, 2019. [Google Scholar] [CrossRef]
- Spillmann, T.; Maurer, H.; Green, A.G.; Heincke, B.; Willenberg, H.; Husen, S. Microseismic investigation of an unstable mountain slope in the Swiss Alps. J. Geophys. Res. Solid Earth 2007, 112, 1–25. [Google Scholar] [CrossRef]
- Colombero, C. Microseismic Strategies for Characterization and Monitoring of an Unstable Rock Mass. Ph.D. Thesis, University of Turin, Turin, Italy, 2017. [Google Scholar]
- Lomax, A.; Virieux, J.; Volant, P.; Berge-Thierry, C. Probabilistic Earthquake Location in 3D and Layered Models. In Advances in Seismic Event Location; Thurber, C.H., Rabinowitz, N., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 101–134. [Google Scholar] [CrossRef]
- Lomax, A.; Curtis, A. Fast, probabilistic earthquake location in 3D models using Oct-Tree Importance sampling. Geophys. Res. Abstr. 2001, 3, 955. [Google Scholar]
- Helmstetter, A.; Garambois, S. Seismic monitoring of Schilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls. J. Geophys. Res. Earth Surf. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Heincke, B.; Maurer, H.; Green, A.G.; Willenberg, H.; Spillmann, T.; Burlini, L. Characterizing an unstable mountain slope using shallow 2D and 3D seismic tomographySeismic survey of an unstable mountain. Geophysics 2006, 71, B241–B256. [Google Scholar] [CrossRef]
- Samyn, K.; Travelletti, J.; Bitri, A.; Grandjean, G.; Malet, J.P. Characterization of a landslide geometry using 3D seismic refraction traveltime tomography: The La Valette landslide case history. J. Appl. Geophys. 2012, 86, 120–132. [Google Scholar] [CrossRef]
- Dussauge-Peisser, C.; Wathelet, M.; Jongmans, D.; Hantz, D.; Couturier, B.; Sintes, M. Investigation of a fractured limestone cliff (Chartreuse Massif, France) using seismic tomography and ground-penetrating radar. Near Surf. Geophys. 2003, 1, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Arosio, D.; Longoni, L.; Mazza, F.; Papini, M.; Zanzi, L. Freeze-Thaw Cycle and Rockfall Monitoring. In Landslide Science and Practice: Volume 2: Early Warning, Instrumentation and Monitoring; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 385–390. [Google Scholar]
- Arosio, D.; Longoni, L.; Papini, M.; Boccolari, M.; Zanzi, L. Analysis of microseismic signals collected on an unstable rock face in the Italian Prealps. Geophys. J. Int. 2018, 213, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Hardy, H.R. Acoustic Emission/Microseismic Activity; A.A. BALKEMA: Lisse, The Netherlands, 2003. [Google Scholar]
- Sandmeier, K.J. REFLEXW Manual, Version 9.5. 2020. Available online: http://www.sandmeier-geo.de (accessed on 30 June 2020).
- Tweeton, D.R. GeoTomCG, Three Dimensional Geophysical Tomography Software. 2012. Available online: http://dev.geotom.net/ (accessed on 30 June 2020).
- Um, J.; Thurber, C. A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am. 1987, 77, 972–986. [Google Scholar]
- Lytle, R.J.; Dines, K.A.; Laine, E.F.; Lager, D.L. Electromagnetic Cross-Borehole Survey of a Site Proposed for an Urban Transit Station; Lawrence Livermore Laboratory: Livermore, CA, USA, 1978. [Google Scholar]
- Peterson, J.E.; Paulsson, B.N.P.; McEvilly, T.V. Applications of algebraic reconstruction techniques to crosshole seismic data. Geophysics 1985, 50, 1566–1580. [Google Scholar] [CrossRef]
- Lehmann, B. Seismic Traveltime Tomography for Engineering and Exploration Applications; European Association of Geoscientists and Engineers (EAGE): Houten, The Netherlands, 2007. [Google Scholar]
- Zhao, D.; Hasegawa, A.; Horiuchi, S. Tomographic Imaging of P and S Wave Velocity Structure. J. Geophys. Res. 1992, 97, 19909–19928. [Google Scholar] [CrossRef]
- Adamczyk, A.; Malinowski, M.; Malehmir, A. Application of first-arrival tomography to characterize a quick clay landslide site in Southwest Sweden. Acta Geophys. 2013, 61, 1057–1073. [Google Scholar] [CrossRef]
- Lomax, A.; Michelini, A.; Curtis, A. Earthquake location, direct, global-search methods. In Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 2449–2473. [Google Scholar]
- Zhou, H. Rapid three-dimensional hypocentral determination using a master station method. J. Geophys. Res. Solid Earth 1994, 99, 15439–15455. [Google Scholar] [CrossRef]
- Font, Y.; Kao, H.; Lallemand, S.; Liu, C.S.; Chiao, L.Y. Hypocentre determination offshore of eastern Taiwan using the maximum intersection method. Geophys. J. Int. 2004, 158, 655–675. [Google Scholar] [CrossRef] [Green Version]
Source Type | Number of Shots | Trigger Type | Trigger Sensor | Pre-Trigger [s] | Recording Duration [s] | Sampling Rate [ms] |
---|---|---|---|---|---|---|
Firework charge | 8 | Wired | 8 Hz vertical geophone | 2 | 8 | 1 |
Hammer | 14 | Wired | MuRata piezoelectric accelerometer | 2 | 5 | 1 |
Seismic gun | 6 | Wired | MuRata piezoelectric accelerometer | 2 | 5 | 1 |
Recording System | Number of Geophones | Sampling Rate [ms] | Distance between Geophones [m] | Shot Positions | Number of Shots |
---|---|---|---|---|---|
Geode system | 24 | 0.25 | ~3 | 12 | 26 |
Monitoring system | 5 | 1 | - | ||
Number of traces from the tomographic survey | 754 | ||||
Number of traces from source tests | 100 | ||||
Total number of traces | 854 | ||||
Total number of picks | 503 | ||||
Surface extent of the investigation area | 40 × 35 m | ||||
Vertical extent of the investigation area | 100 m | ||||
Source type | Hammer |
Velocity Constraint [m/s] | Estimated Volume [m3] |
---|---|
<2000 | 336 |
<2500 | 1056 |
<3000 | 1392 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Arosio, D.; Hojat, A.; Zanzi, L. Tomographic Experiments for Defining the 3D Velocity Model of an Unstable Rock Slope to Support Microseismic Event Interpretation. Geosciences 2020, 10, 327. https://doi.org/10.3390/geosciences10090327
Zhang Z, Arosio D, Hojat A, Zanzi L. Tomographic Experiments for Defining the 3D Velocity Model of an Unstable Rock Slope to Support Microseismic Event Interpretation. Geosciences. 2020; 10(9):327. https://doi.org/10.3390/geosciences10090327
Chicago/Turabian StyleZhang, Zhiyong, Diego Arosio, Azadeh Hojat, and Luigi Zanzi. 2020. "Tomographic Experiments for Defining the 3D Velocity Model of an Unstable Rock Slope to Support Microseismic Event Interpretation" Geosciences 10, no. 9: 327. https://doi.org/10.3390/geosciences10090327
APA StyleZhang, Z., Arosio, D., Hojat, A., & Zanzi, L. (2020). Tomographic Experiments for Defining the 3D Velocity Model of an Unstable Rock Slope to Support Microseismic Event Interpretation. Geosciences, 10(9), 327. https://doi.org/10.3390/geosciences10090327