How Can Technical Aspects Help Improving K-Ar Isotopic Data of Illite-Rich Clay Materials into Meaningful Ages? The Case of the Dominique Peter Uranium Deposit (Saskatchewan, Canada)
Abstract
:1. Introduction
2. The Improving Steps in the Sample Preparation of Illite-Rich Fractions
3. The Available Regional Geochronological and Tectonic-Thermal Information
4. The Geological Setting
5. The Sample Description and the Analytical Procedure
6. The Results
7. Discussion
7.1. How to Sort out K-Ar Illite Ages
7.2. Some Adjustments of the Regional Interpretation due to the New Illite K-Ar ages
7.3. Which Dating Benefits Can Result from Downsizing Clay Minerals?
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Clauer, N.; Chaudhuri, S. Indirect Dating of Sediment-Hosted ore Deposits: Promises and Problems. In Isotopic Signatures and Sedimentary Records; Clauer, N., Chaudhuri, S., Eds.; Lecture Notes in Earth Sciences, Springer: Heidelberg, Germany, 2012; Volume 43, pp. 361–388. [Google Scholar]
- Wasserburg, G.J.; Hayden, R.I.; Jensen, K.J. Ar40-K40 dating of igneous rocks and sediments. Geochim. Cosmochim. Acta 1956, 10, 153–165. [Google Scholar] [CrossRef]
- Hurley, P.M.; Cormier, R.F.; Hower, J.; Fairbairn, H.W.; Pinson, W.H. Reliability of glauconite for age measurements by K-Ar and Rb-Sr methods. Am. Assoc. Pet. Geol. Bull. 1960, 44, 1793–1808. [Google Scholar]
- Perry, E.A., Jr. Diagenesis and the K-Ar dating of shales and clay minerals. Geol. Soc. Am. Bull. 1974, 85, 827–830. [Google Scholar] [CrossRef]
- Clauer, N.; Cocker, J.D.; Chaudhuri, S. Isotopic Dating of Diagenetic Illites in Reservoir Sandstones: Influence of the Investigator Effect. In Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones; Special Publication; Society of Economic Paleontologists and Mineralogists: Broken Arrow, OK, USA, 1992; Volume 47, pp. 5–12. [Google Scholar]
- Clauer, N.; Lerman, A. Thermal History Analysis of Sedimentary Basins: An Isotopic Approach to Illitization. In Thermal History Analysis of Sedimentary Basins: Methods and Case Histories; Special Publication; Harris, N.D., Peters, K., Eds.; Society of Economic Paleontologists and Mineralogists: Broken Arrow, OK, USA, 2012; Volume 11, pp. 125–146. [Google Scholar]
- Szczerba, M.; Środoń, J. Extraction of diagenetic and detrital ages and of 40Kdetrital/40Kdiagenetic ratio from K-Ar dates of clay fractions. Clays Clay Miner. 2009, 57, 93–103. [Google Scholar] [CrossRef]
- Thompson, G.R.; Hower, J. An explanation for low radiometric ages from glauconite. Geochim. Cosmochim. Acta 1973, 37, 1473–1491. [Google Scholar] [CrossRef]
- Clauer, N.; Środoń, J.; Francu, J.; Sucha, V. K-Ar dating of illite fundamental particles separated from illite/smectite. Clay Miner. 1997, 32, 181–196. [Google Scholar] [CrossRef]
- Clauer, N.; Chaudhuri, S. Clays in Crustal Environments. In Isotope Dating and Tracing; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1995; 359p. [Google Scholar]
- Liewig, N.; Clauer, N.; Sommer, F. Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoir, North Sea. Am. Assoc. Pet. Geol. Bull. 1987, 71, 1467–1474. [Google Scholar]
- Reuter, A. Implications of K-Ar ages of whole-rock and grain-size fractions of metapelites and intercalated metatuffs within an anchizonal terrane. Contrib. Mineral. Petrol. 1987, 97, 105–115. [Google Scholar] [CrossRef]
- Glasmann, J.R. The Fate of Feldspar in Brent Group Reservoirs, North Sea: A Regional Synthesis of Diagenesis in Shallow, Intermediate and Deep Burial Environments. In Geology of the Brent Group; Specia Publication; Morton, A.C., Haszeldine, R.S., Giles, M.R., Brown, S., Eds.; Geological Society of London: London, UK, 1992; Volume 61, pp. 329–350. [Google Scholar]
- Matthews, J.C.; Velde, B.; Johansen, H. Significance of K-Ar ages of authigenic illitic clay minerals in sandstones and shales from the North Sea. Clay Miner. 1994, 29, 379–389. [Google Scholar] [CrossRef]
- Zwingmann, H.; Berger, A.; Eggenberger, U.; Todd, A.; Herwegh, M. Testing high-voltage electrical discharges in disintegrating claystone for isotopic and mineralogical studies: An example using Opalinus Claystone. Clays Clay Miner. 2017, 65, 342–354. [Google Scholar] [CrossRef]
- Środoń, J.; Elsass, F.; McHardy, W.J.; Morgan, D.J. Chemistry of illite/smectite inferred from TEM measurements of fundamental particles. Clay Miner. 1992, 27, 137–158. [Google Scholar] [CrossRef]
- Nadeau, P.H.; Wilson, M.J.; McHardy, W.J.; Tait, J.M. Interstratified clays as fundamental particles. Science 1984, 225, 923–925. [Google Scholar] [CrossRef] [PubMed]
- Clauer, N.; Liewig, N.; Pierret, M.C.; Toulkeridis, T. Crystallization conditions of fundamental particles from mixed-layers illite-smectite of bentonites based on isotopic data (K-Ar, Rb-Sr and δ18O). Clays Clay Miner. 2003, 51, 664–674. [Google Scholar] [CrossRef]
- Clauer, N.; Rousset, D.; Srodon, J. Modeled shale and sandstone burial diagenesis based on the K-Ar systematics of illite-type fundamental particles. Clays Clay Miner. 2003, 52, 576–588. [Google Scholar] [CrossRef]
- Clauer, N.; Honty, M.; Fallick, A.E.; Sucha, V.; Aubert, A. Regional illitization in bentonite beds from East Slovak Basin based on isotopic characteristics (K-Ar, δ18O and δD) of illite-type nanoparticles. Clay Miner. 2014, 49, 247–275. [Google Scholar] [CrossRef]
- Honty, M.; Uhlík, P.; Sucha, V.; Caplovicová, M.; Francù, J.; Clauer, N.; Biron, A. Smectite-to-illite alteration in salt-bearing bentonites (the East Slovak Basin). Clays Clay Miner. 2004, 52, 533–551. [Google Scholar] [CrossRef]
- Philippe, S.; Lancelot, J.R.; Clauer, N.; Pacquet, A. Formation and evolution of the Cigar Lake uranium deposit based on U-Pb and K-Ar isotope systematics. Can. J. Earth Sci. 1993, 30, 720–730. [Google Scholar] [CrossRef]
- Harper, C.T. Graphic solution to the problem of 40Ar loss from metamorphic minerals. Eclogae Geol. Helv. 1970, 63, 119–140. [Google Scholar]
- Lewry, J.F.; Sibbald, T.I.I.; Rees, C.J. Metamorphic Patterns and their relation to tectonism and plutonism in the Churchill Province in northern Saskatchewan. In Metamorphism in the Canadian Shield, Geological Survey of Canada Paper 78–100; Geological Society of America: Boulder, CO, USA, 1978; pp. 139–154. [Google Scholar]
- Bruneton, P. Geological environment of the Cigar Lake uranium deposit. Can. J. Earth Sci. 1993, 30, 653–673. [Google Scholar] [CrossRef]
- Cumming, G.L.; Rimsaite, J. Isotopic studies of lead-depleted pitchblende, secondary radioactive minerals, and sulphides from the Rabbit Lake uranium deposit, Saskatchewan. Can. J. Earth Sci. 1979, 16, 1702–1715. [Google Scholar] [CrossRef]
- Baadsgaard, H.; Cumming, G.L.; Worden, J.M. U-Pb geochronology of minerals from the Midwest uranium deposit, northern Saskatchewan. Can. J. Earth Sci. 1984, 21, 642–648. [Google Scholar] [CrossRef]
- Fryer, B.J.; Taylor, R.P. Rare-earth element distributions in uraninites: Implications for ore genesis. Chem. Geol. 1984, 63, 101–108. [Google Scholar] [CrossRef]
- Trocki, L.K.; Curtis, D.B.; Gancarz, A.J.; Banar, J.C. Ages of major uranium mineralization and Pb loss in the Key Lake uranium deposit, northern Saskatchewan, Canada. Econ. Geol. 1984, 79, 1378–1386. [Google Scholar] [CrossRef]
- Cumming, G.L.; Krstic, D. The age of unconformity-related uranium mineralization in the Athabasca Basin, northern Saskatchewan. Can. J. Earth Sci. 1992, 29, 1623–1639. [Google Scholar] [CrossRef]
- Carl, C.; von Pechmann, E.; Höhndorf, A.; Ruhrmann, G. Mineralogy and U/Pb, Pb/Pb, and Sm/Nd geochronology of the Key Lake uranium deposit, Athabasca Basin, Saskatchewan, Canada. Can. J. Earth Sci. 1992, 29, 879–895. [Google Scholar] [CrossRef]
- Bellon, H.; Devillers, C.; Hageman, R.; Touray, J.C. Dater les minéralisations. Mémoire hors Série. Société Géologique Fr. 1976, 7, 265–268. [Google Scholar]
- Devillers, C.; Menes, J. Datation de la Minéralisation d’Akouta, République du Niger: Complément, Rapport DRA/SAECNI/77, DR62/123/CD/DT1977. 7–15.
- Bell, K. Geochronology of the Carwell Area and Northern Saskatchewan. In The Carswell Structure Deposits, Saskatchewan; Special Paper; Laine, R., Alonso, D., Svab, L., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1985; Volume 29, pp. 33–46. [Google Scholar]
- Clauer, N.; Ey, F.; Gauthier-Lafaye, F. K-Ar Dating of Different Rock Types from the Cluff Lake Uranium Ore Deposits (Saskatchewan-Canada). In The Carswell Structure Uranium Deposits, Saskatchewan; Special Paper; Lainé, R., Alonso, D., Svab, M., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1985; Volume 29, pp. 47–54. [Google Scholar]
- Laverret, E.; Clauer, N.; Fallick, A.; Mercadier, J.; Patrier, P.; Beaufort, D.; Bruneton, P. K-Ar dating and δ18O-δD tracing of illitization within and outside the Shea Creek uranium prospect, Athabasca Basin, Canada. Appl. Geochem. 2010, 25, 856–871. [Google Scholar] [CrossRef]
- Turpin, L.; Clauer, N.; Forbes, P.; Pagel, M. U-Pb, Sm-Nd and K-Ar systematics of the Akouta uranium deposit, Niger. Chem. Geol. (Isot. Geosci.) 1991, 87, 217–230. [Google Scholar] [CrossRef]
- Respaut, J.P.; Cathelineau, M.; Lancelot, J. Multistage evolution of the Pierres Plantées uranium ore deposit (Margeride, France): Evidence from mineralogy and U-Pb systematics. Eur. J. Mineral. 1991, 3, 85–103. [Google Scholar] [CrossRef]
- Alexandre, P.; Kyser, K.; Thomas, D.; Polito, P.; Marlat, J. Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin. Miner. Depos. 2009, 44, 41. [Google Scholar] [CrossRef]
- Alexandre, P.; Kyser, P.; Polito, P.; Thomas, D. Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin. Econ. Geol. 2005, 100, 1547–1563. [Google Scholar] [CrossRef]
- Juteau, M.; Pagel, M.; Michard, A.; Albarède, F. Assimilation of continental crust by komatiites in the Precambrian basement of the Carswell structure (Saskatchewan, Canada). Contrib. Mineral. Petrol. 1988, 99, 219–225. [Google Scholar] [CrossRef]
- Cumming, G.L.; Krstic, D.; Wilson, J.A. Age of the Athabasca Group, Northern Alberta. In Proceedings of the GAC-MAC Annual Conference, Saskatoon, SK, Canada, 25–27 May 1987; p. 35. [Google Scholar]
- Armstrong, R.L.; Ramaekers, P. Sr isotopic study of Helikian sediment and diabase dikes in the Athabasca Basin, northern Saskatchewan. Can. J. Earth Sci. 1985, 22, 399–407. [Google Scholar] [CrossRef]
- Pagel, M.; Weatley, K.; Ey, F. The Origin of the Carwell Circular Structure. In The Carswell Structure Deposits, Saskatchewan; Special Paper; Laine, R., Alonso, D., Svab, L., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1985; Volume 29, pp. 213–223. [Google Scholar]
- Wanless, R.D.; Stevens, R.D.; Lachance, G.R.; Delabio, R.N. Age Determinations and Geological Studies, K-Ar Isotopic Ages; Report 14; Geological Survey of Canada: Ottawa, ON, Canada, 1979. [Google Scholar]
- Bottomley, R.J.; York, D.; Grieve, R.A.F. Argon-40-Argon-39 Dating of Impact Craters. In Proceedings of the 20th Lunar and Planetary Science Conference, Houston, TX, USA, 12–16 March 1990; pp. 421–431. [Google Scholar]
- Pagel, M.; Svab, M. Petrographic and Geochemical Variations within the Carswell Structure Metamorphic Core and their Implications with Respect to Uranium Mineralization; Special Papers; Geological Association of Canada: St. John’s, NL, Canada, 1985; Volume 29, pp. 55–70. [Google Scholar]
- Pagel, M.; Ruhlmann, F. Chemistry of Uranium Minerals in Deposits and Showings of the Carswell Structure (Saskatchewan—Canada). In The Carswell Structure Deposits, Saskatchewan; Special Paper; Laine, R., Alonso, D., Svab, L., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1985; Volume 29, pp. 154–164. [Google Scholar]
- Ey, F. Un Exemple de Gisement D’uranium Sous Discordance: Les Minéralisations Protérozoïques de Cluff Lake, Saskatchewan, Canasa; Thèse de Spécialité: Université Louis Pasteur: Strasbourg, France, 1984. [Google Scholar]
- Bonhomme, M.G.; Thuizat, R.; Pinault, Y.; Clauer, N.; Wendling, A.; Winkler, R. Méthode de Datation Potassium-Argon. Appareillage et Technique; Note Technique; Institut Géologie: Strasbourg, France, 1975. [Google Scholar]
- Odin, G.S. (Ed.) Odin and 36 Collaborators Interlaboratory Standards for Dating Purposes. In Numerical Dating in Stratigraphy; John Wiley & Sons: Chichester, UK, 1982; Part 1; pp. 123–148. [Google Scholar]
- Lee, J.Y.; Marti, K.; Severinghaus, J.P.; Kawamura, K.; Yoo, H.S.; Lee, J.B.; Kim, J.S. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 2006, 70, 4507–4512. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommision on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Kübler, B. Evaluation Quantitative du Métamorphisme Par la Cristallinité de L’illite. Bulletin Centre de Recherche de Pau; Société Nationale des Pétrole d’Aquitaine: Pau, France, 1968; pp. 285–397. [Google Scholar]
- Kübler, B. Concomitant Alteration of Clay Minerals and Organic Matter during Burial Diagenesis. In Soils and Sediments; Paquet, H., Clauer, N., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 327–362. [Google Scholar]
- Merriman, R.J.; Frey, M. Patterns of Very Low-Grade Metamorphism in Metapelitic Rocks. In Low-Grade Metamorphis; Frey, M., Robinson, D., Eds.; Blackwell Science: Oxford, UK, 1999; pp. 61–107. [Google Scholar]
- Klug, H.P.; Alexander, L.E. X-Ray Diffraction Procedures, 2nd ed.; Wiley: New York, NY, USA, 1974; 992p. [Google Scholar]
- Arkai, P.; Toth, N.M. Illite crystallinity: Combined effects of domain size and lattice distortion. Acta Geol. Hung. 1983, 26, 341–348. [Google Scholar]
- Eberl, D.D.; Velde, B. Beyond the Kübler index. Clay Miner. 1989, 24, 571–577. [Google Scholar] [CrossRef]
- Laverret, E.; Patrier-Mas, P.; Beaufort, D.; Kister, P.; Quirt, D.; Bruneton, P.; Clauer, N. Mineralogy and geochemistry of the host-rock alterations associated with the Shea Creek unconformity-type uranium deposit (Athabasca Basin, Saskatchewan, Canada). Part 1. Spatial variation of illite properties. Clays Clay Miner. 2006, 54, 275–294. [Google Scholar] [CrossRef]
- Lorilleux, G.; Jébrak, M.; Cuney, M.; Baudemont, D. Polyphase hydrothermal breccias associated with unconformity-related uranium mineralization (Canada): From fractal analysis to structural significance. J. Struct. Geol. 2002, 24, 323–338. [Google Scholar] [CrossRef]
- Kister, P.; Laverret, E.; Quirt, D.; Cuney, M.; Patrier-Mas, P.; Beaufort, D.; Bruneton, P. Mineralogy and geochemistry of the host-rock alterations associated with the Shea Creek unconformity-type uranium deposits (Athabasca Basin, Saskatchewan, Canada). Part 2. Regional-scale spatial distribution of the Athabasca group sandstone matrix minerals. Clays Clay Miner. 2006, 54, 295–313. [Google Scholar] [CrossRef]
- Fayek, M.; Harrison, T.M.; Ewing, R.C.; Grove, M.; Coath, C.D. O and Pb isotopic analyses of uranium minerals by ion microprobe and U-Pb ages from the Cigar Lake deposit. Chem. Geol. 2002, 185, 205–225. [Google Scholar] [CrossRef]
- Fayek, M.; Kyser, T.K.; Riciputi, L. U and Pb isotope analysis of uranium minerals by ion microprobe and the geochronology of the McArthur River and Sue Zone uranium deposits, Saskatchewan, Canada. Can. Mineral. 2002, 40, 1553–1569. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, P.; Kyser, T.K.; Jiricka, D. Critical geochemical and mineralogical factors for the formation of unconformity-related uranium deposits: Comparison between barren and mineralized systems in the Athabasca Basin, Canada. Econ. Geol. 2009, 104, 413–435. [Google Scholar] [CrossRef]
- Mercadier, J. Conditions de Genèse des Gisements D’uranium Associés aux Discordances Protérozoïques et Localisés Dans les Socles. Exemple du Socle du Bassin d’Athabasca (Saskatchewan, Canada). Ph.D. Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 2008. [Google Scholar]
- Cloutier, J.; Kyser, K.; Olivo, G.R.; Alexandre, P.; Halaburda, J. The millennium uranium deposit, Athabasca Basin, Saskatchewan, Canada: An atypical basement-hosted unconformity-related uranium deposit. Econ. Geol. 2009, 104, 815–840. [Google Scholar] [CrossRef]
- Kister, P. Mobilité des Éléments Géochimiques Dans un Bassin Sédimentaire Clastique, du Protérozoïque à Nos Jours: Le Bassin Athabasca (Saskatchewan, Canada). Unpublished Ph.D. Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 2003; 333p. [Google Scholar]
- Alexandre, P.; Kyser, T.K. Effects of cationic substitution and alteration in uraninite, and implications for the dating of uranium deposits. Can. Mineral. 2005, 43, 1005–1017. [Google Scholar] [CrossRef]
- Clauer, N. The post-Variscan tectonic-thermal activity in the southeastern metalliferous province of the French Massif Central revisited by K-Ar ages of illite. Ore Geol. Rev. 2019, 117. [Google Scholar] [CrossRef]
- Clauer, N.; Chaudhuri, S. Extracting K-Ar ages from shales: The analytical evidence. Clay Miner. 2001, 36, 227–235. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil chemical Analysis—Advanced Course; UW-Madison Libraries Parallel Press: Madison, WI, USA, 1975; 386p. [Google Scholar]
- Nakata, E.; Yukawa, M.; Okumura, H.; Hamada, M. K-Ar dating by smectite extracted from bentonite formations. E3S Web Conf. 2019, 98, 12015. [Google Scholar] [CrossRef]
- Clauer, N.; Chaudhuri, S.; Kralik, M.; Bonnot-Courtois, C. Effects of experimental leaching on Rb-Sr and K-Ar isotopic systems and REE contents of diagenetic illite. Chem. Geol. 1993, 103, 1–16. [Google Scholar] [CrossRef]
Samples | Depth | Illite | Chlorite | Kaolinite | FWHM | Remarks |
---|---|---|---|---|---|---|
IDs | (m) | (%) | (%) | (%) | ||
Fractions < 2 m | ||||||
Drill hole 1607 | ||||||
81-19 | 181 | 67 | 13 | 20 | 0.28 | |
81-20 | 204.5 | 65 | 15 | 20 | 0.27 | |
81-21 | 251 | 55 | 24 | 21 | 0.32 | |
81-22 | 260 | 53 | 47 | 0.55 | Al-chlorite | |
81-26 | 294 | 75 | 25 | 0.42 | 1Md illite + Al-chlorite | |
81-30 | 321 | 50 | 50 | 0.56 | 1Md illite + Al-chlorite | |
81-32 | 411 | 55 | 45 | 0.66 | 1Md illite + Al-chlorite | |
81-34 | 427.5 | 48 | 52 | 0.50 | 1Md illite + Al-chlorite | |
81-37 | 461 | 53 | 40 | ? | 0.59 | 1Md illite + Al-chlorite |
81-40 | 476 | 83 | 17 | 0.59 | 1M illite + Al-chlorite | |
Drill hole 1433 | ||||||
81-48 | 590 | 61 | 39 | 0.50 | cis-1M illite + Al-chlorite | |
81-49 | 596.5 | 77 | 23 | 0.43 | cis-1M illite + 1Md illite + Al-chlorite | |
81-50 | 608 | 66 | 34 | 0.48 | cis-1M illite + Al-chlorite | |
81-51 | 610 | 75 | 25 | 0.52 | 1Md illite + Al-chlorite | |
Fractions < 0.2 μm | ||||||
Drill hole 1607 | ||||||
81-40 | 476 | 73 | 27 | |||
Drill hole 1433 | ||||||
81-48 | 590 | 60 | 40 | |||
81-49 | 608 | 78 | 22 |
Sample | K2O | 40Ar * | 40Ar * | 40K/36Ar | 40Ar/36Ar | Age |
---|---|---|---|---|---|---|
IDs | (%) | (%) | (10−6cm3/g) | (Ma ± 2σ) | ||
Fractions <2 μm | ||||||
Drill hole 1607 | ||||||
81-19 | 4.48 | 98.67 | 324.6 | 0.164 | 22,138 | 1460 (31) |
81-20 | 4.53 | 98.47 | 340.9 | 0.138 | 19,322 | 1498 (33) |
81-21 | 3.77 | 97.46 | 257.5 | 0.108 | 13,788 | 1402 (32) |
81-22 | 3.66 | 98.03 | 261.4 | 0.113 | 15,011 | 1446 (30) |
81-26 | 4.94 | 98.99 | 341.1 | 0.228 | 29,387 | 1412 (31) |
81-30 | 3.67 | 98.56 | 214.6 | 0.189 | 20,571 | 1256 (29) |
81-32 | 3.96 | 98.66 | 230.6 | 0.204 | 22,072 | 1252 (28) |
81-34 | 4.24 | 98.47 | 244.3 | 0.180 | 19,271 | 1242 (28) |
81-37 | 3.91 | 98.48 | 245.6 | 0.166 | 19,399 | 1322 (30) |
81-40 | 7.29 | 98.54 | 322.3 | 0.246 | 20,247 | 1020 (22) |
Drill hole 1433 | ||||||
81-48 | 4.83 | 98.59 | 291.0 | 0.187 | 20,933 | 1283 (28) |
81-49 | 5.93 | 99.07 | 368.1 | 0.274 | 31,758 | 1311 (28) |
81-50 | 4.62 | 97.62 | 244.9 | 0.125 | 12,415 | 1169 (26) |
81-51 | 6.04 | 98.15 | 331.5 | 0.156 | 15,985 | 1199 (26) |
Fractions < 0.2 μm | ||||||
Drill hole 1607 | ||||||
81-40 | 6.35 | 99.30 | 246.3 | 0.620 | 43,650 | 922 (22) |
Drill hole 1433 | ||||||
81-48 | 4.79 | 98.20 | 202.0 | 0.220 | 17,010 | 983 (23) |
81-49 | 6.05 | 98.60 | 229.5 | 0.312 | 21,640 | 906 (21) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clauer, N. How Can Technical Aspects Help Improving K-Ar Isotopic Data of Illite-Rich Clay Materials into Meaningful Ages? The Case of the Dominique Peter Uranium Deposit (Saskatchewan, Canada). Geosciences 2020, 10, 285. https://doi.org/10.3390/geosciences10080285
Clauer N. How Can Technical Aspects Help Improving K-Ar Isotopic Data of Illite-Rich Clay Materials into Meaningful Ages? The Case of the Dominique Peter Uranium Deposit (Saskatchewan, Canada). Geosciences. 2020; 10(8):285. https://doi.org/10.3390/geosciences10080285
Chicago/Turabian StyleClauer, Norbert. 2020. "How Can Technical Aspects Help Improving K-Ar Isotopic Data of Illite-Rich Clay Materials into Meaningful Ages? The Case of the Dominique Peter Uranium Deposit (Saskatchewan, Canada)" Geosciences 10, no. 8: 285. https://doi.org/10.3390/geosciences10080285
APA StyleClauer, N. (2020). How Can Technical Aspects Help Improving K-Ar Isotopic Data of Illite-Rich Clay Materials into Meaningful Ages? The Case of the Dominique Peter Uranium Deposit (Saskatchewan, Canada). Geosciences, 10(8), 285. https://doi.org/10.3390/geosciences10080285