Ground-Penetrating Radar Survey for the Study of the Church of Saint Cosma in Helerito (Tagliacozzo, L’Aquila, Italy)
Abstract
:1. Introduction
2. Test Site, Material, and Methods
2.1. Test Site
2.2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cozzolino, M.; Di Giovanni, E.; Mauriello, P.; Piro, S.; Zamuner, D. Geophysical Methods for Cultural Heritage Management; Springer Geophysics Series; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Schmidt, A.; Linford, P.; Lindford, N.; Gaffney, C.; David, A. (Eds.) EAC Guidelines for the Use of Geophysics in Archaeology; Archaeolingua Press: Budapest, Hungary, 2015. [Google Scholar]
- Compare, V.; Cozzolino, M.; Di Giovanni, E.; Mauriello, P. Examples of resistivity tomography for cultural heritage management. In Near Surface 2010—16th European Meeting of Environmental and Engineering Geophysics; European Association of Geoscientists and Engineers, EAGE: Houten, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Giovanni, E.; Mauriello, P.; Vanni Desideri, A.; Patella, D. Resistivity tomography in the Park of Pratolino at Vaglia (Florence, Italy). Archaeol. Prospect. 2012, 19, 253–260. [Google Scholar] [CrossRef]
- Minelli, A.; Cozzolino, M.; Di Nucci, A.; Guglielmi, S.; Giannantonio, M.; D’Amore, D.; Pittoni, E.; Groot, A.M. The prehistory of the Colombian territory: The results of the Italian archaeological investigation on the Checua site (Municipality of Nemocòn, Cundinamarca Department). J. Biol. Res. 2012, 85, 94–97. [Google Scholar] [CrossRef]
- Osella, A.; Grunhut, V.; Martinelli, H.P.; de la Vega, M.; Bonomo, N. ERT for localizing 17th century tunnels at a Jesuit Mission in Buenos Aires, Argentina. In Near Surface Geoscience 2013—19th EAGE European Meeting of Environmental and Engineering Geophysics; European Association of Geoscientists and Engineers, EAGE: Houten, The Netherlands, 2013. [Google Scholar]
- Cozzolino, M.; Mauriello, P.; Patella, D. Resistivity tomography imaging of the substratum of the bedestan monumental complex at Nicosia, Cyprus. Archaeometry 2014, 56, 331–350. [Google Scholar] [CrossRef] [Green Version]
- Al-Saadi, O.S.; Schmidt, V.; Becken, M.; Fritsch, T. Very-high-resolution electrical resistivity imaging of buried foundations of a Roman villa near Nonnweiler, Germany. Archaeol. Prospect. 2018, 25, 209–218. [Google Scholar] [CrossRef]
- Tejero-Andrade, A.; Argote-Espino, D.L.; Cifuentes-Nava, G.; Hernández-Quintero, E.; Chávez, R.E.; García-Serrano, A. ‘Illuminating’ the interior of Kukulkan’s Pyramid, Chichén Itzá, Mexico, by means of a non-conventional ERT geophysical survey. J. Archaeol. Sci. 2018, 90, 1–11. [Google Scholar] [CrossRef]
- Obrocki, L.; Eder, B.; Gehrke, H.J.; Lang, F.; Vött, A.; Willershäuser, T.; Rusch, K.; Wilken, D.; Hatzi-Spiliopoulou, G.; Kolia, E.-I.; et al. Detection and localization of chamber tombs in the environs of ancient Olympia (Peloponnese, Greece) based on a combination of archaeological survey and geophysical prospection. Geoarchaeology 2019, 34, 648–660. [Google Scholar] [CrossRef]
- Fischanger, F.; Catanzariti, G.; Comina, C.; Sambuelli, L.; Morelli, G.; Barsuglia, F.; Ellaithy, A.; Porcelli, F. Geophysical anomalies detected by electrical resistivity tomography in the area surrounding Tutankhamun’s tomb. J. Cult. Herit. 2019, 36, 63–71. [Google Scholar] [CrossRef]
- Cozzolino, M.; Caliò, L.M.; Gentile, V.; Mauriello, P.; Di Meo, A. The Discovery of the Theater of Akragas (Valley of Temples, Agrigento, Italy): An archaeological confirmation of the supposed buried structures from a geophysical survey. Geosciences 2020, 10, 161. [Google Scholar] [CrossRef]
- De Smedt, P.; Saey, T.; Lehouck, A.; Stichelbaut, B.; Meerschman, E.; Islam, M.M.; van DeVijver, E.; van Meirvenne, M. Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90 ha dataset. Geoderma 2013, 199, 30–36. [Google Scholar] [CrossRef]
- Simon, F.X.; Tabbach, A.; Sarris, A. Practical assessment of a multi-frequency slingram EMI for archaeological prospection. In CAA2014: 21st Century Archaeology-Concepts, Methods and Tools; Archaeopress Archaeology: Oxford, UK, 2015; pp. 43–49. [Google Scholar]
- Lascano, E.; Martinelli, P.; Osella, A. EMI data from an archaeological resistive target revisited. Near Surf. Geophys. 2006, 4, 395–400. [Google Scholar] [CrossRef]
- Manfredi, L.I.; Dekayir, A.; Bokbot, Y.; Festuccia, S.; Cozzolino, M.; Gentile, V.; Merola, P.; Repola, L.; Cecalupo, C.; Seghir, M. Integrated multi scale archaeological analysis in Béni Mellal-Khenifra district (Morocco). The case of the fortress of Ighram Aousser. Archeol. Calc. 2020, 31, forthcoming. [Google Scholar]
- Mekkawi, M.; Arafa-Hamed, T.; Abdellatif, T. Detailed magnetic survey at Dahshour archeological sites Southwest Cairo, Egypt. NRIAG J. Astron. Geophys. 2013, 2, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, N.; Posselt, M.; Schleifer, N. Excavating in a “blind mode”. Magnetometer survey, excavation and magnetic susceptibility measurements of a multiperiod site at Bad Homburg, Germany. Archaeol. Pol. 2003, 41, 167–169. [Google Scholar]
- Aspinall, A.; Gaffney, C.F.; Schmidt, A. Magnetometry for Archaeologists; Altamira Press: Lanham, MD, USA, 2008. [Google Scholar]
- Becker, H. Caesium magnetometry for landscape-archaeology. In Seeing the Unseen–Geophysics and Landscape Archaeology; Campana, S., Piro, S., Eds.; CRC Press Taylor &Francis Group: Boca Raton, FL, USA, 2009; pp. 129–165. [Google Scholar]
- Neubauer, W.; Eder-Hinterleitner, A. 3D-interpretation of post-processed archaeological magnetic prospection data. Archaeol. Prospect. 1997, 4, 191–205. [Google Scholar] [CrossRef]
- Arias, P.; Armesto, J.; Di-Capua, D.; González-Drigo, R.; Lorenzo, H.; Pérez-Gracia, V. Digital photogrammetry, GPR and computational analysis of structural damages in a mediaeval bridge. Eng. Fail. Anal. 2007, 14, 1444–1457. [Google Scholar] [CrossRef]
- Ludeno, G.; Cavalagli, N.; Ubertini, F.; Soldovieri, F.; Catapano, I. On the combined use of ground penetrating radar and crack meter sensors for structural monitoring: Application to the historical consoli palace in Gubbio, Italy. Surv. Geophys. 2019, 41, 647–667. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, M.; Gabrielli, R.; Galatà, P.; Gentile, V.; Greco, G.; Scopinaro, E. Combined use of 3D metric surveys and non-invasive geophysical surveys for the determination of the state of conservation of the Stylite Tower (Umm ar-Rasas, Jordan). Ann. Geophys. Italy 2019, 62, 72. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Meo, A.; Gentile, V. The contribution of indirect topographic surveys (photogrammetry and the laser scanner) and GPR investigations in the study of the vulnerability of the Abbey of Santa Maria a Mare, Tremiti Islands (Italy). Ann. Geophys. Italy 2019, 62, 71. [Google Scholar] [CrossRef]
- Biscarini, C.; Catapano, I.; Cavalagli, N.; Ludeno, G.; Pepe, F.A.; Ubertini, F. UAV photogrammetry, infrared thermography and GPR for enhancing structural and material degradation evaluation of the Roman masonry bridge of Ponte Lucano in Italy. NDT E Int. 2020, 102287. [Google Scholar] [CrossRef]
- Bavusi, M.; Soldovieri, F.; Piscitelli, S.; Loperte, A.; Vallianatos, F.; Soupios, P. Ground penetrating radar and microwave tomography to evaluate the crack and joint geometry in historical buildings: Some examples from Chania, Crete, Greece. Near Surf. Geophys. 2010, 8, 377–387. [Google Scholar] [CrossRef]
- Sambuelli, L.; Bhom, G.; Capizzi, P.; Cardarelli, E.; Cosentino, P. Comparison between GPR measurements and ultrasonic tomography with different inversion algorithms: An application to the base of an ancient Egyptian sculpture. J. Geophys. Eng. 2011, 8, 106–116. [Google Scholar] [CrossRef]
- Amato, V.; Cozzolino, M.; De Benedittis, G.; Di Paola, G.; Gentile, V.; Giordano, C.; Marino, P.; Rosskopf, C.M.; Valente, E. An integrated quantitative approach to assess the archaeological heritage in highly anthropized areas: The case study of Aesernia (southern Italy). Acta IMECO 2016, 5, 33–43. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; Canas, J.A.; Pujades, L.G.; Clapés, J.; Caselles, O.; Garcıa, F.; Osorio, R. GPR survey to confirm the location of ancient structures under the Valencian Cathedral (Spain). J. Appl. Geophys. 2000, 43, 167–174. [Google Scholar] [CrossRef]
- Trinks, I.; Karlsson, P.; Biwall, A.; Hinterleitner, A. Mapping the urban subsoil using ground penetrating radar—Challenges and potentials for archaeological prospection. ArcheoSciences 2009, 33, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Trinks, I.; Hinterleitner, A.; Neubauer, W.; Nau, E.; Löcker, K.; Wallner, M.; Gabler, M.; Filzwieser, R.; Wilding, J.; Schiel, H.; et al. Large-area high-resolution ground-penetrating radar measurements for archaeological prospection. Archaeol. Prospect. 2018, 25, 171–195. [Google Scholar] [CrossRef]
- Cozzolino, M.; Longo, F.; Pizzano, N.; Rizzo, M.L.; Voza, O.; Amato, V.A. Multidisciplinary approach to the study of the temple of Athena in Poseidonia-Paestum (Southern Italy): New geomorphological, geophysical and archaeological data. Geosciences 2019, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- Caspari, G.; Sadykov, T.; Blochin, J.; Buess, M.; Nieberle, M.; Balz, T. Integrating remote sensing and geophysics for exploring early nomadic funerary architecture in the Siberian Valley of the Kings. Sensors 2019, 19, 3074. [Google Scholar] [CrossRef] [Green Version]
- Conyers, L.B.; Sutton, M.J.; St. Pierre, E. Dissecting and interpreting a three-dimensional ground-penetrating radar dataset: An example from Northern Australia. Sensors 2019, 19, 1239. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, M.; Baković, M.; Borovinić, N.; Galli, G.; Gentile, V.; Jabučanin, M.; Mauriello, P.; Merola, P.; Živanović, M. The contribution of geophysics to the knowledge of the hidden archaeological heritage of Montenegro. Geoscience 2020, 10, 187. [Google Scholar] [CrossRef]
- Bianco, C.; De Giorgi, L.; Giannotta, M.T.; Leucci, G.; Meo, F.; Persico, R. The Messapic Site of Muro Leccese: New Results from Integrated Geophysical and Archaeological Surveys. Remote Sens. 2019, 11, 1478. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, M.; Gentile, V.; Giordano, C.; Mauriello, P. Imaging buried archaeological features through Ground Penetrating Radar: The case of the ancient Saepinum (Campobasso, Italy). Geoscience 2020, 10, 225. [Google Scholar] [CrossRef]
- Bianchini, M. Edilizia Storica della Marsica Occidentale; Dedalo, R., Ed.; Editrice Dedalo Roma: Roma, Italy, 2011; pp. 99–121. [Google Scholar]
- Chronica Monasterii Casinensis, Die Chronik von Montecassino; Hoffmann, H. (Ed.) MGH.SS 34; Hahnsche Buchhandlung: Hannover, Germany, 1980. [Google Scholar]
- Gattola, E. Historia Abbatiae Cassinensis per Saeculorum Seriem Distribuita; Nabu Press: Charleston, SC, USA, 2013. [Google Scholar]
- Guerra, A. Tagliacozzo: Momenti di archeologia medieval. In Proceedings of the Tagliacozzo e la Marsica tra XII e XIII secolo. Aspetti di vita Artistica, Civile e Religiosa. Atti del Convegno, Tagliacozzo, Italy, 19 May 2001; pp. 23–44. [Google Scholar]
- Colasante, D. Il Taglio nella Roccia. Tagliacozzo e il suo Territorio dal Medioevo al Novecento. Storia di una Comunità dell’Appennino Abruzzese; Villamagna: Tinari, Italy, 2006. [Google Scholar]
- Ground Penetrating Radar, Products. Available online: www.idsgeoradar.com (accessed on 13 March 2020).
- Goodman, D. GPR-SLICE. Ground Penetrating Radar Imaging Software, User’s Manual; Geophysical Archaeometry Laboratory: Los Angeles, CA, USA, 2004. [Google Scholar]
- Catapano, I.; Gennarelli, G.; Ludeno, G.; Soldovieri, F. Applying ground-penetrating radar and microwave tomography data processing in cultural heritage: State of the art and future trends. IEEE Signal Process. Mag. 2019, 36, 53–61. [Google Scholar] [CrossRef]
- Catapano, I.; Gennarelli, G.; Ludeno, G.; Soldovieri, F.; Persico, R. Ground-penetrating radar: Operation principle and data processing. In Wiley Encyclopedia of Electrical and Electronics Engineering; Webster, J.G., Ed.; Wiley: Hoboken, NJ, USA, 2019; pp. 1–23. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, M.; Di Giovanni, E.; Gentile, V.; Mauriello, P.; Pizzano, N. Ground-Penetrating Radar Survey for the Study of the Church of Saint Cosma in Helerito (Tagliacozzo, L’Aquila, Italy). Geosciences 2020, 10, 244. https://doi.org/10.3390/geosciences10060244
Cozzolino M, Di Giovanni E, Gentile V, Mauriello P, Pizzano N. Ground-Penetrating Radar Survey for the Study of the Church of Saint Cosma in Helerito (Tagliacozzo, L’Aquila, Italy). Geosciences. 2020; 10(6):244. https://doi.org/10.3390/geosciences10060244
Chicago/Turabian StyleCozzolino, Marilena, Elisa Di Giovanni, Vincenzo Gentile, Paolo Mauriello, and Natascia Pizzano. 2020. "Ground-Penetrating Radar Survey for the Study of the Church of Saint Cosma in Helerito (Tagliacozzo, L’Aquila, Italy)" Geosciences 10, no. 6: 244. https://doi.org/10.3390/geosciences10060244
APA StyleCozzolino, M., Di Giovanni, E., Gentile, V., Mauriello, P., & Pizzano, N. (2020). Ground-Penetrating Radar Survey for the Study of the Church of Saint Cosma in Helerito (Tagliacozzo, L’Aquila, Italy). Geosciences, 10(6), 244. https://doi.org/10.3390/geosciences10060244