The Khadzhokh Canyon System—An Important Geosite of the Western Caucasus
Abstract
:1. Introduction
2. Geographical and Geological Setting
2.1. Geographical Setting
2.2. Geological Setting
3. Methodology
4. Results
4.1. Geosite Outline
4.2. Dominant Geoheritage Type
4.3. Non-Dominant Geoheritage Types
4.4. Other Geosite Characteristics
5. Discussion and Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Henriques, M.H.; Pena dos Reis, R.; Brilha, J.; Mota, T. Geoconservation as an Emerging Geoscience. Geoheritage 2011, 3, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Prosser, C.; Murphy, M.; Larwood, J. Geological Conservation: A Guide to Good Practice; English Nature: Peterborough, UK, 2006. [Google Scholar]
- Reynard, E.; Brilha, J. (Eds.) Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Ruban, D.A. Quantification of geodiversity and its loss. Proc. Geol. Assoc. 2010, 121, 326–333. [Google Scholar] [CrossRef]
- Štrba, L.; Rybar, P.; Balaz, B.; Molokac, M.; Hvizdak, L.; Krsak, B.; Lukac, M.; Muchova, L.; Tometzova, D.; Ferencikova, J. Geosite assessments: Comparison of methods and results. Curr. Issues Tour. 2015, 18, 496–510. [Google Scholar] [CrossRef]
- Wimbledon, W.A.P.; Smith-Meyer, S. (Eds.) Geoheritage in Europe and its conservation; ProGEO: Oslo, Norway, 2012. [Google Scholar]
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A.; Tiess, G.; Sallam, E.S.; Ponedelnik, A.A.; Yashalova, N.N. Combined mineral and geoheritage resources related to kaolin, phosphate, and cement production in Egypt: Conceptualization, assessment, and policy implications. Sustain. Environ. Res. 2018, 28, 454–461. [Google Scholar] [CrossRef]
- Dowling, R.; Newsome, D. (Eds.) Handbook of Geotourism; Edward Elgar: Cheltenham, UK, 2018. [Google Scholar]
- Hose, T.A. 3G’s for Modern Geotourism. Geoheritage 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Olafsdottir, R.; Tverijonaite, E. Geotourism: A Systematic Literature Review. Geosciences 2018, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, J. A keyed classification of natural geodiversity for land management and nature conservation purposes. Proc. Geol. Assoc. 2014, 125, 329–349. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation; can we measure intangible values? Alp. Mediterr. Quat. 2005, 18, 293–306. [Google Scholar]
- Fernández, M.P.; Timón, D.L.; Marín, R.G. Geosites Inventory in the Geopark Villuercas-Ibores-Jara (Extremadura, Spain): A Proposal for a New Classification. Geoheritage 2014, 6, 17–27. [Google Scholar] [CrossRef]
- Habibi, T.; Ponedelnik, A.A.; Yashalova, N.N.; Ruban, D.A. Urban geoheritage complexity: Evidence of a unique natural resource from Shiraz city in Iran. Resour. Policy 2018, 59, 85–94. [Google Scholar] [CrossRef]
- Miljkovic, D.; Božic, S.; Miljkovic, L.; Markovic, S.B.; Lukic, T.; Jovanovic, M.; Bjelajac, D.; Vasiljevc, D.A.; Vujicic, M.D.; Ristanovic, B. Geosite Assessment Using Three Different Methods; A Comparative Study of the Krupaja and the Žagubica Springs-Hydrological Heritage of Serbia. Open Geosci. 2018, 10, 192–208. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Viewpoint geosites—Values, conservation and management issues. Proc. Geol. Assoc. 2017, 128, 511–522. [Google Scholar] [CrossRef]
- Ruban, D.A. Geological Heritage of the Anthropocene Epoch—A Conceptual Viewpoint. Heritage 2020, 3, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Štrba, L.; Baláž, B.; Lukác, M. Roadside geotourism—An alternative approach to geotourism. e-Rev. Tour. Res. 2016, 13, 589–609. [Google Scholar]
- Ruban, D.A.; Pugachev, V.I. The Khadzhokhsky canyon and the Granitnoye gorge (Adygeia, Russia) as geological natural monuments. Geogr. Nat. Resour. 2008, 29, 50–53. [Google Scholar] [CrossRef]
- Ahnert, F. The influence of Pleistocene climates upon the morphology of cuesta scarps on the Colorado plateau. Ann. Assoc. Am. Geogr. 1960, 50, 139–156. [Google Scholar] [CrossRef]
- Barlow, J. Rock creep and the development of the Niagara Cuesta. Earth Surf. Process. Landf. 2002, 27, 1125–1135. [Google Scholar] [CrossRef]
- Davis, W.M. The Drainage of Cuestas. Proc. Geol. Assoc. 1899, 16, 75–93. [Google Scholar] [CrossRef]
- Duszynski, F.; Migoń, P.; Strzelecki, M.C. Escarpment retreat in sedimentary tablelands and cuesta landscapes—Landforms, mechanisms and patterns. Earth-Sci. Rev. 2019, 196, 102890. [Google Scholar] [CrossRef]
- Hübscher, C.; Borowski, C. Seismic evidence for fluid escape from Mesozoic cuesta type topography in the Skagerrak. Mar. Pet. Geol. 2006, 23, 17–28. [Google Scholar] [CrossRef]
- Jungerius, P.D.; Van Zon, H.J.M. The formation of the Lias cuesta (Luxembourg) in the light of present-day erosion processes operating on forest soils. Geogr. Ann. Ser. A 1982, 64, 127–140. [Google Scholar] [CrossRef]
- Peterek, A.; Schröder, B. Geomorphologie evolution of the cuesta landscapes around the Northern Franconian Alb—Review and synthesis. Z. Für Geomorphol. 2010, 54, 305–345. [Google Scholar] [CrossRef]
- Pinheiro, M.R.; Queiroz Neto, J.P.D. From the semiarid landscapes of southwestern USA to the wet tropical zone of southeastern Brazil: Reflections on the development of cuestas, pediments, and talus. Earth-Sci. Rev. 2017, 172, 27–42. [Google Scholar] [CrossRef]
- Schmidt, K.-H.; Meitz, P. Cuesta scarps on the Colorado Plateau, USA—Lithological and climatic control in different altitudinal belts. Erde 2000, 131, 181–204. [Google Scholar]
- Ward, D.J. Dip, layer spacing, and incision rate controls on the formation of strike valleys, cuestas, and cliffbands in heterogeneous stratigraphy. Lithosphere 2019, 11, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Adamia, S.; Zakariadze, G.; Chkhotua, T.; Sadradze, N.; Tsereteli, N.; Chabukiani, A.; Gventsadze, A. Geology of the Caucasus: A review. Turk. J. Earth Sci. 2011, 20, 489–544. [Google Scholar]
- Rolland, Y. Caucasus collisional history: Review of data from East Anatolia to West Iran. Gondwana Res. 2017, 49, 130–136. [Google Scholar] [CrossRef]
- van Hinsbergen, J.J.; Torsvik, T.H.; Schmid, S.M.; Matenco, L.C.; Maffione, M.; Vissers, R.L.M.; Gürer, D.; Spakman, W. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 2020, 81, 79–229. [Google Scholar] [CrossRef]
- Vasey, D.; Cowgill, E.; Roeske, S.M.; Niemi, N.A.; Godoladze, T.; Skhirtladze, I.; Gogoladze, S. Evolution of the Greater Caucasus Basement and Formation of the Main Caucasus Thrust, Georgia. Tectonics 2020, 39, e2019TC005828. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics 2010, 488, 293–325. [Google Scholar] [CrossRef]
- Gaetani, M.; Garzanti, E.; Poline, R.; Kiricko, Y.; Korsakhov, S.; Cirilli, S.; Nicora, A.; Rettori, R.; Larghi, C.; Bucefalo Palliani, R. Stratigraphic evidence for Cimmerian events in NW Caucasus (Russia). Bull. De La Société Géologique De Fr. 2005, 176, 283–299. [Google Scholar] [CrossRef]
- Ruban, D.A.; Zerfass, H.; Pugatchev, V.I. Triassic synthems of southern South America (southwestern Gondwana) and the Western Caucasus (the northern Neotethys), and global tracing of their boundaries. J. South Am. Earth Sci. 2009, 28, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Rostovtsev, K.O.; Agaev, V.B.; Azarian, N.R.; Babaev, R.G.; Beznosov, N.V.; Hassanov, N.A.; Zesashvili, V.I.; Lomize, M.G.; Paitschadze, T.A.; Panov, D.I.; et al. Yura Kavkaz; Nauka: St. Petersburg, Russia, 1992. (In Russian) [Google Scholar]
- Adamia, S.; Alania, V.; Chabukiani, A.; Kutelia, Z.; Sadradze, N. Great Caucasus (Cavcasioni): A Long-lived North-Tethyan Back-Arc Basin. Turk. J. Earth Sci. 2011, 20, 611–628. [Google Scholar]
- Ershova, A.V.; Brunet, M.-F.; Nikishin, A.M.; Bolotov, S.N.; Nazarevich, B.P.; Korotaev, M.V. Northern Caucasus basin: Thermal history and synthesis of subsidence models. Sediment. Geol. 2003, 156, 95–118. [Google Scholar] [CrossRef]
- Guo, L.; Vincent, S.J.; Lavrishchev, V. Upper Jurassic Reefs from the Russian Western Caucasus: Implications for the Eastern Black Sea. Turk. J. Earth Sci. 2011, 20, 629–653. [Google Scholar]
- Kuznetsov, V.G. Late Jurassic—Early Cretaceous carbonate platform in the northern Caucasus and Precaucasus. Am. Assoc. Pet. Geol. Mem. 1993, 56, 455–463. [Google Scholar]
- Jasamanov, N.A. Landshaftno-klimatitchieskije uslovija jury, mela i paleogena Juga SSSR; Nedra: Moskva, Russia, 1978. (In Russian) [Google Scholar]
- Lubova, K.A.; Zayats, P.P.; Ruban, D.A.; Tiess, G. Megaclasts in geoconservation: Sedimentological questions, anthropogenic influence, and geotourism potential. Geologos 2013, 19, 321–335. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A. Geo-Heritage Specific Visibility as an Important Parameter in Geo-Tourism Resource Evaluation. Geosciences 2019, 9, 146. [Google Scholar] [CrossRef] [Green Version]
- Mikhailenko, A.V.; Nazarenko, O.V.; Ruban, D.A.; Zayats, P.P. Aesthetics-based classification of geological structures in outcrops for geotourism purposes: A tentative proposal. Geologos 2017, 23, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Geosites Inventory in the Leon Province (Northwestern Spain): A Tool to Introduce Geoheritage into Regional Environmental Management. Geoheritage 2010, 2, 57–75. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Reynard, E.; Garcia, M.G.M. Geomorphosites Assessment Methods: Comparative Analysis and Typology. Geoheritage 2019, 11, 1799–1815. [Google Scholar] [CrossRef]
- Sinnyovsky, D.; Sachkov, D.; Tsvetkova, I.; Atanasova, N. Geomorphosite Characterization Method for the Purpose of an Aspiring Geopark Application Dossier on the Example of Maritsa Cirque Complex in Geopark Rila, Rila Mountain, SW Bulgaria. Geoheritage 2020, 12, 26. [Google Scholar] [CrossRef]
- Warowna, J.; Zglobicki, W.; Kolodynska-Gawrysiak, R.; Gajek, G.; Gawrysiak, L.; Telecka, M. Geotourist values of loess geoheritage within the planned Geopark Malopolska Vistula River Gap, E Poland. Quat. Int. 2016, 399, 46–57. [Google Scholar] [CrossRef]
- Scheidegger, A.E.; Hantke, R. On the genesis of river gorges. Trans. Jpn. Geomorphol. Union 1994, 15, 91–110. [Google Scholar]
- Lozovoj, S.P. Lagonakskoe nagor’e; Krasnodarskoe knizhnoe izdatel’stvo: Krasnodar, Russia, 1984. (In Russian) [Google Scholar]
- Bakalowicz, M. Epikarst Processes. Treatise Geomorphol. 2013, 6, 164–171. [Google Scholar]
- Jones, W.K. Physical structure of the epikarst. Acta Carsologica 2013, 42, 311–314. [Google Scholar] [CrossRef]
- Ginés, A.; Knez, M.; Slabe, T.; Dreybrodt, W. (Eds.) Karst rock features: Karren scuplturing; Karst Research Institute ZRC SAZU: Ljubljana, Slovenia, 2009. [Google Scholar]
- Veress, M. Morphology and solution relationships of three karren slopes in different environments (Totes Gebirge, Eastern Alps). Z. Für Geomorphol. 2012, 56, 47–62. [Google Scholar] [CrossRef]
- Veress, M. The karren and karren formation of bare slopes. Earth-Sci. Rev. 2019, 188, 272–290. [Google Scholar] [CrossRef]
- Veress, M.; Péntek, K. Theoretical model of surface karstic processes. Z. Für Geomorphol. 1996, 40, 461–476. [Google Scholar]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M.; Fürsich, F.T.; Pandey, D.K. Deciphering condensed sequences: A case study from the Oxfordian (Upper Jurassic) Dhosa Oolite member of the Kachchh Basin, western India. Sedimentology 2013, 60, 574–598. [Google Scholar] [CrossRef]
- Föllmi, K.B. Sedimentary condensation. Earth-Sci. Rev. 2016, 152, 143–180. [Google Scholar]
- Gómez, J.J.; Fernández-López, S. Condensation processes in shallow platforms. Sediment. Geol. 1994, 92, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Dzyuba, O.S.; Goryacheva, A.A.; Ruban, D.A.; Gnezdilova, V.V.; Zayats, P.P. New data on Callovian (Middle Jurassic) belemnites and palynomorphs from the Northwestern Caucasus, southwest Russia. Geologos 2016, 22, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Vorob’ev, I.E. Poisk iskopaemykh na Severo-Zapadnom Kavkaze. Krasnodarskij kraj i Respublika Adygeja; KO RosGeo: Krasnodar, Russia, 2014. (In Russian) [Google Scholar]
- Haq, B.U. Triassic Eustatic Variations Reexamined. GSA Today 2018, 28, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Blair, T.C.; McPherson, J.G. Grain-size and textural classification of coarse sedimentary particles. J. Sediment. Res. 1999, 69, 6–19. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Cox, R.; Lopes, W.A.; Jahn, K.L. Quantitative roundness analysis of coastal boulder deposits. Mar. Geol. 2018, 396, 114–141. [Google Scholar] [CrossRef]
- Dewey, J.F.; Ryan, P.D. Storm, rogue wave, or tsunami origin for megaclast deposits in western Ireland and North Island, New Zealand? Proc. Natl. Acad. Sci. USA 2017, 114, E10639–E10647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.E.; Ledesma-Vazquez, J.; Guardado-France, R. Coastal Geomorphology of a Holocene Hurricane Deposits on a Pleistocene Marine Terrace from Isla Carmen (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2018, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Guardado-France, R.; Johnson, E.M.; Ledesma-Vazquez, J. Geomorphology of a Holocene Hurricane Deposit Eroded from Rhyolite Sea Cliffs on Ensenada Almeja (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Scheffers, A.; Scheffers, S.; Kelletat, D.; Browne, T. Wave-emplaced coarse debris and megaclasts in Ireland and Scotland: Boulder transport in a high-energy littoral environment. J. Geol. 2009, 117, 553–573. [Google Scholar] [CrossRef]
- Terry, J.P.; Goff, J. Megaclasts: Proposed revised nomenclature at the coarse end of the Udden-Wentworth grain-size scale for sedimentary particles. J. Sediment. Res. 2014, 84, 192–197. [Google Scholar] [CrossRef]
- Trepet, S.A. Vodopady Rufabgo; Kubanskoe knizhnoe izdatel’stvo: Krasnodar, Russia, 2013. (In Russian) [Google Scholar]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Schirpke, U.; Tappeiner, G.; Tasser, E.; Tappeiner, U. Using conjoint analysis to gain deeper insights into aesthetic landscape preferences. Ecol. Indic. 2019, 96, 202–212. [Google Scholar] [CrossRef]
- Alapati, U.; Jampani, M.; Sukhtankar, R.K. Geomorphic response of the river basin drainage in seismically active regions of India. Environ. Earth Sci. 2019, 17, 532. [Google Scholar] [CrossRef]
- Bouramtane, T.; Yameogo, S.; Touzani, M.; Tiouiouine, A.; El Janati, M.; Ouardi, J.; Kacimi, I.; Valles, V.; Barbiero, L. Statistical approach of factors controlling drainage network patterns in arid areas. Application to the Eastern Anti Atlas (Morocco). J. Afr. Earth Sci. 2020, 162, 103707. [Google Scholar] [CrossRef]
- Jarvis, R.S. New measure of the topologic structure of dendritic drainage networks. Water Resour. Res. 1972, 8, 1265–1271. [Google Scholar] [CrossRef]
- Jung, K.; Marpu, P.R.; Ouarda, T.B.M.J. Impact of river network type on the time of concentration. Arab. J. Geosci. 2017, 10, 546. [Google Scholar] [CrossRef]
- Khan, N. Tectonic geomorphology and structural architecture of eastern Sulaiman Fold Thrust Belt (SFTB) and adjacent Sulaiman Foredeep (SF), northwest Pakistan. Geomorphology 2019, 343, 145–167. [Google Scholar] [CrossRef]
- Naegeli, K.; Lovell, H.; Zemp, M.; Benn, D.I. Dendritic subglacial drainage systems in cold glaciers formed by cut-and-closure processes. Geogr. Ann. Ser. A Phys. Geogr. 2014, 96, 591–608. [Google Scholar] [CrossRef] [Green Version]
- Seo, Y.; Seo, Y.-H.; Kim, Y.-O. Behavior of a fully-looped drainage network and the corresponding dendritic networks. Water 2015, 7, 1291–1305. [Google Scholar] [CrossRef] [Green Version]
- Brennand, T.A. Deglacial meltwater drainage and glaciodynamics: Inferences from Laurentide eskers, Canada. Geomorphology 2000, 32, 263–293. [Google Scholar] [CrossRef]
- Delaney, C. Sedimentology of a glaciofluvial landsystem, Lough Ree area, Central Ireland: Implications for ice margin characteristics during Devensian deglaciation. Sediment. Geol. 2002, 149, 111–126. [Google Scholar] [CrossRef]
- Sambrook Smith, G.H.; Glasser, N.F. Late Devensian ice sheet characteristics: A palaeohydraulic approach. Geol. J. 1998, 33, 149–158. [Google Scholar] [CrossRef]
- Trommelen, M.S.; Ross, M.; Campbell, J.E. Glacial terrain zone analysis of a fragmented paleoglaciologic record, southeast Keewatin sector of the Laurentide Ice Sheet. Quat. Sci. Rev. 2012, 40, 1–20. [Google Scholar] [CrossRef]
- Trottier, A.-P.; Lajeunesse, P.; Gagnon-Poiré, A.; Francus, P. Morphological signatures of deglaciation and postglacial sedimentary processes in a deep fjord-lake (Grand Lake, Labrador). Earth Surf. Process. Landf. 2020, 45, 928–947. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Saksin, B.G. Genetic Aspects of the Noble-Metal Mineralization at the Poperechnoe Deposit, Lesser Khingan, Russia. Russ. J. Pac. Geol. 2017, 11, 421–435. [Google Scholar] [CrossRef]
- Koski, R.A.; Clague, D.A.; Oudin, E. Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge. Geol. Soc. Am. Bull. 1984, 95, 930–945. [Google Scholar] [CrossRef]
- Manuella, F.C. Vein mineral assemblage in partially serpentinized peridotite xenoliths from Hyblean Plateau (south-eastern Sicily, Italy). Period. Di Mineral. 2011, 80, 247–266. [Google Scholar]
- Howard, A.D. Simulation modeling and statistical classification of escarpment planforms. Geomorphology 1995, 12, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Aslam, T.; Hall, R.A.; Dye, S.R. Internal tides in a dendritic submarine canyon. Prog. Oceanogr. 2018, 169, 20–32. [Google Scholar] [CrossRef]
- Hall, R.A.; Aslam, T.; Huvenne, V.A.I. Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2017, 126, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Porter-Smith, R.; Lyne, V.D.; Kloser, R.J.; Lucieer, V.L. Catchment-based classification of Australia’s continental slope canyons. Mar. Geol. 2012, 303–306, 183–192. [Google Scholar] [CrossRef]
- Rydningen, T.A.; Laberg, J.S.; Kolstad, V. Seabed morphology and sedimentary processes on high-gradient though mouth fans offshore Troms, northern Norway. Geomorphology 2015, 246, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Stewart, H.A.; Davies, J.S.; Guinan, J.; Howell, K.L. The Dangeard and Explorer canyons, South Western Approaches UK: Geology, sedimentology and newly discovered cold-water coral mini-mounds. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2014, 104, 230–244. [Google Scholar] [CrossRef] [Green Version]
- T aylor, B.; Smoot, N.C. Morphology of Bonin fore-arc submarine canyons. Geology 1984, 12, 724–727. [Google Scholar] [CrossRef]
- Vachtman, D.; Mitchell, N.C.; Gawthorpe, R. Morphologic signatures in submarine canyons and gullies, central USA Atlantic continental margins. Mar. Pet. Geol. 2013, 41, 250–263. [Google Scholar] [CrossRef]
- Kubalíková, L.; Kirchner, K. Geosite and Geomorphosite Assessment as a Tool for Geoconservation and Geotourism Purposes: A Case Study from Vizovická vrchovina Highland (Eastern Part of the Czech Republic). Geoheritage 2016, 8, 5–14. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D. Methodological guidelines for geomorphosite assessment. Geomorphol. Relief Process. Environ. 2010, 2, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Reynard, E.; Coratza, P.; Hobléa, F. Current Research on Geomorphosites. Geoheritage 2016, 8, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Mikhailenko, A.V.; Ruban, D.A. Environment of Viewpoint Geosites: Evidence from the Western Caucasus. Land 2019, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Jolley, A.; Kennedy, B.M.; Brogt, E.; Hampton, S.J.; Fraser, L. Are we there yet? Sense of place and the student experience on roadside and situated geology field trips. Geosphere 2018, 14, 651–667. [Google Scholar] [CrossRef] [Green Version]
Criteria | Geosite Characteristics | Scores |
---|---|---|
Complexity | 1–2 geoheritage types | 1 |
3–5 geoheritage types | 2 | |
>5 geoheritage types | 3 | |
Exposure | Small, dispersed outcrops | 1 |
Fragmentary outcrops | 2 | |
Lengthy outcrops | 3 | |
Anthropogenic pressure | Significant modification/big amount of garbage | 1 |
Small modification/small amount of garbage | 2 | |
Absent | 3 | |
Accessibility | Geosite location in remote place, special training is required | 1 |
Special training is required for visiting some outcrops | 2 | |
All parts of geosite are easily accessible | 3 | |
Difficultytounderstand | Only professional knowledge is required | 1 |
Some professional knowledge is required | 2 | |
Clear to all people | 3 | |
Aesthetic properties | Nothing special comparing to the surrounding landscape | 1 |
Some peculiar features (unusual color of rocks or landform shapes, etc.) | 2 | |
Aesthetically distinct features, panoramic views, etc. | 3 | |
Importance to scientists | Low | 1 |
Medium | 2 | |
High | 3 | |
Importance to educators | Low | 1 |
Medium | 2 | |
High | 3 | |
Important to tourists | Low | 1 |
Medium | 2 | |
High | 3 |
Criteria | Geosite Characteristics | Scores |
---|---|---|
>5 geoheritage types | 3 | |
Exposure | Lengthy outcrops | 3 |
Anthropogenic pressure | Small modification/small amount of garbage | 2 |
Accessibility | Special training is required for visiting some outcrops | 2 |
Difficulty-to-understand | Some professional knowledge is required | 2 |
Aesthetic properties | Aesthetically distinct features, panoramic views, etc. | 3 |
Importance to scientists | Medium | 2 |
Importance to educators | High | 3 |
Important to tourists | High | 3 |
MEAN | 2.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailenko, A.V.; Ruban, D.A.; Ermolaev, V.A. The Khadzhokh Canyon System—An Important Geosite of the Western Caucasus. Geosciences 2020, 10, 181. https://doi.org/10.3390/geosciences10050181
Mikhailenko AV, Ruban DA, Ermolaev VA. The Khadzhokh Canyon System—An Important Geosite of the Western Caucasus. Geosciences. 2020; 10(5):181. https://doi.org/10.3390/geosciences10050181
Chicago/Turabian StyleMikhailenko, Anna V., Dmitry A. Ruban, and Vladimir A. Ermolaev. 2020. "The Khadzhokh Canyon System—An Important Geosite of the Western Caucasus" Geosciences 10, no. 5: 181. https://doi.org/10.3390/geosciences10050181
APA StyleMikhailenko, A. V., Ruban, D. A., & Ermolaev, V. A. (2020). The Khadzhokh Canyon System—An Important Geosite of the Western Caucasus. Geosciences, 10(5), 181. https://doi.org/10.3390/geosciences10050181