Clay Minerals and Detrital Material in Paleocene–Eocene Biogenic Siliceous Rocks (Sw Western Siberia): Implications for Volcanic and Depositional Environment Record
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brief Stratigraphy Statement
2.2. Objects and Analytical Methods
3. Results
3.1. Lithological and Petrographic Features
3.1.1. XRD Data
3.1.2. Thin Sections
3.2. Structural and Morphological Features of Mineral Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Distanov, U.G. Siliceous Rocks of USSR; Tatarskoe kn. izd: Kazan, Russia, 1976; 412p. [Google Scholar]
- Generalov, P.P.; Drozhashchikh, N.B. Eocene opalites of Western Siberia. In Opalite of Western Siberia; ZabSibNIGNI: Tyumen, Russia, 1987; pp. 3–10. (In Russian) [Google Scholar]
- Smirnov, P.V. Results of comprehensive studies of diatomite material composition from Irbit deposit. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2016, 327, 93–104. [Google Scholar]
- Smirnov, P.V.; Konstantinov, A.O. Comparative studies of Eocene and Paleocene diatomite from Trans-Urals (on the example of Kamyshlov deposit and section Brusyana). Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2016, 327, 96–102. [Google Scholar]
- Smirnov, P.V. Preliminary results of revision of mineral-raw material base of opal-cristobalite rocks in middle Trans-Urals). Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2017, 328, 28–37. [Google Scholar]
- Smirnov, P.V.; Konstantinov, A.O. Diatomaceous Clay of Shadrinsky Deposit (Kurgan Region). Georesursy Georesources 2016, 18, 240–244. [Google Scholar] [CrossRef]
- Smirnov, P.V.; Konstantinov, A.O.; Gursky, H.-J. Petrology and industrial application of main diatomite deposits in the Transuralian region (Russian Federation). Environ. Earth Sci. 2017, 76, 682. [Google Scholar] [CrossRef]
- Nesterov, I.I.; Smirnov, P.V.; Konstantinov, A.O.; Gursky, H.-J. Types, features, and resource potential of Palaeocene–Eocene siliceous rock deposits of the West Siberian Province: A review. Int. Geol. Rev. 2020. [Google Scholar] [CrossRef]
- Dunkley Jones, T.; Lunt, D.J.; Schmidt, D.N.; Ridgwell, A.; Sluijs, A.; Valdes, P.J.; Maslin, M. Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth-Sci. Rev. 2013, 125, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Frieling, J.; Iakovleva, A.I.; Reichart, G.-J.; Aleksandrova, G.N.; Gnibidenko, Z.N.; Schouten, S.; Sluijs, A. Paleocene-Eocene warming and biotic response in the epicontinental West Siberian Sea. Geology 2014, 42, 767–770. [Google Scholar] [CrossRef] [Green Version]
- McInerney, F.A.; Wing, S.L. The Paleocene–Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 2011, 39, 489–516. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, P.V.; Konstantinov, A.O. Biogenic siliceous accumulation in Early Paleogene marine basins of Western Siberia: Factors and stages. Litosfera 2017, 17, 26–47. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.; Shackleton, N.J. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. Geol. Soc. Spec. Publ. 1996, 101, 401–441. [Google Scholar] [CrossRef] [Green Version]
- Zachos, J.C.; Wara, M.W.; Bohaty, S.; Delaney, M.L.; Petrizzo, M.R.; Brill, A.; Premoli-Silva, I. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 2003, 302, 1551–1554. [Google Scholar] [CrossRef]
- Kennett, J.P.; Stott, L.D. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 1991, 353, 225–229. [Google Scholar] [CrossRef]
- Bains, S.; Norris, R.D.; Corfield, R.M.; Faul, K.L. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 2000, 407, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, Y.O.; Shcherbinina, E.A.; Oberhänsli, H. Paleocene-Eocene boundary events in the Northeastern Peri-Tethys. Geol. Soc. Am. Spec. Pap. 2003, 369, 147–168. [Google Scholar] [CrossRef]
- Shcherbinina, E.; Gavrilov, Y.; Iakovleva, A.; Pokrovsky, B.; Golovanova, O.; Aleksandrova, G. Environmental dynamics during the Paleocene-Eocene thermal maximum (PETM) in the northeastern Peri-Tethys revealed by high-resolution micropalaeontological and geochemical studies of a Caucasian key section. Palaeogeogr. Palaeoclimatol. 2016, 456, 60–81. [Google Scholar] [CrossRef]
- Stassen, P.; Thomas, E.; Speijer, R.P. Paleocene-Eocene Thermal Maximum environmental change in the New Jersey Coastal Plain: Benthic foraminiferal biotic events. Mar. Micropaleontol. 2015, 115, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Penman, D.E.; Hönisch, B.; Zeebe, R.E.; Thomas, E.; Zachos, J.C. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 2014, 29, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Dickson, A.J.; Rees-Owen, R.L.; März, C.; Coe, A.L.; Cohen, A.S.; Pancost, R.D.; Shcherbinina, E. The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum. Paleoceanography 2014, 29, 471–488. [Google Scholar] [CrossRef]
- Iakovleva, A.I. Palynological reconstruction of the Eocene marine palaeoenvironments in south of Western Siberia. Acta Palaeobot. 2011, 51, 229–248. [Google Scholar]
- Oreshkina, T.V. Evidence of Late Paleocene–Early Eocene hyperthermal events in biosiliceous sediments of western Siberia and adjacent areas. Austrian J. Earth Sci. 2012, 105, 145–153. [Google Scholar]
- Oreshkina, T.V.; Oberhänsli, H. Diatom turnover in the Early Paleogene diatomite of the Sengiley section, middle Povolzhie, Russia: A response to the initial Eocene Thermal Maximum? Geol. Soc. Am. Spec. Pap. 2003, 369, 169–179. [Google Scholar] [CrossRef]
- Rudmin, M.; Roberts, A.P.; Horng, C.-S.; Mazurov, A.; Savinova, O.; Ruban, A.; Veklich, M. Ferrimagnetic iron sulfide formation and methane venting across the Paleocene-Eocene thermal maximum in shallow marine sediments, ancient West Siberian Sea. Geochem. Geophys. Geosyst. 2018, 19, 21–42. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, P.V.; Konstantinov, A.O.; Batalin, G.A.; Gareev, B.I. Variability in distribution of major and trace elements in Lower Eocene siliceous sections of Transuralian region (Russia). Acta Geochim. 2019, 38, 262–276. [Google Scholar] [CrossRef]
- Guggenheim, S.; Adams, J.M.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Formoso, M.L.L.; Galan, E.; Kogure, T.; Stanjek, H. Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays Clay Miner. 2007, 55, 761–772. [Google Scholar] [CrossRef]
- Arostegi, J.; Baceta, J.I.; Pujalte, V.; Carracedo, M. Late Cretaceous–Palaeocene midlatitude climates: Inferences from clay mineralogy of continental-coastal sequences (Tremp–Graus area, southern Pyrenees, N Spain). Clay Miner. 2011, 46, 105–126. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, C.; Liu, Z.; Zhao, B.; Zhang, X. Clay mineralogy of the middle Mingshui Formation (upper Campanian to lower Maastrichtian) from the SKIn borehole in the Songliao Basin, NE China: Implications for palaeoclimate and provenance. Palaeogeogr. Palaeoclimatol. 2013, 385, 162–170. [Google Scholar] [CrossRef]
- Wu, J.W.; Liu, Z.F.; Zhou, C. Late Quaternary glacial cycle and precessional period of clay mineral assemblages in the Western Pacific Warm Pool. Chin. Sci. Bull. 2012, 57, 3748–3760. [Google Scholar] [CrossRef] [Green Version]
- Deconinck, J.F.; Strasser, A.; Debrabant, P. Formation of illitic minerals at surface temperatures in Purbeckian sediments (Lower Berriasian, Swiss and French Jura). Clay Miner. 1988, 23, 91–103. [Google Scholar] [CrossRef]
- Drits, V.A. Structural and chemical heterogeneity of layer silicates and clay minerals. Clay Miner. 2003, 38, 403–432. [Google Scholar] [CrossRef]
- Lázaro, V.V. Illitization processes: Series of dioctahedral clays and mechanisms of formation. In Diagenesis and Low-Temperature Metamorphism. Theory, Methods and Regional Aspects; Nieto, F., Jiménez-Millán, J., Eds.; Seminarios SEM: Jaén, Spain, 2007; Volume 3, pp. 31–39. [Google Scholar]
- Tillick, D.A.; Peacor, D.R.; Mauk, J.L. Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: I. The Golden Cross Epithermal Ore Deposit, New Zealand. Clays Clay Miner. 2001, 49, 126–140. [Google Scholar] [CrossRef]
- Ryan, P.C.; Huertas, F.J. Reaction pathways of clay minerals in tropical soils: Insights from kaolinite-smectite synthesis experiments. Clays Clay Miner. 2013, 61, 303–318. [Google Scholar] [CrossRef]
- Beaufort, D.; Rigault, C.; Billon, S.; Billault, V.; Inoue, A.; Inoue, S.; Patrier, P. Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems—A review. Clay Miner. 2015, 50, 497–523. [Google Scholar] [CrossRef]
- Du, J.; Cai, J.; Wang, G.; Zeng, X.; Bao, Y.; Liu, F. The effect of diagenetic environment on hydrocarbon generation based on diagenetic mineral assemblage in mudstone. Petrol. Sci. Technol. 2018, 24, 2132–2142. [Google Scholar] [CrossRef]
- Brovkov, G.N. Factors and Features Ash Pyroclastics Transformations//Volcanogenic-Sedimentary Lithogenesis. Brief Theses IV All-Union; a seminar; Publishing House Dal-Nevostochnogo Polytechnic Institute: Yuzhno-Sakhalinsk, Russia, 1974; pp. 37–39. [Google Scholar]
- Akhmetiev, M.A.; Beniamovsky, V.N. The Paleocene and Eocene in the Russian part of West Eurasia. Stratigr. Geol. Correl. 2006, 14, 49–72. [Google Scholar] [CrossRef]
- Akhmetiev, M.A.; Zaporozhets, N.I.; Beniamovsky, V.N.; Aleksandrova, G.A.; Iakovleva, A.I.; Oreshkina, T.V. Open and semi-closed Paleogene marine systems in Northeastern Peri-Tethys: Stable and transitional biostratigraphic, paleogeographic and paleoclimatological aspects. Austrian J. Earth Sci. 2012, 105, 50–67. [Google Scholar]
- Tsekhovsky, Y.G. Sedimentogenesis and geodynamics in the Cretaceous-Paleogene boundary at the epoch of continental peneplanation. Article 1. Central and Eastern Eurasia. Litosfera 2015, 1, 5–23. [Google Scholar]
- Kirov, G.; Šamajova, E.; Nedialkov, R.; Stanimirova, T.S. Alteration processes and products of acid pyroclastic rocks in Bulgaria and Slovakia. Clay Miner. 2011, 46, 279–294. [Google Scholar] [CrossRef]
- Eldholm, O.; Kjersti, G. North Atlantic volcanic margins: Dimensions and production rates. J. Geophys. Res.-Atmos. 1994, 99, 2955–2968. [Google Scholar] [CrossRef]
- Egger, H.; Brückl, E. Gigantic volcanic eruptions and climatic change in the early Eocene. Int. J. Earth Sci. 2006, 95, 1065–1070. [Google Scholar] [CrossRef]
- Larsen, L.M.; Fitton, J.G.; Pedersen, A.K. Paleogene volcanic ash layers in the Danish Basin: Composition and source areas in the North Atlantic Igneous Province. Lithos 2003, 71, 47–80. [Google Scholar] [CrossRef]
Object | Psammitic Fraction | Aleuritic Fraction | Pelitic Fraction | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Large | Medium | Small | Large | Small | ||||||||
1.0–0.8 | 0.8–0.5 | 0.5–0.4 | 0.4–0.25 | 0.25–0.2 | 0.2–0.16 | 0.16–0.1 | 0.1–0.05 | 0.05–0.01 | 0.01–0.005 | 0.005–0.001 | <0.001 | |
Shadrinsk | 0.00 | 0.00 | 0.10 | 0.28 | 0.23 | 0.23 | 0.38 | 0.63 | 16.76 | 20.90 | 36.96 | 23.53 |
Irbit | 0.00 | 0.00 | 0.03 | 0.33 | 0.30 | 0.38 | 0.98 | 2.15 | 21.05 | 23.20 | 33.47 | 18.11 |
Brusyana | 0.00 | 0.10 | 0.05 | 0.25 | 0.20 | 0.34 | 1.35 | 7.35 | 14.19 | 19.19 | 40.59 | 16.39 |
Terrigenous Component, % | Biogenic Component, % | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Object | Fraction, mm | Content of a Fraction in Rock, % | Quartz | Feldspars | Fragments of Rocks | Mica | Diatoms | Radiolarians and Silicoflagellates | Spicules of Sponges | Siliceous--Clayey Aggregates | Sideritized Aggregates | Mixed-Layer Illite–Smectite Clays | Epidote | Sphene | Ore Minerals |
S | 0.1–0.4 | 1.1–4.7 | 1.8–2.8 | - | - | - | 2.1–6.7 | 1.5–4.4 | - | 86.8–94.2 | - | - | - | - | - |
0.01–0.1 | 7.6–19.9 | 5.5–17.1 | 1.1–6.7 | 0.6–1.6 | 0.3–4.3 | 6.0–18.5 | 5.0–9.1 | 0.7–3.1 | 39.3–66.8 | 0.0–0.9 | 6.8–15.7 | - | - | 0.0–2.0 | |
I | 0.1–0.4 | 1.3–11.7 | 4.8–8.8 | - | - | - | 4.6–12.6 | 5.9–10.8 | - | 67.8–80.0 | - | - | - | - | - |
0.01–0.1 | 10.9–28.2 | 13.3–26.9 | 7.6–17.3 | 0.7–1.9 | 0.4–1.6 | 10.2–20.3 | 1.0–3.3 | 2.1–6.2 | 20.9–42.3 | 1.7–5.5 | 3.9–12.2 | 0.0–0.8 | 0.0–0.5 | 0.7–1.7 | |
B | 0.1–0.4 | 2,.1–3.8 | 9.0–35.2 | 3.6–9.5 | 2.2–4.5 | - | 0.0–4.3 | - | - | 38.6–73.7 | 0.0–7.8 | 2.1–10.0 | 0.0–3.3 | - | 0.0–4.3 |
0.01–0.1 | 7.1–21.5 | 22.9–29.6 | 4.8–15.7 | 1.3–4.6 | 1.3–4.4 | 1.6–6.2 | 0.0–2.7 | 0.9–1.7 | 18.5–44.0 | 0.6–5.6 | 12.3–20.5 | 0.9–4.0 | 0.0–1.5 | 0.9–4.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnov, P.; Deryagina, O.; Afanasieva, N.; Rudmin, M.; Gursky, H.-J. Clay Minerals and Detrital Material in Paleocene–Eocene Biogenic Siliceous Rocks (Sw Western Siberia): Implications for Volcanic and Depositional Environment Record. Geosciences 2020, 10, 162. https://doi.org/10.3390/geosciences10050162
Smirnov P, Deryagina O, Afanasieva N, Rudmin M, Gursky H-J. Clay Minerals and Detrital Material in Paleocene–Eocene Biogenic Siliceous Rocks (Sw Western Siberia): Implications for Volcanic and Depositional Environment Record. Geosciences. 2020; 10(5):162. https://doi.org/10.3390/geosciences10050162
Chicago/Turabian StyleSmirnov, Pavel, Oksana Deryagina, Nadezhda Afanasieva, Maxim Rudmin, and Hans-Jürgen Gursky. 2020. "Clay Minerals and Detrital Material in Paleocene–Eocene Biogenic Siliceous Rocks (Sw Western Siberia): Implications for Volcanic and Depositional Environment Record" Geosciences 10, no. 5: 162. https://doi.org/10.3390/geosciences10050162
APA StyleSmirnov, P., Deryagina, O., Afanasieva, N., Rudmin, M., & Gursky, H. -J. (2020). Clay Minerals and Detrital Material in Paleocene–Eocene Biogenic Siliceous Rocks (Sw Western Siberia): Implications for Volcanic and Depositional Environment Record. Geosciences, 10(5), 162. https://doi.org/10.3390/geosciences10050162