Mineralogical and Chemical Investigations of the Amguid Crater (Algeria): Is there Evidence on an Impact Origin?
Abstract
:1. Introduction
2. General Information on the Amguid Structure
3. Foundations of the Present Investigations and Studied Materials
4. Methods
5. Analytical Results
5.1. Observations Made with the Optical Microscope
5.2. Chemical Data on Crater Rocks and Soil
5.3. Analysis of Individual Grain Particles
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambert, P.; Mchone, J.F.; Dietz, R.S.; Houfani, M. Impact and impact-like structures in Algeria, Part I, Four bowl-shaped depressions. Meteoritics 1980, 15, 157–179. [Google Scholar] [CrossRef]
- Buchner, E.; Schmieder, M. Rare metals on shatter cone surfaces from the Steinheim Basin (SW Germany)—Remnants of the impacting body? Geol. Mag. 2018, 155, 1205–1229. [Google Scholar] [CrossRef]
- Sahoui, R.; Belhai, D. Impact metamorphism of sandstones at amguid crater. In Proceedings of the 79th, Annual Meeting of The Meteoritical Society, Berlin, Germany, 7–12 August 2016. [Google Scholar]
- Sahoui, R.; Belhai, D. Structural, geomorphological and age-related analysis of The Amguid Crater. In Proceedings of the 81st, Annual Meeting of the Meteoritical Society, Moscow, Russia, 22–27 July 2018; Volume 6216. [Google Scholar]
- Darfeuil, S.; Bouchez, C. Holocene North African Climate, La Lettre du Collège de France. 2015. Available online: http://journals.openedition.org/lettre-cdf/2183 (accessed on 3 January 2020).
- Azzouni-Sekkal, A.; Bonin, B.; Benhallou, A.; Yahiaoui, R.; Liégeois, J.-P. Cenozoic alkaline volcanism of the Atakor massif, Hoggar, Algeria. In Cenozoic Volcanism in the Mediterranean Area: Geological Society of America Special Paper 418; Beccaluva, L., Bianchini, G., Wilson, M., Eds.; 2007; pp. 321–340. [Google Scholar] [CrossRef]
- Kring David, A. Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater) 2ndedition, Lunar and Planetary InstituteLPI Contribution No. 2040. 2017. Available online: https://www.lpi.usra.edu/publications/books/barringer_crater_guidebook/ (accessed on 3 January 2020).
- Seyler, M.; Brunelli, D. Sodium-chromium covariation in residual clinopyroxenes from abyssal peridotites sampled in the 43°–46°E region of the Southwest Indian Ridge. Lithos 2018, 302, 142–157. [Google Scholar] [CrossRef]
- Glass, B.P.; Wu, J. Coesite and shocked quartz discovered in the Australasian and North American microtektite layers. Geology 1993, 21, 435–438. [Google Scholar] [CrossRef]
- Glass, B.P.; Fries, M. Micro-Raman spectroscopic study of fine-grained, shock-metamorphosed rock fragments from the Australasian microtektite layer. Meteorit. Planet. Sci. 2008, 43, 1487–1496. [Google Scholar] [CrossRef]
- Folco, L.; Mugnaioli, E.; Gemelli, M.M.; Masotta, M.; Campanale, F. Direct quartz-coesite transformation in shocked porous sandstone from Kamil Crater (Egypt). Geology 2018, 46, 739–742. [Google Scholar] [CrossRef]
- French, B.M.; Cordua, W.S. Intense fracturing of quartz at the Rock Elm (Wisconsin) “cryptoexplosion” structure: Evidence for meteorite impact. In Proceedings of the 30th Lunar and Planetary Science Conference, Houston, TX, USA, 18–19 March 1999; Volume 1123. [Google Scholar]
- French, B.M.; Cordua, W.S.; Plescia, J.B. The Rock Elm meteorite impact structure, Wisconsin: Geology and shock-metamorphic effects in quartz. Geol. Soc. Am. Bull. 2004, 116, 200–218. [Google Scholar] [CrossRef]
- Stoffler, D. Glasses formed by hypervelocity impact. J. Non-Cryst. Solids 1984, 67, 456–502. [Google Scholar] [CrossRef]
- Stoffler, D.; Langenhorst, F. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 1994, 29, 155–181. [Google Scholar] [CrossRef]
- Sighinolfi, G.P.; Contini, G.; Barbieri, M.; Nigro, A. Chemical and isotopic characterization of products of small-scale hypervelocity impacts: The Gebel Kamil event. Period. Mineral. 2015, 84, 323–339. [Google Scholar]
- Jarosewich, E. Chemical analysis of meteorites: A compilation of stony and iron meteorites analyses. Meteoritics 1990, 25, 323–337. [Google Scholar] [CrossRef]
- Rubin, A.E. Mineralogy of meteorite groups. Meteorit. Planet. Sci. 1997, 32, 231–247. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Chukin, A.V.; Felner, I.; Oshtrakh, M.I. Spinels in Meteorites: Observation Using Mössbauer Spectroscopy. Minerals 2019, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Putirka, K.; Ryerson, F.J.; Perfit, M.; Ridkey, W.I. Mineralogy and composition of the Oceanic Mantle. J. Petrol. 2011, 52, 279–313. [Google Scholar] [CrossRef]
- Dodd, R. Meteorites: A Petrologic-Chemical Synthesis; Cambridge Universitary Press: Cambridge, UK, 1981. [Google Scholar]
- Steele, I.M. Olivine in Antartic micrometeorites: Comparison with other extraterrestrial olivine. Geochim. Cosmochim. Acta 1992, 56, 2923–2929. [Google Scholar] [CrossRef]
- Muñoz-Espadas, M.J.; Martínez-Frías, J.; Lunar, R. Main Geochemical Signatures Related to Meteoritic Impacts in Terrestrial Rocks: A Review. In Impact Markers in the Stratigraphic Record. Impact Studies; Koeberl, C., Martínez-Ruiz, F.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Steele, I.M. Composition and textures of relic forsterite in carbonaceous and unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 1986, 50, 1379–1396. [Google Scholar] [CrossRef]
- Steele, I.M. Minor elements in forsterites in Orgueil (C1), Alais (C1) and two interplanetary dust particles. Meteoritics 1990, 25, 301–307. [Google Scholar] [CrossRef]
- Wlotzka, F. Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6. Meteorit. Planet. Sci. 2005, 11, 1673–1702. [Google Scholar] [CrossRef]
- Schmitz, B. Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Chem. Erde Geochem. 2013, 73, 117–145. [Google Scholar] [CrossRef]
- Evans, B.W.; Frost, B.R. Chrome spinel in progressive metamorphism—A preliminary analysis. In Carnegie Institution Washington Conference; Geophys. Lab: Washington, DC, USA, 1976; pp. 959–972. [Google Scholar]
- Ouzegane, K.; Adjerid, Z.; Godard, G. First Report of Ultrahigh-Temperature Sapphirine + Spinel + Quartz and Orthopyroxene + Spinel + Quartz Parageneses Discovered in Al-Mg Granulites from the Khanfous Area (In Ouzzal Metacraton, Hoggar, Algeria); Special Publications; Geological Society: London, UK, 2008. [Google Scholar]
- Simon, S.B.; McKeegan, K.D.; Ebel, D.S.; Grossman, L. Complexly zoned chromium-aluminum spinel found in situ in the Allende meteorite. Meteorit. Planet. Sci. 2000, 35, 215–227. [Google Scholar] [CrossRef]
- Simon, S.B.; Grossman, L.; Podoseck, F.A.; Zinner, E.; Prombo, C.A. Petrography, composition and origin of large chromiam spinels from the Murchison meteorite. Geochim. Cosmochim. Acta 1994, 58, 1313–1334. [Google Scholar] [CrossRef] [Green Version]
- Papike, J.J.; Shearer, C.K.; Spilde, M.N.; Karner, J.M. Metamorphic diogenite Grosvenor Mountains 95555: Mineral chemistry of orthopyroxene and spinel and comparisons to the diogenite suite. Meteorit. Planet. Sci. 2000, 35, 875–879. [Google Scholar] [CrossRef]
- Folco, L.; Glass, B.P.; D’Orazio, M.; Rochette, P. A common volatilization trend in Transantarctic Mountain and Australasian microtektites: Implications for their formation model and parent crater location. Earth Planet. Sci. Lett. 2010, 293, 135–139. [Google Scholar] [CrossRef]
- Folco, L.; Perchiazzi, N.; D’Orazio, M.; Frezzotti, M.L.; Glass, B.P.; Rochette, P. Shocked quartz and other mineral inclusions in Australasian microtektites. Geology 2010, 38, 211–214. [Google Scholar] [CrossRef]
- Folco, L.; Bigazzi, G.; D’Orazio, M.; Balestrieri, M.L. Fission track age of the Transantarctic Mountain microtektites. Geochim. Cosmochim. Acta 2011, 75, 2356–2360. [Google Scholar] [CrossRef]
- Sighinolfi, G.P.; Elmi, C.; Serra, R.; Contini, G. High density silica phases as evidences of small-scale hypervelocity impacts: The Gebel Kamil Crater (Egypt). Period. Mineral. 2014, 83, 299–312. [Google Scholar]
Intra-Crater Rock Samples | Macroscopic Features | Location | Geographic Coordinates |
---|---|---|---|
Rock Samples | |||
R-1 | Light-grey medium grained sandstone | Upper E wall near the crater rim | 26°05′17″ N 04°23′49″ E |
R-2 | Reddish coarse-grained sandstone | Upper E wall near the crater rim | 26°05′17″ N 04°23′49″ E |
R-3 | Light-grey medium-grained sandstone | Lower E wall | 26°05′17″ N 04°23′49″ E |
R-4 | Light-grey sandstone | Bottom E wall | 26°05′17″ N 04°23′49″ E |
Soil Intra-Crater | |||
A1-C | Pinkish-coloured 250–500 µm | Bottom NW wall | 26°05′17″ N 04°23′49″ E |
A1-F | <250 µm | Bottom NW wall | 26°05′17″ N 04°23′49″ E |
Soil Extra-Crater | |||
A2-C | Pinkish-coloured 250–500 µm | 1 km N from the crater | 26°05′30″ N 04°23′56″ E |
A2-F | Pinkish-coloured <250 µm | 1 km N from the crater | 26°05′30″ N 04°23′56″ E |
A3-C | Pinkish-coloured 250–500 µm | 3 km N from the crater | 26°04′54″ N 04°24′10″ E |
A3-F | Pinkish-coloured <250 µm | 6 km N from the crater | 26°06′16″ N 04°23′48″ E |
A4-C | Pinkish-coloured 250–500 µm | 6 km N from the crater | 26°06′16″ N 04°23′48″ E |
A4-F | Pinkish-coloured <250 µm | 6 km N from the crater | 26°06′16″ N 04°23′48″ E |
A5-C | Pinkish-coloured 250–500 µm | 6.2 N km from the crater | 26°07′40″ N 4°24′13″ E |
A5-F | Pinkish-coloured <250 µm | 6.2 N km from the crater | 26°07′40″ N 4°24′13″ E |
Sample | Al ± 2.2 | Mg ± 1.3 | Fe ± 3.2 | Mn ± 1.2 | Co ± 0.01 | Ni ± 1.2 | Cu ± 1.3 |
---|---|---|---|---|---|---|---|
Rock (4 Samples) | |||||||
R-1 | 791 | 16.8 | 675 | 5.5 | 0.02 | 2.1 | 3.38 |
R-2 | 1253 | 30.1 | 1119 | 14.7 | 2.54 | 5.2 | 4.17 |
R-3 | 342 | 6.6 | 632 | 2.4 | <0.01 | 3.2 | 2.66 |
R-4 | 705 | 15.5 | 553 | 2.4 | <0.01 | 3.5 | 3.67 |
average | 773 | 17.2 | 744 | 6.25 | 0.65 | 3.5 | 3.47 |
Soil Intra-Crater | |||||||
A1-C | 1170 | 24.2 | 819 | 6.5 | n.d | 13.08 | 7.39 |
A1-F | 1940 | 55.1 | 1415 | 12.1 | 2.65 | 6.75 | 5.71 |
Outside Crater (8 Samples) | |||||||
A2-C | 1425 | 33.0 | 1040 | 12.4 | 2.07 | 23.09 | 8.65 |
A2-F | 2298 | 66.1 | 1470 | 13.1 | 2.85 | 11.08 | 7.33 |
A3-C | 3443 | 106.1 | 1862 | 18.6 | 5.02 | 14.64 | 11.00 |
A3-F | 3144 | 101.1 | 1869 | 18.5 | 4.19 | 14.45 | 9.75 |
A4-C | 1927 | 40.1 | 620 | 13.9 | 3.37 | 4.83 | 3.86 |
A4-F | 2265 | 53.5 | 928 | 9.5 | 1.62 | 8.07 | 6.23 |
A5-C | 1886 | 50.1 | 721 | 8.2 | n.d. | 18.54 | 13.66 |
A5-F | 2543 | 73.8 | 1309 | 13.1 | 3.48 | 8.16 | 7.10 |
Average | 2204 | 60.3 | 1205 | 12.06 | 3.15 | 12.26 | 8.07 |
soil average/rock average Enrichment factor, EF | 2.85 | 3.51 | 1.62 | 2.01 | >4 | 3.42 | 1.75 |
Al normalised (EF) | 1.23 | 0.57 | 0.70 | >1.4 | 1.20 | 0.61 |
Sample | SiO2 | Al2O3 | TiO2 | Cr2O3 | FeO | MnO | MgO | NiO | Attributed Mineralogy |
---|---|---|---|---|---|---|---|---|---|
AM 39 | 40.35 | 0.05 | 0.01 | 0.02 | 13.71 | 0.23 | 46.67 | 0.13 | Forsteritic olivine |
AM-7 | 0.04 | 57.85 | 0.09 | 7.93 | 13.77 | 0.01 | 19.77 | 0.35 | Cr-poor spinel |
AM-8 | 0.06 | 58.95 | 0.08 | 8.05 | 11.91 | 0.02 | 20.89 | 0.36 | Cr-poor spinel |
AM-9 | 0.03 | 58.44 | 0.08 | 8.04 | 12.31 | 0.03 | 20.47 | 0.45 | Cr-poor spinel |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sighinolfi, G.P.; Barbieri, M.; Brunelli, D.; Serra, R. Mineralogical and Chemical Investigations of the Amguid Crater (Algeria): Is there Evidence on an Impact Origin? Geosciences 2020, 10, 107. https://doi.org/10.3390/geosciences10030107
Sighinolfi GP, Barbieri M, Brunelli D, Serra R. Mineralogical and Chemical Investigations of the Amguid Crater (Algeria): Is there Evidence on an Impact Origin? Geosciences. 2020; 10(3):107. https://doi.org/10.3390/geosciences10030107
Chicago/Turabian StyleSighinolfi, Gian Paolo, Maurizio Barbieri, Daniele Brunelli, and Romano Serra. 2020. "Mineralogical and Chemical Investigations of the Amguid Crater (Algeria): Is there Evidence on an Impact Origin?" Geosciences 10, no. 3: 107. https://doi.org/10.3390/geosciences10030107
APA StyleSighinolfi, G. P., Barbieri, M., Brunelli, D., & Serra, R. (2020). Mineralogical and Chemical Investigations of the Amguid Crater (Algeria): Is there Evidence on an Impact Origin? Geosciences, 10(3), 107. https://doi.org/10.3390/geosciences10030107