Hydrostratigraphic Characterisation of Shallow Coastal Aquifers of Eastern Dahomey Basin, S/W Nigeria, Using Integrated Hydrogeophysical Approach; Implication for Saltwater Intrusion
Abstract
:1. Introduction
1.1. Study Area and Geomorphology
1.2. Geology and Hydrogeology of Eastern Dahomey Basin
2. Materials and Methods
2.1. Field Physico-Chemical Measurement
2.2. Hydro-Geophysical Approach
2.3. Geophysical Field Data Acquisition
2.4. Geophysical Data Processing
3. Results
3.1. Results of Well and Borehole Field Inventories
3.2. Results of Electrical Resistivity Tomography (ERT) and Induced Polarisation (IP)
3.3. Correlation of the Geoelectrical Sections with Borehole Logs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulrennan, M.E.; Woodroffe, C.D. Saltwater intrusion into the coastal plains of the Lower Mary River, Northern Territory, Australia. J. Environ. Manag. 1998, 54, 169–188. [Google Scholar] [CrossRef]
- Creel, L. Ripple Effects: Population and Coastal Regions. Available online: https://www.prb.org/rippleeffectspopulationandcoastalregions (accessed on 10 September 2019).
- Oteri, A.U.; Atolagbe, F.P. Saltwater Intrusion into Coastal Aquifers in Nigeria. In Proceedings of the Second International Conference on Saltwater Intrusion and Coastal Aquifers—Monitoring, Modeling, and Management, Mérida, Mexico, 30 March–2 April; pp. 1–15.
- Wu, M.L.; Wang, Y.S.; Sun, C.C.; Wang, H.; Dong, J.-D.; Yin, J.P.; Han, S.H. Identification of coastal water quality by statistical analysis methods in Daya Bay, South China Sea. Mar. Pollut. Bull. 2010, 60, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Oluwafemi, A.; Jakpor, P.; Bohme, S.; Kishimoto, S.; Lobina, E. Lagos Water Crisis Alternative Roadmap for Water Sector. Available online: https://reliefweb.int/report/nigeria/lagos-water-crisis-alternative-roadmap-public-water-sector (accessed on 19 September 2019).
- Ayolabi, E.A.; Oyelayo, F.J. Geophysical and hydrochemical assessment of groundwater pollution due to a dumpsite in Lagos State, Nigeria. J. Geol. Soc. India 2005, 66, 617–622. [Google Scholar]
- Ayolabi, E.A.; Folorunso, A.F.; Odukoya, A.M.; Adeniran, A.E. Mapping saline water intrusion into the coastal aquifer with geophysical and geochemical techniques: The University of Lagos Campus Case (Nigeria). SpringerPlus 2013, 2, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayolabi, E.A.; Epelle, E.S.; Lucas, O.B.; Ojo, A. Geophysical and geochemical site investigation of eastern part of Lagos Metropolis, Southwestern Nigeria. Arab. J. Geosci. 2014, 8, 7445–7453. [Google Scholar] [CrossRef]
- Oteri, A.U.; Rasheed, A.A. The Lagos Megacity Project. Available online: http://eaumega.org/wp-content/uploads/2016/05/EN-Lagos-Monograph.pdf (accessed on 19 September 2019).
- Adepelumi, A.A.; Ako, B.D.; Ajayi, T.R.; Afolabi, O.; Omotoso, E.J. Delineation of saltwater intrusion into the freshwater aquifer of Lekki Peninsula, Lagos, Nigeria. Environ. Geol. 2009, 56, 927–933. [Google Scholar] [CrossRef]
- Oyeyemi, K.D.; Aizebeokhai, A.P.; Oladunjoye, M.A. Integrated geophysical and geochemical investigations of saline water intrusion in a Coastal Alluvial Terrain, Southwestern Nigeria. Int. J. Appl. Environ. Sci. 2015, 10, 973–6077. [Google Scholar]
- Edet, A. Hydrogeology and groundwater evaluation of a shallow coastal aquifer, southern Akwa Ibom State (Nigeria). Appl. Water Sci. 2016, 7, 2397–2412. [Google Scholar] [CrossRef] [Green Version]
- Izbicki, J.A. Seawater Intrusion in a Coastal California Aquifer; US Department of the Interior: Washington, DC, USA, 1996.
- Tran, L.T.; Larsen, F.; Pham, N.Q.; Christiansen, A.V.; Tran, N.; Vu, H.V.; Tran, L.V.; Hoang, H.V.; Hinsby, K. Origin and extent of fresh groundwater, salty paleowaters and recent saltwater intrusions in Red River flood plain aquifers, Vietnam. Hydrogeol. J. 2012, 20, 1295–1313. [Google Scholar] [CrossRef]
- Cary, L.; Petelet-Giraud, E.; Bertrand, G.; Kloppmann, W.; Aquilina, L.; Martins, V.; Hirata, R.; Montenegro, S.; Pauwels, H.; Chatton, E.; et al. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach. Sci. Total. Environ. 2015, 530, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Longe, E.O.; Malomo, S.; Olorunniwo, M.A. Hydrogeology of Lagos metropolis. J. Afr. Earth Sci. 1987, 6, 163–174. [Google Scholar] [CrossRef]
- Oteri, A.U. Geophysical investigations of sea water intrusion into the Cainozoic aquifers of South Coast Kenya—A review. J. Afr. Earth Sci. 1991, 13, 221–227. [Google Scholar] [CrossRef]
- Adeoti, L.; Alile, O.M.; Uchegbulam, O. Geophysical investigation of saline water intrusion into freshwater aquifers: A case study of Oniru, Lagos State. Sci. Res. Essays 2010, 5, 248–259. [Google Scholar]
- Longe, E.O. Groundwater Resources Potential in the Coastal Plain Sands Aquifers, Lagos, Nigeria. Res. J. Environ. Earth Sci. 2011, 3, 1–7. [Google Scholar]
- Ayolabi, E.A.; Folorunso, A.F.; Kayode, O.T. Integrated geophysical and geochemical methods for environmental assessment of municipal dumpsite system. Int. J. Geosci. 2013, 4, 850–862. [Google Scholar] [CrossRef] [Green Version]
- Odukoya, A.M.; Folorunso, A.F.; Ayolabi, E.A.; Adeniran, E.A. Groundwater quality and identification of hydrogeochemical processes within University of Lagos, Nigeria. J. Water Resour. Prot. 2013, 5, 930–940. [Google Scholar] [CrossRef] [Green Version]
- Lapworth, D.J.; Krishan, G.; Macdonald, A.M.; Rao, M.S. Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Sci. Total Environ. 2017, 599, 1433–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adegoke, O.S.; Omatsola, M.E. Tectonic evolution and cretaceous stratigraphy of the dahomey Basin. J. Min. Geol. 1981, 18, 130–137. [Google Scholar]
- Okunlola, O.A.; Adeigbe, O.C.; Oluwatoke, O.O. Compositional and petrogenetic features of schistose rocks of Ibadan Area, Southwestern Nigeria. Earth Sci. Res. J. 2009, 13, 119–133. [Google Scholar]
- Offodile, M.E. The Hydrogeology of coastal areas of southeastern states of Nigeria. J. Min. Geol. 1971, 14, 94–101. [Google Scholar]
- Jones, H.A.; Hockey, R. The geology of part of southwestern Nigeria. GSN Bull. 1964, 31, 87. [Google Scholar]
- Adelana, S.M.A.; Olasehinde, P.I.; Bale, R.B.; Vrbka, P.; Edet, A.E.; Goni, I.B. An overview of the geology and hydrogeology of Nigeria. Q. J. Eng. Geol. Hydrogeol. 1996, 29, S1–S12. [Google Scholar] [CrossRef]
- Omosuyi, G.O.; Ojo, J.S.; Olorunfemi, M.O. Geoelectric sounding to delineate shallow aquifers in the coastal plain sands of Okitipupa Area, Southwestern Nigeria. Pac. J. Sci. Technol. 2008, 9, 62–77. [Google Scholar]
- Khalil, M.H. Geoelectric resistivity sounding for delineating salt water intrusion in the Abu Zenima area, west Sinai, Egypt. J. Geophys. Eng. 2006, 3, 243–251. [Google Scholar] [CrossRef]
- Aluko, K.O.; Raji, W.O.; Ayolabi, E.A. Application of 2-D resistivity survey to groundwater aquifer delineation in a sedimentary terrain: A case study of south-western Nigeria. Water Util. J. 2017, 17, 71–79. [Google Scholar]
- Buselli, G.; Lu, K. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. J. Appl. Geophys. 2001, 48, 11–23. [Google Scholar] [CrossRef]
- Günther, T.; Dlugosch, R.; Holland, R.; Yaramanci, U. Aquifer characterization using coupled inversion of DC/IP and Mrs Data on a hydrogeophysical test-site. Symp. Appl. Geophys. Eng. Environ. Probl. 2010, 302–307. [Google Scholar] [CrossRef]
- Ayolabi, E.A.; Enoh, I.J.E.; Folorunso, A.F. Engineering site characterisation using 2-D and 3-D electrical resistivity tomography. Earth Sci. Res. 2013, 2. [Google Scholar] [CrossRef] [Green Version]
- Abdulrahman, A.; Nawawi, M.; Saad, R.; Abu-Rizaiza, A.S.; Yusoff, M.S.; Khalil, A.E.; Ishola, K.S. Characterization of active and closed landfill sites using 2D resistivity/IP imaging: Case studies in Penang, Malaysia. Environ. Earth Sci. 2016, 75, 1–17. [Google Scholar] [CrossRef]
- Oteri, A.U. Geoelectric investigation of saline contamination of a chalk aquifer by mine drainage water at Tilmanstone, England. Geoexploration 1981, 19, 179–192. [Google Scholar] [CrossRef]
- De Franco, R.; Biella, G.; Tosi, L.; Teatini, P.; Lozej, A.; Chiozzotto, B.; Giada, M.; Rizzetto, F.; Claude, C.; Mayer, A.; et al. Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy). J. Appl. Geophys. 2009, 69, 117–130. [Google Scholar] [CrossRef]
- McInnis, D.; Silliman, S.; Boukari, M.; Yalo, N.; Orou-Pete, S.; Fertenbaugh, C.; Sarre, K.; Fayomi, H. Combined application of electrical resistivity and shallow groundwater sampling to assess salinity in a shallow coastal aquifer in Benin, West Africa. J. Hydrol. 2013, 505, 335–345. [Google Scholar] [CrossRef]
- Edet, A.E.; Merkel, B.J.; Offiong, O.E. Trace element hydrochemical assessment of the Calabar Coastal Plain Aquifer, southeastern Nigeria using statistical methods. Environ. Earth Sci. 2003, 44, 137–149. [Google Scholar] [CrossRef]
- Edet, A. An aquifer vulnerability assessment of the Benin formation aquifer, Calabar, Southeastern Nigeria, using DRASTIC and GIS approach. Environ. Earth Sci. 2014, 71, 1747–1765. [Google Scholar] [CrossRef]
- Oyelami, A.C.; Ojo, O.A.; Aladejana., J.A.; Agbede, O.O. Assessing the effect of a dumpsite on groundwater quality: A case study of Aduramigba Estate within Osogbo Metropolis. J. Environ. Earth Sci. 2013, 3, 120–131. [Google Scholar]
- Francés, A.P.; Ramalho, E.C.; Fernandes, J.; Groen, M.; Hugman, R.; Khalil, M.A.; De Plaen, J.; Santos, F.A.M. Contributions of hydrogeophysics to the hydrogeological conceptual model of the Albufeira-Ribeira de Quarteira coastal aquifer in Algarve, Portugal. Hydrogeol. J. 2015, 23, 1553–1572. [Google Scholar] [CrossRef]
- Obiora, D.N.; Onwuka, O.S. Groundwater exploration in Ikorodu, Lagos-Nigeria: A surface geophysical survey contribution. Pac. J. Sci. Technol. 2005, 6, 86–93. [Google Scholar]
- Igel, J.; Günther, T.; Kuntzer, M. Ground-penetrating radar insight into a coastal aquifer: The freshwater lens of Borkum Island. Hydrol. Earth Syst. Sci. 2013, 17, 519–531. [Google Scholar] [CrossRef] [Green Version]
Formation | Age | Rock Type | Approximate Depth of Base (m.b.s.l) |
---|---|---|---|
Coastal Plain Sands | Tertiary (Oligocene–Pleistocene) | Clays, Silty Clays, Sands | 130 |
Ilaro | Tertiary Eocene | Clays and Shales | 280 |
Ewekoro | Tertiary Paleocene | Shales, limestone and sands | 550 |
Abeokuta | Upper Cretaceous | Sandstone, Siltstone, Shale, Conglomerate | 350–600 |
Crystalline Basement | Paleozoic to Precambrian | Granites and Migmatite | >400 |
Parameters | Min | Max | Average | Stdev | Variance |
---|---|---|---|---|---|
Elevation (m) | −1.00 | 230.00 | 46.30 | 39.80 | 1584.32 |
pH | 3.97 | 8.10 | 5.57 | 1.00 | 1.00 |
EC (µS/cm) | 6.7 | 12,000.00 | 295.40 | 1219.42 | 1,486,983.46 |
TDS (mg/L) | 0.00 | 8500.00 | 201.83 | 863.57 | 745,754.20 |
ORP (mV) | −136.00 | 330.00 | 222.90 | 74.88 | 5606.54 |
Salinity (mg/L) | 0.00 | 5000.00 | 136.79 | 508.98 | 259,062.52 |
Temp (°C) | 25.50 | 34.60 | 29.44 | 1.72 | 2.96 |
Alkalinity (mg/L) | 0.20 | 96.40 | 9.05 | 15.59 | 242.98 |
SWL (m) | 0.20 | 67.00 | 18.27 | 15.36 | 235.98 |
Well Depth (m) | 2.10 | 125.00 | 26.62 | 18.85 | 355.16219 |
S/N | Resistivity Value (Ωm) | Description |
---|---|---|
1 | 0–55 | Saline water |
2 | 55–90 | Brackish water (Interface) |
3 | >90 | Freshwater |
Ugbonla Geoelectrical Section | |||
Depth (m) | Resistivity (Ωm) | Chargeability (ms) | Lithological Description |
0–23 | 1–130 | −50–45 | Unconsolidated dry-sand (Top soil) |
23–70 | 70–200 | −30–20 | Clayey sand |
70–105 | 1–130 | −50–70 | Fine grain sand |
Aboto Geoelectrical Section | |||
Depth (m) | Resistivity (Ωm) | Chargeability (ms) | Lithological Description |
0–14 | 300–700 | 5–75 | Unconsolidated sand (Top soil) |
14–118 | 10–40 | −5–100 | Saturated fine grain sand with clay lenses. |
Igbokoda Geoelectrical Section | |||
Depth (M) | Resistivity (Ωm) | Chargeability (ms) | Lithological Description |
0–13 | 700–1000 | 15–30 | Unconsolidated dry-sand (Top soil) |
13–55 | 33–50 | 1–128 | Clayey sand |
55–105 | 10–20 | −12–100 | Fine grain clay with clay lenses |
Okitipupa Rd Geoelectrical Section | |||
Depth (m) | Resistivity (Ωm) | Chargeability (ms | Lithological Description |
0–13 | 60–300 | 100–200 | Lateritic clay (Top soil) |
13–36 | 300–1700 | 80–200 | Sandy clay |
36–105 | 200–700 | 300–120 | Fine-grain Sands with clay lenses |
Ebute-Ipare Geoelectrical Section | |||
Depth (m) | Resistivity (Ωm) | Chargeability (ms) | Lithological Description |
0–25 | 50–496 | −100–40 | Unconsolidated sand (Top soil) |
25–60 | 32–300 | 0–100 | Sandy clay |
60–118 | 40–180 | −40–20 | Fine grain sands |
Abule-Obi Geoelectrical Section | |||
Depth (m) | Resistivity (Ωm) | Chargeability (ms) | Lithological Description |
0–15 | 10–130 | 380–300 | Silty cay (Top soil) |
15–42 | 1–70 | 20–120 | Sandy clay |
42–105 | 1–50 | 10–60 | Fine-grain sands with clay lenses |
Araromi Geoelectrical Section | |||
Depth (m) | Resistivity (Ωm) | Chargeability (ms) | Lithological Description |
0–23 | 1–120 | −200–10 | Saturated fine sand (Top soil) |
23–70 | 5–150 | −80–200 | Fin grain sandy with silt and clay |
Eleko Geoelectrical Section | |||
Depth (m) | Resistivity (Ωm) | Chargeability (ms) | Lithological Description |
0–6 | 300–6000 | −100–30 | Lateritic clayey sand |
6–45 | 1–300 | 1–20 | Clayey sand with clay lenses |
45–118 | 300–400 | 10–400 | Sandy clay |
Lakowe Geoelectrical Section | |||
Depth (m) | Resistivity (Ωm) | Chargeability (ms) | Lithological Description |
0–13 | 470–1605 | 10–30 | Dry-loose sand |
13–30 | 100–200 | −80–10 | Sandy clay |
30–118 | 200–500 | −100–110 | Fine grain sands |
Okun-Ajjah Geoelectrical Section | |||
Depth (m) | Resistivity (Ωm) | Chargeability (ms) | Lithological Description |
0–30 | 100–1000 | −10–60 | Dry-loose sand |
15–40 | 50–200 | −150–1 | Fine-medium grain sand |
40–118 | 7–30 | 50–143 | Clay-sandy clay |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aladejana, J.A.; Kalin, R.M.; Sentenac, P.; Hassan, I. Hydrostratigraphic Characterisation of Shallow Coastal Aquifers of Eastern Dahomey Basin, S/W Nigeria, Using Integrated Hydrogeophysical Approach; Implication for Saltwater Intrusion. Geosciences 2020, 10, 65. https://doi.org/10.3390/geosciences10020065
Aladejana JA, Kalin RM, Sentenac P, Hassan I. Hydrostratigraphic Characterisation of Shallow Coastal Aquifers of Eastern Dahomey Basin, S/W Nigeria, Using Integrated Hydrogeophysical Approach; Implication for Saltwater Intrusion. Geosciences. 2020; 10(2):65. https://doi.org/10.3390/geosciences10020065
Chicago/Turabian StyleAladejana, Jamiu A., Robert M. Kalin, Philippe Sentenac, and Ibrahim Hassan. 2020. "Hydrostratigraphic Characterisation of Shallow Coastal Aquifers of Eastern Dahomey Basin, S/W Nigeria, Using Integrated Hydrogeophysical Approach; Implication for Saltwater Intrusion" Geosciences 10, no. 2: 65. https://doi.org/10.3390/geosciences10020065
APA StyleAladejana, J. A., Kalin, R. M., Sentenac, P., & Hassan, I. (2020). Hydrostratigraphic Characterisation of Shallow Coastal Aquifers of Eastern Dahomey Basin, S/W Nigeria, Using Integrated Hydrogeophysical Approach; Implication for Saltwater Intrusion. Geosciences, 10(2), 65. https://doi.org/10.3390/geosciences10020065