Storm-Related Rhodolith Deposits from the Upper Pleistocene and Recycled Coastal Holocene on Sal Island (Cabo Verde Archipelago)
Abstract
:1. Introduction
2. Geographical and Geological Setting
3. Materials and Methods
4. Results
4.1. Upper Pleistocene Deposit on Baía da Parda
4.2. Upper Pleistocene Deposit at Praia das Gatas
4.3. Configuration of Holocene Supratidal Deposit at Praia das Gatas
4.4. Comparative Variations in Rhodolith Shape
4.5. Comparative Variations in Rhodolith Size
4.6. Rhodolith Nucleation
4.7. Storm Intensity as Function of Estimated Rhodolith Volume and Weight
5. Discussion
5.1. Pleistocene and Holocene Depositional Models
5.2. Direction of Storm Impact
5.3. Inference from Historical Storms
5.4. Sal Island Rhodolith Deposits Compared to Others in the North Atlantic
6. Conclusions
- Rhodoliths formed by the accretion of coralline red algae in nodules taking on a semi-spherical shape are moderately large at 15 cm in diameter from the upper Pleistocene at Bahía da Parda and 10 cm in diameter from the Holocene deposit at Praia das Gatas, respectively.
- Fossil rhodoliths as large as 15 cm in diameter and lacking rock cores appear to have survived for a long time, potentially as much as 100 years through continuous development in deeper, offshore waters where disruption from storm events was seldom experienced, but were conveyed by storms to a position superimposed on basalt cobbles.
- Upper Pleistocene deposits at Praia das Gatas and Baía da Parda correspond to death assemblages dominated by rhodoliths with minor faunal elements that include fragmented corals and marine gastropods. The worn outer surface of densely branched rhodoliths typical of species in the genus Lithothamnium points to a shallow, subtidal setting in which very fine biogenic carbonate was produced as a result of contact abrasion to provide the matrix in which the rhodoliths are cemented.
- The extensive supratidal Holocene deposit of loose rhodoliths found at Praia das Gatas was recycled in its entirety from the adjacent Pleistocene deposit at the same locality as a result of storm activity that created surf conditions more energetic than generated by the constant Northeast Trade Winds on the exposed shore of Sal Island. Rhodoliths in the Holocene deposit are somewhat smaller, overall, but with surfaces subject to additional contact abrasion.
- Analysis of the Sal Island rhodoliths compared with older Miocene and Pliocene rhodolith deposits elsewhere in the Cabo Verde Archipelago as well as other islands in Madeira, the Azores, and mainland Portugal where deposition under conditions of increased storminess is equated with a more northern position of the ITCZ.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Intermediate Volume (cm3) | Estimated Weight (kg) | Nucleus Basalt Core? |
---|---|---|---|---|---|---|
1 | 14.5 | 11.5 | 9.5 | 796 | 2.05 | without |
2 | 13 | 11.5 | 7.5 | 796 | 2.04 | without |
3 | 8 | 6.5 | 4.5 | 144 | 0.37 | without |
4 | 10 | 7 | 5.5 | 180 | 0.49 | without |
5 | 9.5 | 6 | 5.5 | 113 | 0.29 | without |
6 | 8.5 | 8 | 6.5 | 268 | 0.64 | without |
7 | 6.5 | 6 | 4.5 | 113 | 0.29 | without |
8 | 9 | 7.5 | 5.5 | 221 | 0.57 | without |
9 | 5 | 4.5 | 3.5 | 48 | 0.12 | without |
10 | 9.5 | 7 | 5.5 | 180 | 0.49 | without |
11 | 7 | 5.5 | 3.5 | 697 | 1.81 | without |
12 | 7.5 | 6 | 5.5 | 113 | 0.29 | without |
13 | 6 | 5 | 3.5 | 65 | 0.17 | without |
14 | 7 | 5.5 | 4 | 87 | 0.23 | shell |
15 | 7 | 5 | 4 | 65 | 0.17 | without |
16 | 7 | 6,5 | 3 | 144 | 0.37 | without |
17 | 7 | 6 | 5.5 | 113 | 0.29 | without |
18 | 8 | 6 | 3.5 | 113 | 0.29 | without |
19 | 7.5 | 6 | 4.5 | 113 | 0.91 | without |
20 | 5.5 | 4.5 | 4.5 | 48 | 0.12 | basalt |
21 | 5.5 | 4 | 4 | 34 | 0.08 | without |
22 | 7.5 | 5 | 4.5 | 65 | 0.17 | without |
23 | 13 | 9 | 7 | 382 | 0.99 | without |
24 | 6.5 | 4.5 | 3.5 | 382 | 0.99 | without |
25 | 6 | 4 | 4 | 268 | 0.64 | without |
26 | 5 | 4.5 | 4.5 | 382 | 0.99 | without |
27 | 4 | 4 | 3 | 34 | 0.08 | without |
28 | 6.5 | 6 | 8 | 113 | 0.29 | without |
29 | 15 | 13 | 11 | 1,150 | 2.99 | without |
30 | 12 | 12 | 8 | 905 | 2.35 | without |
Mean | 8.13 | 6.6 | 5.2 | 271 | 0.71 | 3% |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Intermediate Volume (cm3) | Estimated Weight (kg) | Nucleus Basalt Core? |
---|---|---|---|---|---|---|
1 | 10 | 9 | 5.5 | 382 | 0.99 | without |
2 | 8.5 | 6.5 | 6 | 144 | 0.37 | without |
3 | 5.5 | 5.5 | 4 | 88 | 0.23 | without |
4 | 7 | 7 | 5.5 | 180 | 0.49 | without |
5 | 8 | 6.5 | 4 | 144 | 0.37 | without |
6 | 8.5 | 8.5 | 6.5 | 322 | 0.84 | without |
7 | 7.5 | 6 | 4 | 113 | 0.21 | without |
8 | 8 | 5.5 | 5.5 | 88 | 0.23 | without |
9 | 6 | 5 | 4 | 65 | 0.17 | without |
10 | 10 | 8 | 4 | 268 | 0.7 | without |
11 | 8.5 | 7 | 4 | 180 | 0.49 | without |
12 | 7.5 | 7 | 6 | 180 | 0.49 | without |
13 | 10 | 6 | 6 | 113 | 0.21 | without |
14 | 6 | 6 | 5 | 65 | 0.17 | without |
15 | 6 | 5.5 | 4 | 88 | 0.23 | without |
16 | 6 | 5 | 5 | 65 | 0.17 | without |
17 | 5.5 | 4.5 | 5 | 48 | 0.12 | without |
18 | 5 | 5 | 4 | 65 | 0.17 | without |
19 | 6 | 5 | 4 | 65 | 0.17 | without |
20 | 5.5 | 4 | 4 | 34 | 0.08 | without |
21 | 7.5 | 5.5 | 5.5 | 88 | 0.23 | without |
22 | 5.5 | 5 | 4.5 | 65 | 0.17 | without |
23 | 5 | 3.5 | 3.5 | 22 | 0.06 | without |
24 | 4 | 3.5 | 3.5 | 22 | 0.06 | without |
25 | 4 | 3.5 | 3 | 22 | 0.06 | without |
Mean | 6.8 | 5.7 | 4.6 | 117 | 0.3 | zero% |
References
- Peña, V.; Vieira, C.; Braga, J.C.; Aguirre, J.; Rösler, A.; Baele, G.; De Clerck, O.; Le Gall, L. Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Mol. Phylogenet. Evol. 2020, 150, 106845. [Google Scholar] [CrossRef]
- Foster, M.S. Rhodoliths: Between rock and soft places. J. Phycol. 2001, 37, 659–667. [Google Scholar] [CrossRef]
- Bassi, D.; Braga, J.C.; Owada, M.; Aguirre, J.; Lipps, J.H.; Takaynagi, H.; Iryu, Y. Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds. Prog. Earth Planet. Sci. 2020, 7, 41. [Google Scholar] [CrossRef]
- Steller, D.L.; Riosmena-Rodríguez, R.; Foster, M.S.; Roberts, C.A. Rhodolith bed diversity in the Gulf of California: The importance of rhodolith structure and consequences of disturbance. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, S5–S20. [Google Scholar] [CrossRef]
- Amado-Filho, G.M.; Moura, L.; Gastos, A.C.; Salgad, T.; Sumida, P.Y.; Guth, Z.; Francini-Filho, R.B.; Pereira-Filho, G.H.; Abrantes, D.P.; Brasileiro, P.S.; et al. Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 2012, 7, e35171. [Google Scholar] [CrossRef] [Green Version]
- Marrack, E.C. The relationship between water motion and living rhodolith beds in the southwestern Gulf of California. Palaios 1999, 14, 159–171. [Google Scholar] [CrossRef]
- Matsuda, S.; Iryu, Y. Rholdoliths from deep fore-reef to shelf areas around Okinawa-jima, Rhukyu Islands, Japan. Mar. Geol. 2011, 281, 215–230. [Google Scholar] [CrossRef]
- Checconi, A.; Bassi, D.; Carannante, G.; Monaco, P. Re-deposited rhodolikths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): Corallline assemblage characterization and related trace fossils. Sediment. Geol. 2010, 225, 50–66. [Google Scholar] [CrossRef]
- Schäfer, P.A.; Fortunato, H.; Bader, B.; Liebetrau, V.; Bauch, T.; Reijmer, J.J.G. Growth rates and carbonate production by coralline red algae in upwelling and non-upwelling setting along the Pacific coast of Panama. Palaios 2011, 26, 420–432. [Google Scholar] [CrossRef]
- Frantz, B.R.; Kashgarian, M.; Coale, K.H.; Foster, M.S. Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limol. Oceanogr. 2000, 45, 1773–1777. [Google Scholar] [CrossRef]
- Johnson, M.E.; Ledesma-Vázquez, J.; Ramalho, R.S.; da Silva, C.M.; Rebelo, A.C.; Santos, A.; Baarli, G.B.; Mayoral, E.; Cachão, M. Taphonomic Range and Sedimentary Dynamics of Modern and Fossil Rhodolith Beds: Macaronesian Realm (North Atlantic Ocean). In Rhodolith/Maërl Beds: A Global Perspective; Riosmena-Rogríguez, R.R., Nelson, W., Aquirre, J., Eds.; Coastal Research Library 15; Springer: Berlin/Heidelberg, Germany, 2017; pp. 221–261. ISBN 978-3-319-29313-4. [Google Scholar]
- Johnson, M.E.; Ramalho, R.S.; Baarli, B.G.; Cachão, M.; da Silva, C.M.; Cachão, M.; Mayoral, E.; Santos, A. Miocene-Pliocene rocky shores on São Nicolau (Cape Verde Islands): Contrasting windward and leeward biofacies on a volcanically active oceanic island. Palaeogeog. Palaeoclim. Palaeoecol. 2014, 395, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; da Silva, C.M.; Santos, A.; Baarli, B.G.; Cachão, M.; Mayoral, E.J.; Rebelo, A.C.; Ledesma-Vázquez, J. Rhodolith transport and immobilization on a volcanically active rocky shore: Middle Miocene at Cabeço das Laranjas on Ilhéue de Cima (Madeira Archipelago, Portugal). Palaeogeog. Palaeoclim. Palaeoecol. 2011, 300, 113–127. [Google Scholar] [CrossRef]
- Santos, A.; Mayoral, E.; Johnson, M.E.; Baarli, B.G.; da Silva, C.M.; Cachão, M.; Ledesma-Vázquez, J. Basalt mounds and adjacent depressions attract contrasting biofacies on a volcanically active Middle Miocene coastline (Porto Santo, Madeira Archipelago, Portugal). Facies 2012, 58, 573–585. [Google Scholar] [CrossRef]
- Rebelo, A.C.; Rasser, M.W.; Kroh, A.; Johnson, M.E.; Ramalho, R.S.; Melo, C.; Uchman, A.; Berning, B.; Silva, L.; Zanon, V.; et al. Rocking around a volcanic island shelf: Pliocene rhodolith beds from Malbusca, Santa Maria Island (Azores, NE Atlantic). Facies 2016, 62, 1–31. [Google Scholar] [CrossRef]
- da Silva, C.M.; Cachão, M.; Rebelo, A.C.; Johnson, M.E.; Baarli, B.G.; Santos, A.; Mayorall, E.J. Paleoenvironment and taphonomy of lower Miocene biovale and macroid assemblages: The Lagos Biocalcarenite (Lagos-Portimão Formation, southern Portugal). Facies 2019, 65, 6. [Google Scholar] [CrossRef]
- Johnson, M.E.; Baarli, B.G.; da Silva, C.M.; Cachão, M.; Ramalho, R.S.; Santos, A.; Mayoral, E.J. Recent rhodolith deposits stranded on the windward shores of Maio (Cape Verde Islands): Historical resource for the local economy. J. Coast. Res. 2016, 32, 735–743. [Google Scholar] [CrossRef]
- Michell-Thomé, R.G. Outline of the geology of the Cape Verde Archipelago. Geol. Rundsch. 1972, 61, 1087–1109. [Google Scholar] [CrossRef]
- Torres, P.C.; Silva, L.C.; Serralheiro, A.; Tassinari, C.; Munhá, J. Enquadramento geocronológico pelo método K/Ar das principais sequências volcano-estratigráficas da Ilha do Sal—Cabo Verde. Garcia Orta Ser. Geol. Lisb. 2002, 18, 9–13. [Google Scholar]
- Bernardino, M.; Rusu, L.; Soares, C.G. Evaluation of the wave energy resources in the Cape Verde Islands. Renew. Energy 2017, 101, 316–326. [Google Scholar] [CrossRef]
- Stuut, J.-B.; Zabel, M.; Ratmeyer, V.; Helmke, P.; Schefuss, E.; Lavik, G.; Schneider, R. Provenance of present-day eolian dust collected off NW Africa. J. Geophys. Res. Atmos. 2005, 110, D04202. [Google Scholar] [CrossRef]
- Bosence, D. Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 1976, 19, 71–88. [Google Scholar]
- Bosence, D.K.J. The Occurrence and Ecology of Recent Rhodoliths—A Review. In Coated Grains; Peryt, T.M., Ed.; Springer: Berlin/Heidelberg, Germany, 1983; pp. 217–224. [Google Scholar]
- Sneed, E.D.; Folk, R.L. Pebbles in the lower Colorado River of Texas: A study in particle morphogenesis. J. Geol. 1958, 66, 114–150. [Google Scholar] [CrossRef]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 27, 377–392. [Google Scholar] [CrossRef]
- Manger, G.E. Porosity and bulk density of sedimentary rocks: Contributions to geochemistry. U. S. Geol. Surv. Bull. 1963, 1144-E, 55. [Google Scholar]
- Zazo, C.; Goy, J.L.; Hillaire-Marcel, C.; Dadrio, C.J.; González-Delgado, J.A.; Cabero, A.; Bardaji, T.; Ghaleb, B.; Soler, V. Sea level changes during the last and present interglacials in Sal Island (Cape Verde archipelago). Glob. Planet. Chang. 2010, 72, 301–317. [Google Scholar] [CrossRef] [Green Version]
- Ramalho, R.; Helffrich, G.; Schmidt, D.N.; Vance, D. Tracers of uplift and subsidence in the Cape Verde Archipelago. J. Geol. Soc. 2010, 167, 519–538. [Google Scholar] [CrossRef] [Green Version]
- Gmelin, J.F. Vermes. In Caroli a Linnaei Systema Naturae per Regna Tria Naturae, 13th ed.; Gmelin, J.F., Ed.; Tome 1(6); G.E. Beer: Lipsiae, Germany, 1791; pp. 3021–3910. Available online: http://biodiversitylibrary.org/item/83098#5 (accessed on 22 October 2020).
- Nott, J.F. Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth Planet. Sci. Lett. 2003, 210, 269–276. [Google Scholar] [CrossRef]
- Harding, E.T.; Kotsch, W.J. Heavy Weather Guide; United States Naval Institute: Menasha, WI, USA, 1965; p. 209. [Google Scholar]
- National Hurricane Center Website. Available online: https://www.nhc.noaa.gov/refresh/graphics_at3+shtml/085405.shtml?swath#contents (accessed on 22 October 2020).
- Vaquero, J.M.; García-Herrera, R.; Wheeler, D.; Chenoweth, M.; Mock, C.J. A historical analog of 2005 Hurricane Vince. Am. Meterol. Soc. Bull. 2008, 89, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Colin, C.; Siani, G.; Liu, Z.; Blamart, D.; Skonieczny, C.; Zhao, Y.; Bory, A.; Frank, N.; Duchamp-Alphonse, S.; Thil, F.; et al. Late Miocene to early Pliocene climate variability off NW Africa (ODP Site 659). Palaeogeog., Palaeoclim., Palaeoecol. 2014, 401, 81–95. [Google Scholar] [CrossRef]
- John, C.M.; Mutti, M.; Adatte, T. Mixed carbonate-siliciclastic record on the North African margin (Malta)—Coupling of weathering processes and mid Miocene climate. Bull. Geol. Soc. Am. 2003, 115, 217–229. [Google Scholar] [CrossRef]
Locality | Number of Samples | Long Axis (cm3) | Intermediate Axis (cm) | Short Axis (cm) | Calculated Volume (cm3) | Estimated Weight (kg) |
---|---|---|---|---|---|---|
Parda Pleistocene | 30 | 8.13 | 6.60 | 5.20 | 271 | 0.71 |
Gatas Holocene | 25 | 6.80 | 5.70 | 4.60 | 117 | 0.30 |
Average of Means | 27.5 | 7.50 | 6.15 | 4.90 | 194 | 1.01 |
Locality | Number of Samples | Long Axis (cm3) | Intermediate Axis (cm) | Short Axis (cm) | Calculated Volume (cm3) | Estimated Weight (kg) |
---|---|---|---|---|---|---|
Parda Pleistocene | 1 | 15 | 13 | 11 | 1150 | 2.99 |
Gatas Holocene | 1 | 10 | 9 | 5.5 | 382 | 0.99 |
Average of Means | 1 | 12.5 | 11 | 8.25 | 766 | 1.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, M.E.; Ramalho, R.; Marques da Silva, C. Storm-Related Rhodolith Deposits from the Upper Pleistocene and Recycled Coastal Holocene on Sal Island (Cabo Verde Archipelago). Geosciences 2020, 10, 419. https://doi.org/10.3390/geosciences10110419
Johnson ME, Ramalho R, Marques da Silva C. Storm-Related Rhodolith Deposits from the Upper Pleistocene and Recycled Coastal Holocene on Sal Island (Cabo Verde Archipelago). Geosciences. 2020; 10(11):419. https://doi.org/10.3390/geosciences10110419
Chicago/Turabian StyleJohnson, Markes E., Ricardo Ramalho, and Carlos Marques da Silva. 2020. "Storm-Related Rhodolith Deposits from the Upper Pleistocene and Recycled Coastal Holocene on Sal Island (Cabo Verde Archipelago)" Geosciences 10, no. 11: 419. https://doi.org/10.3390/geosciences10110419
APA StyleJohnson, M. E., Ramalho, R., & Marques da Silva, C. (2020). Storm-Related Rhodolith Deposits from the Upper Pleistocene and Recycled Coastal Holocene on Sal Island (Cabo Verde Archipelago). Geosciences, 10(11), 419. https://doi.org/10.3390/geosciences10110419