Biogeochemistry of Household Dust Samples Collected from Private Homes of a Portuguese Industrial City
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Household Dust Sampling
2.3. Instrumentation
2.4. Statistical Techniques
2.5. Exposure and Risk Assessment
3. Results and Discussion
3.1. Mineralogy of the Household Dust Samples
3.2. Total Element Concentrations
3.3. Solid-Phase Distribution of the Elements in the Indoor Dust
3.3.1. Water Soluble Salt Phase
3.3.2. Exchangeable Phase
3.3.3. Carbonate Phase
3.3.4. Ca-Dominated Phase
3.3.5. Al-Dominated Phase
3.3.6. Clay Related Phase
3.3.7. Fe Oxy-Hydroxides
3.3.8. Fe-Oxide
3.4. The Oral Bioaccessibility of PTEs in Indoor Dust Samples
3.5. Human Health Risk Assessment for Indoor Dust Ingestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Burden of Disease from Household Air Pollution for 2016. Available online: https://www.who.int/airpollution/data/HAP_BoD_results_May2018_final.pdf (accessed on 30 March 2020).
- Huang, M.; Wang, W.; Chan, C.Y.; Cheung, K.C.; Man, Y.B.; Wang, X.; Wong, M.H. Contamination and Risk Assessment (Based on Bioaccessibility via Ingestion and Inhalation) of Metal(Loid)s in Outdoor and Indoor Particles from Urban Centers of Guangzhou, China. Sci. Total Environ. 2014, 479–480, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Bari, A.; Kindzierski, W.B.; Wallace, L.A.; Wheeler, A.J.; Macneill, M.; Hèroux, M.-È. Indoor and Outdoor Levels and Sources of Submicron Particles (PM 1) at Homes in Edmonton, Canada. Environ. Sci. Technol. 2015, 49, 6419–6429. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Paciência, I.; Rufo, J.; Ramos, E.; Barros, H.; Teixeira, J.P.; de Oliveira Fernandes, E. Indoor Air Quality in Schools and Its Relationship with Children’s Respiratory Symptoms. Atmos. Environ. 2015, 118, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Tunno, B.J.; Dalton, R.; Cambal, L.; Holguin, F.; Lioy, P.; Clougherty, J.E. Indoor Source Apportionment in Urban Communities near Industrial Sites. Atmos. Environ. 2016, 139, 30–36. [Google Scholar] [CrossRef]
- Jorquera, H.; Barraza, F.; Heyer, J.; Valdivia, G.; Schiappacasse, L.N.; Montoya, L.D. Indoor PM2.5 in an Urban Zone with Heavy Wood Smoke Pollution: The Case of Temuco, Chile. Environ. Pollut. 2018, 236, 477–487. [Google Scholar] [CrossRef]
- Matawle, J.L.; Pervez, S.; Deb, M.K.; Shrivastava, A.; Tiwari, S. PM2.5 Pollution from Household Solid Fuel Burning Practices in Central India: 2. Application of Receptor Models for Source Apportionment. Environ. Geochem. Health 2018, 40, 145–161. [Google Scholar] [CrossRef]
- Carrion-Matta, A.; Kang, C.M.; Gaffin, J.M.; Hauptman, M.; Phipatanakul, W.; Koutrakis, P.; Gold, D.R. Classroom Indoor PM2.5 Sources and Exposures in Inner-City Schools. Environ. Int. 2019, 131, 104968. [Google Scholar] [CrossRef]
- Rivas, I.; Basagaña, X.; Cirach, M.; López-Vicente, M.; Suades-González, E.; Garcia-Esteban, R.; Álvarez-Pedrerol, M.; Dadvand, P.; Sunyer, J. Association between Early Life Exposure to Air Pollution and Working Memory and Attention. Environ. Health Perspect. 2019, 127. [Google Scholar] [CrossRef]
- Gupta, P.; Satsangi, M.; Satsangi, G.P.; Jangid, A.; Liu, Y.; Pani, S.K.; Kumar, R. Exposure to Respirable and Fine Dust Particle over North-Central India: Chemical Characterization, Source Interpretation, and Health Risk Analysis. Environ. Geochem. Health 2020, 42, 2081–2099. [Google Scholar] [CrossRef]
- Argyraki, A. Garden Soil and House Dust as Exposure Media for Lead Uptake in the Mining Village of Stratoni, Greece. Environ. Geochem Health 2014, 36, 677–692. [Google Scholar] [CrossRef]
- Marinho Reis, A.P.; Cave, M.; Sousa, A.J.; Wragg, J.; Rangel, M.J.; Oliveira, A.R.; Patinha, C.; Rocha, F.; Orsiere, T.; Noack, Y. Lead and Zinc Concentrations in Household Dust and Toenails of the Residents (Estarreja, Portugal): A Source-Pathway-Fate Model. Environ. Sci. Process. Impacts 2018, 20, 1210–1224. [Google Scholar] [CrossRef]
- Plumejeaud, S.; Reis, A.P.; Tassistro, V.; Patinha, C.; Noack, Y.; Orsière, T. Potentially Harmful Elements in House Dust from Estarreja, Portugal: Characterization and Genotoxicity of the Bioaccessible Fraction. Environ. Geochem. Health 2018, 40, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Hejami, A.A.; Davis, M.; Prete, D.; Lu, J.; Wang, S. Heavy Metals in Indoor Settled Dusts in Toronto, Canada. Sci. Total Environ. 2020, 703, 134895. [Google Scholar] [CrossRef]
- Doyi, I.N.Y.; Isley, C.F.; Soltani, N.S.; Taylor, M.P. Human Exposure and Risk Associated with Trace Element Concentrations in Indoor Dust from Australian Homes. Environ. Int. 2019, 133, 105125. [Google Scholar] [CrossRef] [PubMed]
- Miler, M.; Gosar, M. Assessment of Contribution of Metal Pollution Sources to Attic and Household Dust in Pb-Polluted Area. Indoor Air 2019, 29, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Fubini, B.; Fenoglio, I. Toxic Potential of Mineral Dusts. Elements 2007, 3, 407–414. [Google Scholar] [CrossRef]
- Reis, A.P.; Patinha, C.; Wragg, J.; Dias, A.C.; Cave, M.; Sousa, A.J.; Batista, M.J.; Prazeres, C.; Costa, C.; Ferreira da Silva, E.; et al. Urban Geochemistry of Lead in Gardens, Playgrounds and Schoolyards of Lisbon, Portugal: Assessing Exposure and Risk to Human Health. Appl. Geochem. 2014, 44, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Candeias, C.; Da Silva, E.F.; Ávila, P.F.; Teixeira, J.P. Identifying Sources and Assessing Potential Risk of Exposure to Heavy Metals and Hazardous Materials in Mining Areas: The Case Study of Panasqueira Mine (Central Portugal) as an Example. Geosciences 2014, 4, 240–268. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.P.; Patinha, C.; Noack, Y.; Robert, S.; Dias, A.C.; Ferreira da Silva, E. Assessing the Human Health Risk for Aluminium, Zinc and Lead in Outdoor Dusts Collected in Recreational Sites Used by Children at an Industrial Area in the Western Part of the Bassin Minier de Provence, France. J. Afr. Earth Sci. 2014, 99, 724–734. [Google Scholar] [CrossRef]
- Souza, E.D.; Texeira, R.; Cardoso da Costa, H.; Oliveira, F.; Melo, L.; Faial, K.; Fernandes, A. Assessment of Risk to Human Health from Simultaneous Exposure to Multiple Contaminants in an Artisanal Gold Mine in Serra Pelada, Pará, Brazil. Sci. Total Environ. 2017, 576, 683–695. [Google Scholar] [CrossRef]
- Candeias, C.; Vicente, E.; Tomé, M.; Rocha, F.; Ávila, P.; Alves, C. Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks. Int. J. Environ. Res. Public Health 2020, 17, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comissão de Coordenação e Desenvolvimento Regional do Centro (CCDR). DATACENTRO. Informação para a Região. Available online: http://datacentro.ccdrc.pt/ (accessed on 21 October 2019).
- Teixeira, C.; Assunção, C.F.T. Mapa Geológico, Folha 13C; Instituto Geográfico e Cadastral: Lisboa, Portugal, 1963. (In Portuguese)
- Costa, C.; Jesus-Rydin, C. Site Investigation on Heavy Metals Contaminated Ground in Estarreja-Portugal. Eng. Geol. 2001, 60, 39–47. [Google Scholar] [CrossRef]
- Reis, A.P.; Costa, S.; Santos, I.; Patinha, C.; Noack, Y.; Wragg, J.; Cave, M.; Sousa, A.J. Investigating Relationships between Biomarkers of Exposure and Environmental Copper and Manganese Levels in House Dusts from a Portuguese Industrial City. Environ. Geochem. Health 2015, 37, 725–744. [Google Scholar] [CrossRef]
- Nowak, S.; Lafon, S.; Caquineau, S.; Journet, E.; Laurent, B. Quantitative Study of the Mineralogical Composition of Mineral Dust Aerosols by X-ray Diffraction. Talanta 2018, 186, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Caquineau, S.; Cao, J.; Zhang, X.; Han, Y.; Gaudichet, A.; Gomes, L. Mineralogical Characteristics of Soil Dust from Source Regions in Northern China. Particuology 2009, 7, 507–512. [Google Scholar] [CrossRef]
- Denys, S.; Caboche, J.; Tack, K.; Rychen, G.; Wragg, J.; Cave, M.; Jondreville, C.; Feidt, C. In Vivo Validation of the UniFied BARGE Method to Assess the Bioaccessibility of Arsenic, Antimony, Cadmium, and Lead in Soils. Environ. Sci. Technol. 2012, 46, 6252–6260. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.P.; Patinha, C.; Wragg, J.; Dias, A.C.; Cave, M.; Sousa, A.J.; Costa, C.; Cachada, A.; Ferreira da Silva, E.; Rocha, F.; et al. Geochemistry, Mineralogy, Solid-Phase Fractionation and Oral Bioaccessibility of Lead in Urban Soils of Lisbon. Environ. Geochem. Health 2014, 36, 867–881. [Google Scholar] [CrossRef] [Green Version]
- Ettler, V.; Štěpánek, D.; Mihaljevič, M.; Drahota, P.; Jedlicka, R.; Kříbek, B.; Vaněk, A.; Penížek, V.; Sracek, O.; Nyambe, I. Slag Dusts from Kabwe (Zambia): Contaminant Mineralogy and Oral Bioaccessibility. Chemosphere 2020, 260, 127642. [Google Scholar] [CrossRef]
- Cave, M.R.; Milodowski, A.E.; Friel, E.N. Evaluation of a Method for Identification of Host Physico-Chemical Phases for Trace Metals and Measurement of Their Solid-Phase Partitioning in Soil Samples by Nitric Acid Extraction and Chemometric Mixture Resolution. Geochem. Explor. Environ. Anal. 2004, 4, 71–86. [Google Scholar] [CrossRef]
- Cave, M.; Wragg, J.; Gowing, C.; Gardner, A. Measuring the Solid-Phase Fractionation of Lead in Urban and Rural Soils Using a Combination of Geochemical Survey Data and Chemical Extractions. Environ. Geochem. Health 2015, 37, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Amaibi, P.M.; Entwistle, J.A.; Kennedy, N.; Cave, M.; Kemp, S.J.; Potgieter-vermaak, S.; Dean, J.R. Mineralogy, Solid-Phase Fractionation and Chemical Extraction to Assess the Mobility and Availability of Arsenic in an Urban Environment. Appl. Geochem. 2019, 100, 244–257. [Google Scholar] [CrossRef]
- Cave, M.R.; Rosende, M.; Mounteney, I.; Gardner, A.; Miró, M. New Insights into the Reliability of Automatic Dynamic Methods for Oral Bioaccessibility Testing: A Case Study for BGS102 Soil. Environ. Sci. Technol. 2016, 50, 9479–9486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, N.; Cocerva, T.; Cipullo, S.; Padoan, E.; Antonella, G.; Ajmone-marsan, F.; Fiona, S.; Coulon, F.; Antonio, D.; Luca, D. Linking Oral Bioaccessibility and Solid Phase Distribution of Potentially Toxic Elements in Extractive Waste and Soil from an Abandoned Mine Site: Case Study in Campello Monti, NW Italy. Sci. Total Environ. 2019, 651, 2799–2810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, S.; Goonetilleke, A.; Khalil, W.A.S.; Frost, R. Assessment via Discriminant Analysis of Soil Suitability for Effluent Renovation Using Undisturbed Soil Columns. Geoderma 2006, 131, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Scott, P.K.; Unice, K.M.; Williams, S.; Panko, J.M. Statistical Evaluation of Metal Concentrations as a Method for Identifying World Trade Center Dust in Buildings. Environ. Forensics 2007, 8, 301–311. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Marinho-Reis, A.P.; Almeida, A.; Freitas, S.; Simões, M.R.; Diniz, M.L.; Pinto, E.; Ramos, P.; Ferreira da Silva, E.; Moreira, P.I. Fingernail Trace Element Content in Environmentally Exposed Individuals and Its Influence on Their Cognitive Status in Ageing. Exposure Health 2018, 11, 181–194. [Google Scholar] [CrossRef]
- Johnston, R.J. Multivariate Statistical Analysis in Geography: A Primer on the General Linear Model, 1st ed.; Longman: New York, NY, USA, 1980; pp. 224–252. [Google Scholar]
- US Environmental Protection Agency (US EPA). Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; National Center for Environmental Assessment: Washington, DC, USA, 2011. Available online: http://www.epa.gov/ncea/efh (accessed on 13 August 2020).
- US Environmental Protection Agency (US EPA). Guidelines for Exposure Assessment; EPA/600/Z-92/001; National Center for Environmental Assessment: Washington, DC, USA, 1992. Available online: https://www.epa.gov/sites/production/files/2014-11/documents/guidelines_exp_assessment.pdf (accessed on 13 August 2020).
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the Potential Health Risks Associated with the Aluminium, Arsenic, Cadmium and Lead Content in Selected Fruits and Vegetables Grown in Jamaica. Toxicol. Rep. 2017, 4, 181–187. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (US EPA). Provisional Peer Reviewed Toxicity Values for Cobalt (CASRN 7440-48-4). National Center for Environmental Assessment, Cincinnati, EPA/690/R-08/008F Final. Available online: https://cfpub.epa.gov/ncea/pprtv/documents/Cobalt.pdf (accessed on 24 August 2020).
- Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological Profile for Copper. U.S. Department of Health and Human Services. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp132.pdf (accessed on 28 August 2020).
- Bodaghpour, S.; Biglarijoo, N.; Ahmadi, S. A Review on the Existence of Chrome in Cement and Environmental Remedies to Control Its Effects. Int. J. Geol. 2012, 6, 62–67. [Google Scholar]
- Wragg, J.; Cave, M. Assessment of a Geochemical Extraction Procedure to Determine the Solid Phase Fractionation and Bioaccessibility of Potentially Harmful Elements in Soils: A Case Study Using the NIST 2710 Reference Soil. Anal. Chim. Acta 2012, 722, 43–54. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Massey, D.D.; Masih, J.; Taneja, A. Source Characterization of Trace Elements in Indoor Environments at Urban, Rural and Roadside Sites in a Semi-Arid Region of India. Aerosol Air Qual. Res. 2014, 14, 1738–1751. [Google Scholar] [CrossRef] [Green Version]
- Najmeddin, A.; Moore, F.; Keshavarzi, B.; Sadegh, Z. Pollution, Source Apportionment and Health Risk of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust of Mashhad, the Second Largest City of Iran. J. Geochem. Explor. 2018, 190, 154–169. [Google Scholar] [CrossRef]
- Zannoni, D.; Valotto, G.; Visin, F.; Rampazzo, G. Sources and Distribution of Tracer Elements in Road Dust: The Venice Mainland Case of Study. J. Geochem. Explor. 2016, 166, 64–72. [Google Scholar] [CrossRef]
- Barrón, V.; Torrent, J. Iron, Manganese and Aluminium Oxides and Oxyhydroxides. Eur. Mineral. Union Notes Mineral. 2013, 14, 297–336. [Google Scholar] [CrossRef]
- Katra, I.; Gross, A.; Swet, N.; Tanner, S.; Krasnov, H.; Angert, A. Substantial Dust Loss of Bioavailable Phosphorus from Agricultural Soils. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Hart, S.C.; Turner, B.L.; Hu, Y.; Meng, Y.; Zhu, M. Aeolian Dust Deposition and the Perturbation of Phosphorus Transformations during Long-Term Ecosystem Development in a Cool, Semi-Arid Environment. Geochim. Cosmochim. Acta 2019, 246, 498–514. [Google Scholar] [CrossRef]
- Goldberg, S.; Davis, J.A.; Hem, J.D. The surface chemistry of aluminium oxides and hydroxides. In The Environmental Chemistry Aluminium, 2nd ed.; Sposito, G., Ed.; CRC: Boca Raton, FL, USA, 1996; pp. 271–331. [Google Scholar]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and Bioavailability of Heavy Metals and Metalloids in Soil Environments. J. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef] [Green Version]
- Scheinost, A.C.; Kretzschmar, R.; Pfister, S.; Roberts, D.R. Combining Selective Sequential Extractions, X-ray Absorption Spectroscopy, and Principal Component Analysis for Quantitative Zinc Speciation in Soil. Environ. Sci. Technol. 2002, 36, 5021–5028. [Google Scholar] [CrossRef] [PubMed]
- Diesing, W.E.; Sinaj, S.; Sarret, G.; Manceau, A.; Flura, T.; Demaria, P.; Siegenthaler, A.; Sappin-Didier, V.; Frossard, E. Zinc Speciation and Isotopic Exchangeability in Soils Polluted with Heavy Metals. Eur. J. Soil Sci. 2008, 59, 716–729. [Google Scholar] [CrossRef] [Green Version]
- Patinha, C.; Reis, A.P.; Dias, A.C.; Abduljelil, A.A.; Noack, Y.; Robert, S.; Cave, M.; Ferreira da Silva, E. The Mobility and Human Oral Bioaccessibility of Zn and Pb in Urban Dusts of Estarreja (N Portugal). Environ. Geochem. Health 2015, 37, 115–131. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Argyraki, A. Geochemical Associations for Evaluating the Availability of Potentially Harmful Elements in Urban Soils: Lessons Learnt from Athens, Greece. Appl. Geochem. 2015, 59, 63–73. [Google Scholar] [CrossRef]
- Beauchemin, S.; Rasmussen, P.E.; Mackinnon, T.; Che, M.; Boros, K. Zinc in House Dust: Speciation, Bioaccessibility, and Impact of Humidity. Environ. Sci. Technol. 2014, 48, 9022–9029. [Google Scholar] [CrossRef] [PubMed]
- White, M.L. The Occurrence of Zinc in Soil. Econ. Geol. 1957, 52, 645–651. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N. Zinc Forms in Soils (Review of Publications). Eurasian Soil Sci. 2010, 43, 269–277. [Google Scholar] [CrossRef]
- Inácio, M.; Neves, O.; Pereira, V.; Ferreira, E. Levels of Selected Potential Harmful Elements (PHEs) in Soils and Vegetables Used in Diet of the Population Living in the Surroundings of the Estarreja Chemical Complex (Portugal). Appl. Geochem. 2014, 44, 38–44. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Marinho-Reis, A.P.; Almeida, A.; Ordens, C.M.; Silva, M.M.V.G.; Freitas, S.; Simões, M.R.; Moreira, P.I.; Dinis, P.A.; Diniz, M.L.; et al. Human Predisposition to Cognitive Impairment and Its Relation with Environmental Exposure to Potentially Toxic Elements. Environ. Geochem. Health 2018, 40, 1767–1784. [Google Scholar] [CrossRef]
- Appleton, J.D.; Cave, M.R.; Palumbo-Roe, B.; Wragg, J. Lead Bioaccessibility in Topsoils from Lead Mineralisation and Urban Domains, UK. Environ. Pollut. 2013, 178, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Boisa, N.; Bird, G.; Brewer, P.A.; Dean, J.R.; Entwistle, J.A.; Kemp, S.J.; Macklin, M.G. Potentially Harmful Elements (PHEs) in Scalp Hair, Soil and Metallurgical Wastes in Mitrovica, Kosovo: The Role of Oral Bioaccessibility and Mineralogy in Human PHE Exposure. Environ. Int. 2013, 60, 56–70. [Google Scholar] [CrossRef]
- Reis, A.P.; Patinha, C.; Noack, Y.; Robert, S.; Dias, A.C. Assessing Human Exposure to Aluminium, Chromium and Vanadium through Outdoor Dust Ingestion in the Bassin Minier de Provence, France. Environ. Geochem. Health 2014, 36, 303–317. [Google Scholar] [CrossRef]
- Ibanez, Y.; Bot, B.; Le, G.P. House-Dust Metal Content and Bioaccessibility: A Review. Eur. J. Miner. 2010, 22, 629–637. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Beauchemin, S.; Nugent, M.; Dugandzic, R.; Lanouette, M.; Chénier, M. Influence of Matrix Composition on the Bioaccessibility of Copper, Zinc, and Nickel in Urban Residential Dust and Soil. Hum. Ecol. Risk Assess. 2008, 14, 351–371. [Google Scholar] [CrossRef]
- Turner, A.; Ip, K. Bioaccessibility of Metals in Dust from the Indoor Environment: Application of a Physiologically Based Extraction Test. Environ. Sci. Technol. 2007, 41, 7851–7856. [Google Scholar] [CrossRef] [PubMed]
- Boros, K.; Fortin, D.; Jayawardene, I.; Chénier, M.; Levesque, C.; Rasmussen, P.E. Comparison of Gastric versus Gastrointestinal PBET Extractions for Estimating Oral Bioaccessibility of Metals in House Dust. Int. J. Environ. Res. Public Health 2017, 14, 92. [Google Scholar] [CrossRef] [PubMed]
- Wojcieszek, J.; Witko, K.; Ruzik, L.; Pawlak, K. Comparison of Copper and Zinc in Vitro Bioaccessibility from Cyanobacteria Rich in Proteins and a Synthetic Supplement Containing Gluconate Complexes: LC–MS Mapping of Bioaccessible Copper Complexes. Anal. Bioanal. Chem. 2016, 408, 785–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, K.; Cave, M.; Li, H.B.; Ma, L.Q. Lead Bioaccessibility in 12 Contaminated Soils from China: Correlation to Lead Relative Bioavailability and Lead in Different Fractions. J. Hazard Mater. 2015, 295, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Li, H.B.; Li, J.; Zhu, Y.G.; Juhasz, A.L.; Ma, L.Q. Comparison of Arsenic Bioaccessibility in Housedust and Contaminated Soils Based on Four in Vitro Assays. Sci. Total Environ. 2015, 532, 803–811. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Zhao, D.; Li, J.; Li, S.; Xiang, P.; Juhasz, A.L.; Ma, L.Q.; Arsenic, L. Cadmium Bioaccessibility in Contaminated Soils: Measurements and Validations. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1303–1338. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef]
- Caito, S.; Michael, A. Neurotoxicity of metals. In Handbook of Clinical Neurology; Marcello, L., Margit, L.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 131, pp. 169–189. [Google Scholar] [CrossRef]
- Nigra, A.E.; Ruiz-Hernandez, A.; Redon, J.; Navas-Acien, A.; Tellez-Plaza, M. Environmental Metals and Cardiovascular Disease in Adults: A Systematic Review beyond Lead and Cadmium. Curr. Environ. Health Rep. 2016, 3, 416–433. [Google Scholar] [CrossRef]
House Dust | N | Q | F | P | Mi | Ca |
---|---|---|---|---|---|---|
INDOOR | 15 | 28 | 14 | 15 | 3 | 37 |
OUTDOOR | 17 | 37 | 17 | 19 | 8 | 17 |
Indoor Dust | Outdoor Dust | Total | |
---|---|---|---|
Indoor dust | 19 | 0 | 19 |
Outdoor dust | 1 | 17 | 18 |
Samples 1IN+2IN+8IN | |||
---|---|---|---|
Component | Composition | Geochemical Assignment | Profile |
1 | Na-S-K | Water soluble | Ca |
2 | Ca-K-Na-Mg | Exchangeable | P, Si, Al |
3 | Ca | Carbonate | Mg, P |
4 | Al | Al-dominated | Fe, Zn, P |
5 | Ca-Si | Clay related | Al, Mg, Zn |
6 | Fe-Al | Fe oxy-hydroxides | Si-S |
7 | Fe | Fe oxides | Al, S |
Sample 12IN | |||
Component | Composition | Geochemical Assignment | Profile |
1 | Na-K-S | Water soluble | Mg, Zn |
2 | Ca-Zn-K | Exchangeable | Mg, P |
3 | Ca | Carbonate I | Zn |
4 | Ca | Carbonate II | P, Si |
5 | Ca | Ca-dominated | Al, Fe, Zn |
6 | Fe-Al | Fe oxy-hydroxides | Si-S |
Location | Extraction Procedure | PTE | BAF (%) | Study |
---|---|---|---|---|
Estarreja, Portugal | UBM: stomach phase | Co | 38 | This study |
Cr | 22 | |||
Ni | 40 | |||
Cu | 30 | |||
Zn | 84 | |||
Cd | 81 | |||
Sb | 13 | |||
Pb | 60 | |||
Plymouth, UK | Physiologically Based Extraction Technique (PBET): stomach phase | Cd | 75 | Turner & Ip (2007) [69] |
Co | 15 | |||
Cr | 10 | |||
Cu | 15 | |||
Ni | 20 | |||
Zn | 80 | |||
Ottawa, Canada | European Standard Toy Safety Protocol (EN-71 1995), modified | Cu | 43 | Rasmussen et al. (2008) [68] |
Ni | 39 | |||
Zn | 65 | |||
Montreal, Canada | Physiologically Based Extraction Technique (PBET): stomach phase | Zn | 77 | Boros et al. (2017) [71] |
Pb | 50 | |||
Cd | 70 | |||
Cu | 34 | |||
Ni | 29 |
PTE | HQchildren | HQadults | HIchildren | HIadults |
---|---|---|---|---|
Co | 0.45 | 0.20 | - | - |
Cu | 0.51 | 0.22 | - | - |
Pb | 3.39 | 1.47 | - | - |
Sb | 0.15 | 0.06 | - | - |
Cd | 0.05 | 0.02 | - | - |
Cr | 0.34 | 0.15 | ||
Ni | 0.09 | 0.04 | ||
Zn | 0.25 | 0.11 | ||
∑ | - | - | 5.22 | 2.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinho-Reis, A.P.; Costa, C.; Rocha, F.; Cave, M.; Wragg, J.; Valente, T.; Sequeira-Braga, A.; Noack, Y. Biogeochemistry of Household Dust Samples Collected from Private Homes of a Portuguese Industrial City. Geosciences 2020, 10, 392. https://doi.org/10.3390/geosciences10100392
Marinho-Reis AP, Costa C, Rocha F, Cave M, Wragg J, Valente T, Sequeira-Braga A, Noack Y. Biogeochemistry of Household Dust Samples Collected from Private Homes of a Portuguese Industrial City. Geosciences. 2020; 10(10):392. https://doi.org/10.3390/geosciences10100392
Chicago/Turabian StyleMarinho-Reis, Amélia P., Cristiana Costa, Fernando Rocha, Mark Cave, Joanna Wragg, Teresa Valente, Amália Sequeira-Braga, and Yves Noack. 2020. "Biogeochemistry of Household Dust Samples Collected from Private Homes of a Portuguese Industrial City" Geosciences 10, no. 10: 392. https://doi.org/10.3390/geosciences10100392
APA StyleMarinho-Reis, A. P., Costa, C., Rocha, F., Cave, M., Wragg, J., Valente, T., Sequeira-Braga, A., & Noack, Y. (2020). Biogeochemistry of Household Dust Samples Collected from Private Homes of a Portuguese Industrial City. Geosciences, 10(10), 392. https://doi.org/10.3390/geosciences10100392