The Effect of Group Composition and Mineral Supplementation during Rearing on Measures of Cartilage Condition and Bone Mineral Density in Replacement Gilts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Locomotory Ability
3.2. Areal Bone Mineral Density (aBMD)
3.3. Cartilage Surface Lesions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anil, S.S.; Anil, L.; Deen, J.; Baidoo, S.K.; Walker, R.D. Factors associated with claw lesions in gestating sows. J. Swine Health Prod. 2007, 15, 78–83. [Google Scholar]
- Engblom, L.; Lundeheim, N.; Dalin, A.; Andersson, K. Sow removal in Swedish commercial herds. Livest. Sci. 2007, 106, 76–86. [Google Scholar] [CrossRef]
- Jensen, T.B.; Bonde, M.K.; Kongsted, A.G.; Toft, N.; Sørensen, J.T. The inter relationships between clinical signs and their effect on involuntary culling among pregnant sows in group housing systems. Animal 2010, 11, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Lucia, T.; Dial, G.D.; Marsh, W.E. Lifetime reproductive performance in female pigs having distinct reasons for removal. Livest. Sci. 2000, 63, 213–222. [Google Scholar] [CrossRef]
- KilBride, A.L.; Gillman, C.E.; Green, L.E. A cross-sectional study of the prevalence of lameness in finishing pigs, gilts and pregnant sows and associations with limb lesions and floor types on commercial farms in England. Anim. Welf. 2009, 18, 215–224. [Google Scholar]
- Willgert, K.J.E.; Brewster, V.; Wright, A.J.; Nevel, A. Risk factors of lameness in sows in England. Prev. Vet. Med. 2014, 113, 268–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, A.J. Limb Health in Pigs: The Prevalence and Risk Factors for Lameness, Limb Lesions and Claw Lesions in Pigs, and the Influence of Gilt Nutrition on Indicators of Limb Health. Ph.D. Thesis, University of Warwick, Coventry, UK, August 2014. [Google Scholar]
- Quinn, A.J.; Green, L.E.; Lawlor, P.G.; Boyle, L.A. The effect of feeding a diet formulated for developing gilts between 70kg and~140kg on lameness indicators and carcass traits. Livest. Sci. 2015, 174, 87–95. [Google Scholar] [CrossRef]
- Boyle, L.; Björklund, L. Effects of fattening boars in mixed or single sex groups and split marketing on pig welfare. Anim. Welf. 2007, 16, 259–262. [Google Scholar]
- O’Driscoll, K.; O’Gorman, D.M.; Taylor, S.; Boyle, L.A. The influence of a magnesium-rich marine extract on behaviour, salivary cortisol levels and skin lesions in growing pigs. Animal 2013, 7, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, D.L.; Boyle, L.A. A comparison of the impact of behaviors performed by entire male and female pigs prior to slaughter on skin lesion scores of the carcass. Livest. Sci. 2014, 170, 142–149. [Google Scholar] [CrossRef]
- Andersson, H.K.; Andersson, K.; Zamaratskaia, G.; Rydhmer, L.; Chen, G.; Lundstrom, K. Effect of single-sex or mixed rearing and live weight on performance, technological meat quality and sexual maturity in entire male and female pigs fed raw potato starch. Acta Agric. Scand. Sect. A 2005, 55, 80–90. [Google Scholar]
- Levis, D.G.; Vernon, D.L.; Rozeboom, D.W. Development of gilts and boars for efficient reproduction. In Pork Industry Handbook; Digital Commons, University of Nebraska: Lincoln, NE, USA,, 2005; Volume 5, pp. 1–8. [Google Scholar]
- Gill, B.P.; Taylor, L. The Nutritional Management of Gilts to Enhance Lifetime Productivity: Second Progress Report on the Stotfold Gilt Trial—Body Composition and First Litter Performance; Pig Society of Feed Technologists: Coventry, UK, 1999; Volume 2, p. 14. [Google Scholar]
- Knauer, M.T.; Cassady, J.P.; Newcom, D.W.; See, M.T. Gilt development traits associated with genetic line, diet and fertility. Livest. Sci. 2012, 148, 159–167. [Google Scholar] [CrossRef]
- NRC. Nutritional Requirement of Swine, 11th Revised ed.; National Academy 146 Press: Washington, DC, USA, 2012; pp. 2–5. [Google Scholar]
- Ferket, P.; Oviedo-Rondon, E.; Mente, P.; Bohorquez, D.; Santos, A.; Grimes, J.; Richards, J.; Dibner, J.; Felts, V. Organic trace minerals and 25-hydroxycholcalciferol affect performance characteristics, leg abnormalities and biomechanical properties of leg bones of turkeys. Poult. Sci. 2009, 88, 118–131. [Google Scholar] [PubMed]
- Mohammadima, A. The role of trace minerals in bovine claw quality and lameness. Iran. J. Vet. Surg. 2008, 2, 133–140. [Google Scholar]
- Tomlinson, D.; Socha, M.; DeFrain, J. Role of trace minerals in the immune system. In Proceedings of the Penn State Dairy Cattle Nutrition Workshop, Grantville, PA, USA, 2008; pp. 39–52. [Google Scholar]
- van Riet, M.M.J.; Millet, S.; Aluwe, M.; Jansens, G.P.J. Impact of nutrition on lameness and claw health in sows. Livest. Sci. 2013, 156, 24–35. [Google Scholar] [CrossRef]
- Tomlinson, D.; Mulling, C.; Fakler, T. Formation of keratins in the bovine claw: Role of hormones, minerals and vitamins in functional claw integrity. J. Dairy Sci. 2004, 87, 797–809. [Google Scholar] [CrossRef]
- Nair, S.; Anil, S. Epidemiology of Lameness in Breeding Female Pigs. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2011; p. 113. [Google Scholar]
- Calderon-Diaz, J.; Fahey, A.G.; KilBride, A.L.; Green, L.E.; Boyle, L.A. Longitudinal study of the effect of rubber slat mats on locomotory ability, body, limb and claw lesions, and dirtiness of group housed sows. J. Anim. Sci. 2013, 91, 3940–3954. [Google Scholar] [CrossRef] [PubMed]
- Fabà, L.; Gasa, J.; Tokach, M.D.; Varella, E.; Solà-Oriol, D. Effects of supplementing organic microminerals and methionine during the rearing phase of replacement gilts on lameness, growth, and body composition. J. Anim. Sci. 2018, 96, 3274–3287. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.; Scholz, A.; Pursel, V. Total body and regional measurements of bone mineral content and bone mineral density in pigs by dual energy X-ray absorptiometry. J. Anim. Sci. 2001, 79, 2594–2604. [Google Scholar] [CrossRef] [PubMed]
- Thorup, V.; Tøgersen, F.; Jorgensen, B.; Jense, B. Biomechanical gait analysis of pigs walking on solid concrete floor. Animal 2007, 1, 708–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheneck, S.; McMunn, K.; Rosenstein, D.; Stroshine, R.; Nielsen, B.; Richert, B.; Merchant-Forde, J.; Lay, D. Exercising stall-housed gestating gilts: Effects on lameness, the musculo-skeletal system, production and behaviour. J. Anim. Sci. 2008, 86, 3166–3180. [Google Scholar] [CrossRef] [PubMed]
- Kornegay, E.T.; Thomas, H.R.; Baker, J.L. Phosphorus in swine. IV. Influence of dietary calcium and phosphorus and protein levels on feedlot performance, serum minerals, bone development and soundness scores in boars. J. Anim. Sci. 1981, 52, 1070–1084. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.D.; Cromwell, G.L.; Stahly, T.S. Effects of dietary calcium, phosphorus, calcium: Phosphorus ratio and vitamin K on performance, bone strength and blood clotting status of pigs. J. Anim. Sci. 1991, 69, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.T.; Rozeboom, D.W.; Hill, G.M.; Orth, M.W.; Rosenstein, D.S.; Link, J.E. Impact of supplement withdrawal and wheat middling inclusion on bone metabolism, bone strength, and the incidence of bone fractures occurring at slaughter in pigs. J. Anim. Sci. 2006, 84, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Eklou-Kalonji, E.; Zerath, E.; Colin, C.; Lacroix, C.; Holy, X.; Denis, I.; Pointillart, A. Calcium-regulating hormones, bone mineral content, breaking load and trabecular remodeling are altered in growing pigs fed calcium-deficient diets. J. Nutr. 1999, 129, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.M.; Callan, J.J.; Cowan, D.; McGrane, M.; O’Doherty, J.V. Effect of two microbial phytases on the performance and nutrient retention on grower-finisher pigs fed barley-maize-soyabean meal-based diets. Ir. J. Agric. Food Res. 2003, 42, 101–117. [Google Scholar]
- Varley, P.F.; Lynch, P.B.; Callan, J.J.; O’Doherty, J.V. Effect of phytase concentration in a low phosphorus weaner pig diet and its subsequent effect on bone development in the finished pig. Livest. Sci. 2010, 134, 218–220. [Google Scholar] [CrossRef]
- Varley, P.F.; Callan, J.J.; O’doherty, J.V. Effect of dietary phosphorus and calcium level and phytase addition on performance, bone parameters, apparent nutrient digestibility, mineral and nitrogen utilization of weaner pigs and the subsequent effect on finisher pig bone parameters. Anim. Feed Sci. Technol. 2011, 165, 201–209. [Google Scholar] [CrossRef]
- Garg, M.K.; Kharb, S. Dual energy X-ray absorptiometry: Pitfalls in measurement and interpretation of bone mineral density. Indian J. Endocrinol. Metab. 2013, 17, 203–210. [Google Scholar] [CrossRef]
- Crenshaw, T.; Schneider, D.; Carlson, C.; Parker, J.; Sonderman, J.; Ward, T.; Wilson, M. Tissue mineral concentration and osteochondrosis lesions in prolific sows across parities 0 through 7. J. Anim. Sci. 2013, 91, 1255–1269. [Google Scholar] [CrossRef]
- Margulies, J.; Simkin, A.; Leichter, I.; Bivas, A.; Steinberg, R.; Giladi, M.; Stein, M.; Kashtan, H.; Milgrom, C. Effect of intense physical activity on the bone-mineral content in the lower limbs of young adults. J. Bone Jt. Surg. 1986, 68, 1090–1093. [Google Scholar] [CrossRef]
- Greene, D.; Naughton, G.; Briody, J.; Kemp, A.; Woodhead, H.; Corrigan, L. Bone strength index in adolescent girls: Does physical activity make a difference? Br. J. Sports Med. 2005, 39, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Burr, D.; Robling, A.; Turner, C. Effects of Biomechanical Stress on Bones in Animals. Bone 2002, 30, 781–786. [Google Scholar] [CrossRef]
- Lepeule, J.; Bareillea, N.; Robert, C.; Ezanno, P.; Valette, J.; Jacquet, S.; Blanchard, G.; Denoix, J.; Seegers, H. Association of growth, feeding practices and exercise conditions with the prevalence of Developmental Orthopaedic Disease in limbs of French foals at weaning. Prev. Vet. Med. 2009, 89, 167–177. [Google Scholar] [CrossRef]
- Hartnett, P.; Boyle, L.; Younge, B.; O’Driscoll, K. 2019; in preparation.
- Stavrakakis, S. Biomechanical Studies of Locomotion in Pigs. Ph.D. Thesis, Newcastle University, Newcastle, UK, May 2014. [Google Scholar]
- Grondalen, T.; Vangen, O. Osteochondrosis and arthrosis in pigs. V. A comparison of the incidence in three different lines of the Norwegian Landrace breed. Acta Vet. Scand. 1974, 15, 61–79. [Google Scholar]
- Nakano, T.; Brennan, J.; Aherne, F. Leg weaknesses and osteochondrosis in swine: A review. Can. J. Anim. Sci. 1987, 67, 883–901. [Google Scholar] [CrossRef]
- Gjein, H.; Larssen, R. The effect of claw lesions and claw infections on lameness in loose housing of pregnant sows. Acta Vet. Scand. 1995, 36, 451–459. [Google Scholar]
- Pluym, L.; Van Nuffel, A.; Dewulf, J.; Cools, A.; Vangroenweghe, F.; Van Hoorebeke, S.; Maes, D. Prevalence and risk factors of claw lesions and lameness in pregnant sows in two types of group housing. Vet. Med.-Czech 2011, 56, 101–109. [Google Scholar] [CrossRef]
- Engblom, L.; Eliasson-Selling, L.; Lundeheim, N.; Belák, K.; Andersson, K.; Dalin, A. Post mortem findings in sows and gilts euthanized or found dead in a large Swedish herd. Acta Vet. Scand. 2008, 50, 25. [Google Scholar] [CrossRef]
- Kirk, R.; Svensmark, B.; Ellegaard, L.; Jensen, H. Locomotive disorders associated with sow mortality in Danish pig herds. J. Vet. Med. 2005, 52, 423–428. [Google Scholar] [CrossRef]
- Nalon, E.; Conte, S.; Maes, D.; Tuyttens, F.; Devillers, N. Assessment of lameness and claw lesions in sows. Livest. Sci. 2013, 156, 10–23. [Google Scholar] [CrossRef]
- Dewey, C. Diseases of the nervous and locomotary systems. In Diseases of Swine; Straw, B., Zimmerman, J., D’Allaire, S., Taylor, D., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2006; Volume 9, p. 1153. [Google Scholar]
- Muirhead, M.; Alexander, T. Managing Pig Health and the Treatment of Disease: A Reference from the Farm; Alexander, T., Ed.; 5M Enterprises: Sheffield, UK, 2002; Volume 2, p. 608. [Google Scholar]
- Vahle, J.; Ma, Y.; Burr, D. Chapter 32—Skeletal Assessments in the Nonhuman Primate. In The Nonhuman Primate in Nonclinical Drug Development and Safety Assessment; Schenck, E., Bluemel, J., Korte, S., Weinbauer, G., Eds.; Academic Press: Indianapolis, IN, USA, 2015; Volume 1, pp. 605–625. [Google Scholar]
- Jensen, T.B.; Baadsgaard, N.P.; Houe, H.; Toft, N.; Ostergaard, S. The effect of lameness treatments and treatments for other health disorders on the weight gain and feed conversion in boars at a Danish test station. Livest. Sci. 2007, 112, 34–42. [Google Scholar] [CrossRef]
- Jensen, T.; Toft, N. Causes of and predisposing risk factors for leg disorders in growing-finishing pigs. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Res. 2009, 4, 4. [Google Scholar] [CrossRef]
- de Koning, D.; van Grevenhof, E.; Laurenssen, B.; Ducro, B.; Heuven, H.; de Groot, P.; Hazeleger, W.; Kemp, B. Associations between osteochondrosis and conformation and locomotive characteristics in pigs. J. Anim. Sci. 2012, 90, 4752–4763. [Google Scholar] [CrossRef] [PubMed]
- Brennan, J.J.; Aherne, F.X. Effect of dietary calcium and phosphorus levels on performance, bone bending moment and the severity of osteochondrosis and lameness in boars and gilts slaughtered at 100 or 130kg body weight. Can. J. Anim. Sci. 1986, 66, 777–790. [Google Scholar] [CrossRef]
- Jorgensen, B. Effect of different energy and protein levels on leg weakness and osteochondrosis in pigs. Livest. Prod. Sci. 1995, 41, 171–181. [Google Scholar] [CrossRef]
- Jørgensen, B.; Arnbjerg, J.; Aaslyng, M. Pathological and radiological investigations on osteochondrosis in pigs, associated with leg weakness. J. Vet. Med. 1995, 42, 489–504. [Google Scholar] [CrossRef]
- Stern, S.; Lundeheim, N.; Johansson, K.; Andersson, K. Osteochondrosis and leg weakness in pigs selected for lean tissue growth rate. Livest. Prod. Sci. 1995, 44, 45–52. [Google Scholar] [CrossRef]
- Arnbjerg, J. Effect of a low-growth rate on the frequency of osteochondrosis in Danish Landrace pigs. Arch. Tierz. 2007, 1, 105–111. [Google Scholar]
- D’Allaire, S.; Stein, T.; Leman, A. Culling patterns in selected Minnesota swine breeding herd. Can. J. Vet. Res. 1987, 51, 506–512. [Google Scholar]
- Dewey, C.; Friendship, R.; Wilson, M. Clinical and post-mortem examination of sows culled for lameness. Can. Vet. J. 1993, 34, 555–556. [Google Scholar] [PubMed]
- Heinonen, M.; Oravainen, J.; Orro, T.; Seppä-Lassila, L.; Ala-Kurikka, E.; Virolainen, J.; Tast, A.; Peltoniemi, O. Lameness and fertility of sows and gilts in randomly selected loose-housed herds in Finland. Vet. Rec. 2006, 159, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Channon, A.; Walker, A.; Pfau, T.; Sheldon, I.; Wilson, A. Variability of Manson and Leaver locomotion scores assigned to dairy cows by different observers. Vet. Rec. 2009, 164, 388–392. [Google Scholar] [CrossRef] [PubMed]
- D’Eath, R. Repeated locomotion scoring of a sow herd to measure lameness: Consistency over time, the effect of sow characteristics and inter-observer reliability. Anim. Welf. 2012, 21, 219–231. [Google Scholar] [CrossRef]
- Main, D.; Clegg, J.; Spatz, A.; Green, L. Repeatability of lameness scoring system for finishing pigs. Vet. Rec. 2000, 147, 547–576. [Google Scholar] [CrossRef] [PubMed]
- Ytrehus, B.; Carlson, C.; Ekman, S. Etiology and pathogenesis of osteochondrosis. Vet. Pathol. 2007, 44, 429–448. [Google Scholar] [CrossRef]
- Kirk, R.; Jorgensen, B.; Jensen, H. The impact of elbow and knee joint lesions on abnormal gait and posture of sows. Acta Vet. Scand. 2008, 50, 5. [Google Scholar] [CrossRef]
Ingredients | CON | SUPP* |
---|---|---|
Barley | 50 | 50 |
Wheat | 33.50 | 33.38 |
Soybean (47%CP) | 12 | 12 |
Soya oil | 1 | 1 |
Lysine HCl | 0.4 | 0.4 |
dl-Methionine | 0.1 | 0.1 |
l-Threonine | 0.12 | 0.12 |
Premix a | 0.1 | 0.1 |
Availa®Sow b | 0 | 0.1 |
Phytase | 0 | 0 |
Salt feed grade | 0.5 | 0.5 |
Di-Calcium phosphate | 1.3 | 1.3 |
Limestone flour | 1 | 1 |
100.02 | 100.00 | |
Chemical composition | ||
Dry matter | 89.8 | 89.8 |
Crude protein | 15.56 | 15.56 |
Crude Fibre | 3.74 | 3.77 |
Total oil | 5.06 | 5.06 |
Ash | 4.48 | 4.48 |
Lysine | 0.969 | 0.969 |
Threonine | 0.639 | 0.639 |
Methionine | 0.337 | 0.337 |
Methionine and cysteine | 0.639 | 0.639 |
Tryptophan | 0.182 | 0.182 |
Calcium | 0.779 | 0.779 |
Phosphorous | 0.609 | 0.608 |
Digestible phosphorus | 0.280 | 0.280 |
Digestible energy (MJ of DE/kg)d | 13.50 | 13.49 |
NRC (mg/kg) 1 | Control (mg/kg) | SUPP (mg/kg) | Control % 2 | SUPP % 2 | |
---|---|---|---|---|---|
Mn | 25 | 25.1 | 51.45 | 101% | 206% |
Zn | 100 | 55.6 | 122.29 | 56% | 122% |
Cu | 10 | 4.5 | 17.89 | 45% | 179% |
Score | Description |
---|---|
0 | Even strides. Pig is able to accelerate and change direction rapidly |
1 | Pig appears stiff. Abnormal stride, which isn’t easily identified. Movements no longer fluid but pig still able to accelerate and change direction rapidly. Caudal swagger evident. |
2 | Uneven stride. Sensitivity while walking detected on at least one limb. Pig able to accelerate and change direction. Caudal swagger evident |
3 | Uneven stride, with a stagger. Minimum-weight bearing on affected limb. Slow to move. Obviously lame even to the untrained observer |
4 | Pig may not place affected limb on floor |
5 | Does not move |
Diet | Group Composition | |||
---|---|---|---|---|
CON | SUPP | MIX 1 | FEM | |
No. animals | 51 | 50 | 45 | 56 |
Cartilage damage | ||||
No. animals without OCD lesions | 35 | 39 | 31 | 43 |
Sum of cartilage scores | 88 | 103 | 82 | 109 |
OCD lesions | ||||
No. gilts with 1 area 2 | 10 | 11 | 10 | 11 |
No. gilts with 2 areas 2 | 3 | 0 | 1 | 2 |
No. gilts with 3 areas 2 | 3 | 0 | 3 | 0 |
Total no. gilts with OCD | 16 | 11 | 14 | 13 |
No. gilts with fractures | 2 | 3 | 4 | 1 |
Diet | Group Composition | Interactive Effect | |||||
---|---|---|---|---|---|---|---|
CON | SUPP | P-value | MIX 1 | FEM | P-value | P-value | |
No. animals | 51 | 51 | . | 46 | 56 | . | . |
Total * 2 | 7.21 ± 0.36 | 6.42 ± 0.36 | 0.12 | 7.39 ± 0.38 | 6.24 ± 0.34 | 0.03 | NS |
Thinnings 3 | 4 (2–5) | 4 (2–5) | 0.37 | 4 (3–5) | 3.5 (2–5) | 0.45 | 0.13 |
Invagination 3 | 2 (2–3) | 3 (2–4) | 0.60 | 3 (2–4) | 2 (1–3) | 0.27 | NS |
Overgrowth 4 | 17 | 8 | . | 13 | 12 | . | NS |
HC total 2 | 5.94 ± 0.39 | 5.48 ± 0.31 | 0.28 | 6.23 ± 0.33 | 5.19 ± 0.30 | 0.02 | NS |
HC thinnings 3 | 3 (2–4) | 3 (2–4) | 0.72 | 4 (2–5) | 3 (2–4) | 0.20 | 0.14 |
HC invagination 3 | 2 (1–3) | 2 (1–3) | 0.47 | 3 (2–3.5) | 2 (1–3) | 0.26 | NS |
HC overgrowth 4 | 12 | 7 | . | 10 | 9 | . | NS |
TN total 2 | 1.26 ± 0.16 | 0.94 ± 0.15 | 0.16 | 1.14 ± 0.16 | 1.06 ± 0.15 | 0.76 | NS |
TN thinnings 3 | 1 (0–1) | 1 (0–1) | 0.44 | 1 (0–1) | 1 (0–1) | 0.80 | NS |
TN invagination 3 | 0 (0–1) | 0 (0–0) | 0.52 | 0 (0–1) | 0 (0–0.5) | 0.79 | NS |
TN overgrowth 4 | 5 | 1 | . | 3 | 3 | . | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartnett, P.; Boyle, L.; Younge, B.; O’Driscoll, K. The Effect of Group Composition and Mineral Supplementation during Rearing on Measures of Cartilage Condition and Bone Mineral Density in Replacement Gilts. Animals 2019, 9, 637. https://doi.org/10.3390/ani9090637
Hartnett P, Boyle L, Younge B, O’Driscoll K. The Effect of Group Composition and Mineral Supplementation during Rearing on Measures of Cartilage Condition and Bone Mineral Density in Replacement Gilts. Animals. 2019; 9(9):637. https://doi.org/10.3390/ani9090637
Chicago/Turabian StyleHartnett, Phoebe, Laura Boyle, Bridget Younge, and Keelin O’Driscoll. 2019. "The Effect of Group Composition and Mineral Supplementation during Rearing on Measures of Cartilage Condition and Bone Mineral Density in Replacement Gilts" Animals 9, no. 9: 637. https://doi.org/10.3390/ani9090637
APA StyleHartnett, P., Boyle, L., Younge, B., & O’Driscoll, K. (2019). The Effect of Group Composition and Mineral Supplementation during Rearing on Measures of Cartilage Condition and Bone Mineral Density in Replacement Gilts. Animals, 9(9), 637. https://doi.org/10.3390/ani9090637