Extracellular Vesicles in the Blood of Dogs with Cancer—A Preliminary Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sample Collection and EV Isolation
2.3. Flow Cytometry and EV Enumeration
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Hematological Variables
3.3. Flow Cytometry Assessment of Blood Circulating EV in Dogs with Cancer
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APC | Allophycocyanin |
CLEC-2 | C-type Lectin-Like Receptor 2 |
COX-2 | Cyclooxygenase 2 |
ECTSMs | Ectosomes |
EVs | Extracellular Vesicles |
EXSMs | Exosomes |
FITC | Fluorescein Isothiocyanate |
MKs | Megakaryocytes |
MPEP | Microparticles-Enriched Plasma |
MVB | Multi Vesicular Body |
NSAIDs | Nonsteroidal Anti-Inflammatory Drugs |
PD-L1 | Programmed Death-Ligand 1 |
PE | Phycoerytrin |
PEVs | Platelets Extracellular Vesicles |
PFP | Platelet Free Plasma |
PMA | Phorbol 12-Myristate 13-Acetate |
PPP | Platelet Poor Plasma |
PS | Phosphatidylserine |
RT | Room Temperature |
References
- Flumenhaft, R. Formation and fate of platelet microparticles. Blood Cell Mol. Dis. 2006, 36, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Żmigrodzka, M.; Guzera, M.; Miśkiewicz, A.; Jagielski, D.; Winnicka, A. The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumor Biol. 2016, 37, 14391–14401. [Google Scholar] [Green Version]
- Meldolesi, J. Extracellular vesicles, news about their role in immune cells: Physiology, pathology and diseases. Clin. Exp. Immunol. 2019, 13, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Cocucci, E.; Meldolesi, J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015, 25, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Investig. 2016, 126, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 2018, 75, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Klinker, M.W.; Lizzio, V.; Reed, T.J.; Fox, D.A.; Lundy, S.K. Human B cell-derived lymphoblastoid cell lines constitutively produce Fas Ligand and secrete MHCII (+) FasL (+) killer exosomes. Front. Immunol. 2014, 5, 144. [Google Scholar] [CrossRef] [PubMed]
- Guay, C.; Regazzi, R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes. Metab. 2017, 19, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, F.F.; Nickeing, G.; Werner, N. Microparticles-messengers of biological information. J. Cell. Mol. Med. 2010, 14, 2250–2256. [Google Scholar] [CrossRef]
- Baj-Krzyworzeka, M.; Mytar, B.; Szatanek, R.; Surmiak, M.; Węglarczyk, K.; Baran, J.; Siedlar, M. Colorectal cancer-derived microvesicles modulate differentiation of human monocytes to macrophages. J. Transl. Med. 2016, 14, 36. [Google Scholar] [CrossRef]
- Fricke, F.; Lee, J.; Michalak, M.; Wrnnken, U.; Hausser, I.; Suarez-Carmona, M.; Halama, N.; Schnölzer, M.; Kopitz, J.; Gebert, J. TGFBR2-dependent alterations of exosomal cargo and functions in DNA mismatch repair-deficient HCT116 colorectal cancer cells. Cell Commun. Signal. 2017, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Lowry, M.C.; Gallagher, W.M.; O’Driscoll, L. The Role of Exosomes in Breast Cancer. Clin. Chem. 2015, 61, 1457–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricke, A.; Ullrich, P.V.; Cimniak, A.F.V.; Becherer, C.; Follo, M.; Heinz, J.; Scholber, J.; Herget, G.W.; Hauschild, O.; Wittel, U.A.; et al. Levels of activated platelet-derived microvesicles in patients with soft tissue sarcoma correlate with an increased risk of venous thromboembolism. BMC Cancer 2017, 17, 527. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, M.; Miller, V.M.; Heit, J.A.; Owen, W.G. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J. Immunol. Methods 2012, 375, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poncelet, P.; Robert, S.; Bailly, N.; Garnache-Ottou, F.; Bouriche, T.; Devalet, B.; Segatchian, J.H.; Saas, P.; Mullier, F. Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfus. Apher. Sci. 2015, 53, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Noh, D.; Park, J. Flow cytometric evaluation of disseminated intravascular coagulation in a canine endotoxemia model. Can. J. Vet. Res. 2015, 79, 52–57. [Google Scholar] [PubMed]
- Nielsen, M.H.; Beck-Nielsen, H.; Andersen, M.N.; Handberg, A. A flow cytometric method for characterization of circulating cell-derived microparticles in plasma. J. Extracell. Vesicles 2014, 4, 3. [Google Scholar] [CrossRef]
- Frydrychowicz, M.; Kolecka-Bednarczyk, A.; Madejczyk, M.; Yasar, S.; Dworacki, G. Exosomes structure, biogenesis and biological role in non-small-cell lung cancer. Scand. J. Immunol. 2015, 81, 2–10. [Google Scholar] [CrossRef]
- Horstman, L.L.; Ahn, Y.S. Platelet microparticles: A wide-angle perspective. Crit. Rev. Oncol. Hematol. 1999, 30, 111–142. [Google Scholar] [CrossRef]
- Herring, J.M.; McMichael, M.A.; Smith, S.A. Microparticles in health and disease. J. Vet. Intern. Med. 2013, 27, 1020–1033. [Google Scholar] [CrossRef]
- Yarana, C.; Carroll, D.; Chen, J.; Chaiswing, L.; Zhao, Y.; Noel, T.; Alstott, M.; Bae, Y.; Dressler, E.V.; Moscow, J.A.; et al. Extracellular Vesicles Released by Cardiomyocytes in a Doxorubicin-Induced Cardiac Injury Mouse Model Contain Protein Biomarkers of Early Cardiac Injury. Clin. Cancer Res. 2018, 24, 1644–1653. [Google Scholar] [CrossRef]
- Lacroix, R.; Judicone, C.; Poncelet, P.; Robert, S.; Arnaud, L.; Sampol, J.; Dignat-George, F. Impact of pre-analytical parameters on the measurement of circulating microparticles: Towards standardization of protocol. J. Thromb. Haemost. 2012, 10, 437–446. [Google Scholar] [CrossRef]
- Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; Laktionov, P.P. Isolation of extracellular vesicles: General methodologies and latest trends. BioMed Res. Int. 2018, 2018, 8545347. [Google Scholar] [CrossRef]
- Kidd, L.; Geddings, J.; Hisada, Y.; Sueda, M.; Concannon, T.; Nichols, T.; Merricks, E.; Mackman, N. Procoagulant microparticles in dogs with immune-mediated hemolytic anemia. J. Vet. Intern. Med. 2015, 29, 908–916. [Google Scholar] [CrossRef]
- Helmond, S.E.; Catalfamo, J.L.; Brooks, M.B. Flow cytometric detection and procoagulant activity of circulating canine platelet-derived microparticles. Am. J. Vet. Res. 2013, 74, 207–215. [Google Scholar] [CrossRef]
- McEntire, M.C.; Wardrop, K.J.; Davis, W.C. Comparison of established and novel methods for the detection and enumeration of microparticles in canine stored erythrocyte concentrates for transfusion. Vet. Clin. Pathol. 2017, 46, 54–63. [Google Scholar] [CrossRef]
- Toth, B.; Nikolajek, K.; Rank, A.; Nieuwland, R.; Lohse, P.; Pihusch, V.; Friese, K.; Thaler, C.J. Gender-specific and menstrual cycle dependent differences in circulating microparticles. Platelets 2007, 18, 515–521. [Google Scholar] [CrossRef]
- Baran, J.; Baj-Krzyworzeka, M.; Weglarczyk, K.; Szatanek, R.; Zembala, M.; Barbasz, J.; Czupryna, A.; Szczepanik, A.; Zembala, M. Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol. Immunother. 2010, 59, 841–850. [Google Scholar] [CrossRef]
- Provost, P. The clinical significance of platelet microparticle-associated microRNAs. Clin. Chem. Lab. Med. 2017, 55, 657–666. [Google Scholar] [CrossRef]
- Flaumenhaft, R.; Dilks, J.R.; Richardson, J.; Alden, E.; Patel-Hett, S.R.; Battinelli, E.; Klement, G.L.; Sola-Visner, M.; Italiano, J.E., Jr. Megakaryocyte-derived microparticles: Direct visualization and distinction from platelet-derived microparticles. Blood 2009, 113, 1112–1121. [Google Scholar] [CrossRef]
- Melki, I.; Tessandier, N.; Zufferey, A.; Boilard, E. Platelet microvesicles in health and disease. Platelets 2017, 28, 214–221. [Google Scholar] [CrossRef]
- Morel, A.; Rywaniak, J.; Bijak, M.; Miller, E.; Niwald, M.; Saluk, J. Flow cytometric analysis reveals the high levels of platelet activation parameters in circulation of multiple sclerosis patients. Mol. Cell. Biochem. 2017, 430, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Xia, L. CLEC-2 and podoplanin, partners again. Blood 2016, 27, 1629–1630. [Google Scholar] [CrossRef]
- Rosińska, J.; Ambrosius, W.; Maciejewska, J.; Narożny, R.; Kozubowski, W.; Łukasik, M. Association of platelet-derived microvesicles and their phenotypes with carotid atherosclerosis and recurrent vascular events in patients after ischemic stroke. Thromb. Res. 2019, 2, 18–26. [Google Scholar] [CrossRef]
- Italiano, J.E., Jr.; Mairuhu, A.T.; Flaumenhaft, R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr. Opin. Hematol. 2010, 17, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Gabbasov, Z.; Kozlov, S.; Byazrova, S.; Saburova, O.; Melnikov, I.; Caprnda, M.; Curilla, E.; Gaspar, L.; Kruzliak, P.; Smirnov, V. Blood level of CD45+ platelets and development of restenosis after drug-eluting stent implantation in patients with stable coronary artery disease. Wien. Klin. Wochenschr. 2016, 128, 898–905. [Google Scholar] [CrossRef]
- Ginaldi, L.; Matutes, E.; Farahat, N.; De Martinis, M.; Morilla, R.; Catovsky, D. Differential expression of CD3 and CD7 in T-cell malignancies: A quantitative study by flow cytometry. Br. J. Haematol. 1996, 93, 921–927. [Google Scholar] [CrossRef]
- Ginaldi, L.; De Martinis, M.; D’Ostilio, A.; Marini, L.; Quaglino, D. Changes in antigen expression on B lymphocytes during HIV infection. Pathobiology 1998, 66, 17–23. [Google Scholar] [CrossRef]
- Blanchard, N.; Lankar, D.; Faure, F.; Regnault, A.; Dumont, C.; Raposo, G.; Hivroz, C. TCR activation of human T cells induce the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 2002, 168, 3235–3241. [Google Scholar] [CrossRef]
- Theodoraki, M.N.; Hoffmann, T.K.; Whiteside, T.L. Separation of plasma-derived exosomes into CD3(+) and CD3(–) fractions allows for association of immune cell and tumour cell markers with disease activity in HNSCC patients. Clin. Exp. Immunol. 2018, 192, 271–283. [Google Scholar] [CrossRef]
- Bachurski, D.; Schuldner, M.; Nguyen, P.; Malz, A.; Reiners, K.; Grenzi, P.; Babatz, F.; Schauss, A.; Hansen, H.; Hallek, M.; et al. Extracellular vesicle measurements with nanoparticle tracking analysis—An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J. Extracell. Vesicles 2019, 8. [Google Scholar] [CrossRef]
- Thery, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7. [Google Scholar] [CrossRef]
- Garofalo, M.; Villa, A.; Rizzi, N.; Kuryk, L.; Mazzaferro, V.; Ciana, P. Systemic Administration and Targeted Delivery of Immunogenic Oncolytic Adenovirus Encapsulated in Extracellular Vesicles for Cancer Therapies. Viruses 2018, 10, 558. [Google Scholar] [CrossRef]
- Ran, L.; Tan, X.; Li, Y.; Zhang, H.; Ma, R.; Ji, T.; Dong, W.; Tong, T.; Liu, Y.; Chen, D.; et al. Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy. Biomaterials 2016, 89, 56–66. [Google Scholar] [CrossRef]
Variable | Control Dogs (n = 13) Nedian (Range) | Dogs with Cancer (n = 14) Median (Range) |
---|---|---|
PCV L/L | 0.39 (0.37–0.58) | 0.37 (0.31–0.49) |
RBC × T/L | 6.2 (5.3–8.5) | 5.9 (4.8–7.4) |
MCV fL | 64 (62–71) | 61 (60–77.8) |
MCHC g/L | 371 (309–421) | 330 (243–370) |
WBC × G/L | 7.1 (5.8–9.8) | 15 (6.7–31) |
Platelet count × G/L | 254 (182–371) | 422 (165–598) * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żmigrodzka, M.; Witkowska-Piłaszewicz, O.; Rzepecka, A.; Cywińska, A.; Jagielski, D.; Winnicka, A. Extracellular Vesicles in the Blood of Dogs with Cancer—A Preliminary Study. Animals 2019, 9, 575. https://doi.org/10.3390/ani9080575
Żmigrodzka M, Witkowska-Piłaszewicz O, Rzepecka A, Cywińska A, Jagielski D, Winnicka A. Extracellular Vesicles in the Blood of Dogs with Cancer—A Preliminary Study. Animals. 2019; 9(8):575. https://doi.org/10.3390/ani9080575
Chicago/Turabian StyleŻmigrodzka, Magdalena, Olga Witkowska-Piłaszewicz, Alicja Rzepecka, Anna Cywińska, Dariusz Jagielski, and Anna Winnicka. 2019. "Extracellular Vesicles in the Blood of Dogs with Cancer—A Preliminary Study" Animals 9, no. 8: 575. https://doi.org/10.3390/ani9080575