Ruminal In Vitro Protein Degradation and Apparent Digestibility of Energy and Nutrients in Sheep Fed Native or Ensiled + Toasted Pea (Pisum sativum) Grains
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pea Treatments
2.2. In Vitro Estimation of RUP
2.3. In Vivo Determination of OM, GE, and Nutrient Digestibilities
2.4. Analyses
2.5. Calculations and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ISAAA. Global Status of Commercialized Biotech/GM Crops: 2016; ISAAA Brief No. 52; ISAAA: Ithaca, NY, USA, 2016. [Google Scholar]
- Tillie, P.; Rodríguez-Crezo, E. Markets for Non-Genetically Modified, Identity-Preserved Soybean in the EU. 2015, pp. 1–72. Available online: http://publications.jrc.ec.europa.eu/repository/handle/JRC95457 (accessed on 6 March 2019).
- Abreu, J.M.F.; Bruno-Soares, A.M. Chemical composition, organic matter digestibility and gas production of nine legume grains. Anim. Feed Sci. Technol. 1998, 70, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Goelema, J.O.; Spreeuwenberg, M.A.M.; Hof, G.; van der Poel, A.F.B.; Tamminga, S. Effect of pressure toasting on the rumen degradability and intestinal digestibility of whole and broken peas, lupins and faba beans and a mixture of these feedstuffs. Anim. Feed Sci. Technol. 1998, 76, 35–50. [Google Scholar] [CrossRef]
- Masoero, F.; Pulimeno, A.M.; Rossi, F. Effect of extrusion, expansion and toasting on the nutritional value of peas, faba beans and lupins. Ital. J. Anim. Sci. 2005, 4, 177–189. [Google Scholar] [CrossRef]
- Konishi, C.; Matsui, T.; Park, W.; Yano, H.; Yano, F. Heat treatment of soybean meal and rapeseed meal suppresses rumen degradation of phytate phosphorus in sheep. Anim. Feed Sci. Technol. 1999, 80, 115–122. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Corbett, R.R.; Okine, E.K.; Goonewardene, L.A. Effects of feeding peas to high-producing dairy cows. Can. J. Anim. Sci. 1995, 75, 625–629. [Google Scholar] [CrossRef]
- Khorasani, G.R.; Okine, E.K.; Corbett, R.R.; Kennelly, J.J. Nutritive value of peas for lactating dairy cattle. Can. J. Anim. Sci. 2001, 81, 541–551. [Google Scholar] [CrossRef]
- Yu, P.; Holmes, J.H.G.; Leury, B.J.; Egan, A.R. Influence of dry roasting on rumen protein degradation characteristics of whole faba bean (Vicia faba) in dairy cows. Asia. Austral. J. Anim. Sci. 1998, 11, 35–42. [Google Scholar] [CrossRef]
- Bachmann, M.; Kuhnitzsch, C.; Thierbach, A.; Michel, S.; Bochnia, M.; Greef, J.M.; Martens, S.D.; Steinhöfel, O.; Zeyner, A. Effects of toasting temperature and time on ruminal gas production kinetics and post-ruminal crude protein from field pea (Pisum sativum) grain silages measured in vitro. In Proceedings of the 73rd Conference of the Society of Nutrition Physiology, Göttingen, Germany, 13–15 March 2019; DLG-Verlag: Frankfurt (Main), Germany, 2019; p. 112. [Google Scholar]
- Kuhnitzsch, C.; Martens, S.D.; Bachmann, M.; Zeyner, A.; Hofmann, T.; Steinhöfel, O. Vergleichende Untersuchungen zum Einsatz siliert und getoasteter Erbsen bzw. Erbsenschröpfschnitt-GPS in der Fütterung hochleistender Milchkühe. In Proceedings of the Forum angewandte Forschung in der Rinder- und Schweinefütterung, Fulda, Germany, 2–3 April 2019; Self-Publishing: Bad Sassendorf, Germany, 2019; pp. 61–64. [Google Scholar]
- Society of Nutrition Physiology (GfE). Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder; DLG-Verlag: Frankfurt (Main), Germany, 2001. [Google Scholar]
- Society of Nutrition Physiology (GfE). New equations for predicting metabolisable energy of compound feeds for cattle. In Proceedings of the 63rd Conference of the Society of Nutrition Physiology, Göttingen, Germany, 10–12 March 2009; DLG-Verlag: Frankfurt (Main), Germany, 2009; pp. 143–146. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Honig, H. Evaluation of aerobic stability. In Proceedings of the EUROBAC Conference, Uppsala, Sweden, 12–16 August 1986; Lindgren, S., Pettersson, K., Eds.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 1990; pp. 72–78. [Google Scholar]
- Licitra, G.; Lauria, F.; Carpino, S.; Schadt, I.; Sniffen, C.J.; Van Soest, P.J. Improvement of the Streptomyces griseus method for degradable protein in ruminant feeds. Anim. Feed Sci. Technol. 1998, 72, 1–10. [Google Scholar] [CrossRef]
- Licitra, G.; Van Soest, P.J.; Schadt, I.; Carpino, S.; Sniffen, C.J. Influence of the concentration of the protease from Streptomyces griseus relative to ruminal protein degradability. Anim. Feed Sci. Technol. 1999, 77, 99–113. [Google Scholar] [CrossRef]
- Jurášek, L.; Johnson, P.; Olafson, R.W.; Smillie, L.B. An improved fractionation system for pronase on CM-Sephadex. Can. J. Biochem. 1971, 49, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Society of Nutrition Physiology (GfE). Formeln zur Schätzung des Gehaltes an Umsetzbarer Energie und Nettoenergie-Laktation in Mischfuttern. In Proceedings of the 50th Conference of the Society of Nutrition Physiology; DLG-Verlag: Frankfurt (Main), Germany, 1996; pp. 153–155. [Google Scholar]
- Society of Nutrition Physiology (GfE). Leitlinien für die Bestimmung der Verdaulichkeit von Rohnährstoffen an Wiederkäuern. J. Anim. Physiol. Anim. Nutr. 1991, 65, 229–234. [Google Scholar] [CrossRef]
- VDLUFA. Die Chemische Untersuchung Von Futtermitteln Methodenbuch, 3rd ed.; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- VDLUFA. Methode 4.13.1, Bestimmung des Neutral-Detergenzien-Löslichen Rohproteins (NDLXP); VDLUFA-Verlag: Darmstadt, Germany, 2016. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 56, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Weissbach, F.; Prym, R.; Peters, G.; Lengerken, J.V. Pepsin-insoluble crude protein-Criterion of green forage silage quality. Tierzucht 1985, 39, 346–349. [Google Scholar]
- Schiemann, R.; Nehring, K.; Hoffmann, L.; Jentsch, W.; Chudy, A. Energetische Futterbewertung und Energienormen; VEB Deutscher Landwirtschaftsverlag: Berlin, Germany, 1972. [Google Scholar]
- White, G.A.; Smith, L.A.; Houdijk, J.G.M.; Homer, D.; Kyriazakis, I.; Wiseman, J. Replacement of soya bean meal with peas and faba beans in growing/finishing pig diets: Effect on performance, carcass composition and nutrient excretion. Anim. Feed Sci. Technol. 2015, 209, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Dotas, V.; Bampidis, V.A.; Sinapis, E.; Hatzipanagiotou, A.; Papanikolaou, K. Effect of dietary field pea (Pisum sativum L.) supplementation on growth performance, and carcass and meat quality of broiler chickens. Livest. Sci. 2014, 164, 135–143. [Google Scholar] [CrossRef]
- Frau-Nji, F.; Niess, E.; Pfeffer, E. Effect of graded replacement of soybean meal by faba beans (Vicia faba L.) or field peas (Pisum sativum L.) in rations for laying hens on egg production and quality. J. Poult. Sci. 2007, 44, 34–41. [Google Scholar] [CrossRef]
- Loe, E.R.; Bauer, M.L.; Lardy, G.P.; Caton, J.S.; Berg, P.T. Field pea (Pisum sativum) inclusion in corn-based lamb finishing diets. Small Rum. Res. 2004, 53, 39–45. [Google Scholar] [CrossRef]
- Reed, J.J.; Lardy, G.P.; Bauer, M.L.; Gilbery, T.C.; Caton, J.S. Effect of field pea level on intake, digestion, microbial efficiency, ruminal fermentation, and in situ disappearance in beef steers fed growing diets. J. Anim. Sci. 2004, 82, 2123–2130. [Google Scholar] [CrossRef]
- Valencia, D.G.; Serrano, M.P.; Centeno, C.; Lázaro, R.; Mateos, G.G. Pea protein as a substitute of soya bean protein in diets for young pigs: Effects on productivity and digestive traits. Livest. Sci. 2008, 118, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Valencia, D.G.; Serrano, M.P.; Jiménez-Moreno, E.; Lázaro, R.; Mateos, G.G. Ileal digestibility of amino acids of pea protein concentrate and soya protein sources in broiler chicks. Livest. Sci. 2009, 121, 21–27. [Google Scholar] [CrossRef]
- Vander Pol, M.; Hristov, A.N.; Zaman, S.; Delano, N.; Schneider, C. Effect of inclusion of peas in dairy cow diets on ruminal fermentation, digestibility, and nitrogen losses. Anim. Feed Sci. Technol. 2009, 150, 95–105. [Google Scholar]
- Cone, J.W.; Van Gelder, A.H.; Steg, A.; Van Vuuren, A.M. Prediction of in situ rumen escape protein from in vitro incubation with protease from Streptomyces griseus. J. Sci. Food Agric. 1996, 72, 120–126. [Google Scholar] [CrossRef]
- Can, A.; Hummel, J.; Denek, N.; Südekum, K.-H. Effects of non-enzymatic browning reaction intensity on in vitro ruminal protein degradation and intestinal protein digestion of soybean and cottonseed meals. Anim. Feed Sci. Technol. 2011, 163, 255–259. [Google Scholar] [CrossRef]
- Böttger, C.; Weber, T.; Südekum, K.-H. Proteinwert von Rapsextraktionsschroten für Wiederkäuer—Schätzung mittels chemischer und in vitro-Verfahren. In Proceedings of the 129th VDLUFA-Kongress, Freising, Germany, 12–15 September 2017; VDLUFA-Verlag: Darmstadt, Germany, 2017; p. 107. [Google Scholar]
- Deutsche Landwirtschafts-Gesellschaft (DLG). DLG-Futterwerttabellen Wiederkäuer, 7th ed.; DLG-Verlag: Frankfurt (Main), Germany, 1997. [Google Scholar]
- Ljøkjel, K.; Skrede, A.; Harstad, O.M. Effects of pelleting and expanding of vegetable feeds on in situ protein and starch digestion in dairy cows. J. Anim. Feed Sci. 2003, 12, 435–449. [Google Scholar] [CrossRef]
- Mustafa, A.F.; Seguin, P. Characteristics and in situ degradability of whole crop faba bean, pea, and soybean silages. Can. J. Anim. Sci. 2003, 83, 793–799. [Google Scholar] [CrossRef]
- Hoedtke, S.; Gabel, M.; Zeyner, A. Protein degradation in feedstuffs during ensilage and changes in the composition of the crude protein fraction. Übers. Tierernährg. 2010, 38, 157–179. [Google Scholar]
- Gefrom, A.; Ott, E.M.; Hoedtke, S.; Zeyner, A. Effect of ensiling moist field bean (Vicia faba), pea (Pisum sativum) and lupine (Lupinus spp.) grains on the contents of alkaloids, oligosaccharides and tannins. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Duranti, M. Grain legume proteins and nutraceutical properties. Fitoterapia 2006, 77, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Focant, M.; Van Hoecke, A.; Vanbelle, M. The effect of two heat treatments (steam flaking and extrusion) on the digestion of Pisum sativum in the stomachs of heifers. Anim. Feed Sci. Technol. 1990, 28, 303–313. [Google Scholar] [CrossRef]
- Aufrère, J.; Graviou, D.; Melcion, J.P.; Demarquilly, C. Degradation in the rumen of lupin (Lupinus albus L.) and pea (Pisum sativum L.) seed proteins. Effect of heat treatment. Anim. Feed Sci. Technol. 2001, 92, 215–236. [Google Scholar] [CrossRef]
- Azarfar, A.; Tamminga, S.; Pellikaan, W.F.; van der Poel, A.F.B. In vitro gas production profiles and fermentation end-products in processed peas, lupins and faba beans. J. Sci. Food Agric. 2008, 88, 1997–2010. [Google Scholar] [CrossRef]
- Vaga, M.; Hetta, M.; Huhtanen, P. Effects of heat treatment on protein feeds evaluated in vitro by the method of estimating utilisable crude protein at the duodenum. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, M.; Henle, T. Baking, ageing, diabetes: A short history of the Maillard reaction. Angew. Chem. Int. Ed. 2014, 53, 10316–10329. [Google Scholar] [CrossRef] [PubMed]
- Holum, J.R. Fundamentals of General, Organic, and Biological Chemistry, 2nd ed.; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Hurrell, R.E.; Finot, R.A. Effect of food processing on protein digestibility and amino acid availability. In Digestibility and Amino Acid Availability in Cereals and Oilseeds; Finley, J.W., Hopkins, D.T., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 1985; pp. 516–527. [Google Scholar]
- Broderick, G.A.; Wallace, R.J.; Ørskov, E.R. Control of Rate and Extent of Protein Degradation. In Physiological Aspects of Digestion and Metabolism in Ruminants, Proceedings of the 7th International Symposium on Ruminant Physiology, Clermont—Ferrand, France, 3–7 September 1979; Tsuda, T., Sasaki, Y., Kawashima, R., Eds.; Academic Press: San Diego, CA, USA, 1991; pp. 541–592. [Google Scholar]
- Yu, P.; Goelema, J.O.; Leury, B.J.; Tamminga, S.; Egan, A.R. An analysis of the nutritive value of heat processed legume seeds for animal production using the DVE/OEB model: A review. Anim. Feed Sci. Technol. 2002, 99, 141–176. [Google Scholar] [CrossRef]
- Poncet, C.; Rémond, D. Rumen digestion and intestinal nutrient flows in sheep consuming pea seeds: The effect of extrusion or chestnut tannin addition. Anim. Res. 2002, 51, 201–216. [Google Scholar] [CrossRef]
pH 1 | 6.1 |
pH 2 | 6.3 |
Lactic acid | 2.3 |
Acetic acid | 0.3 |
Propionic acid | <0.2 |
iso-Butyric acid | <0.3 |
n-Butyric acid | <0.1 |
iso-Valeric acid | <0.1 |
n-Valeric acid | <0.1 |
Ethanol | 9.4 |
1,2-Propanediol | <0.3 |
1-Propanol | <0.4 |
Aerobic stability | ≥7 |
Component (g/Day as Fed) | Control Diet | Test Diet (Native Peas) | Test Diet (Ensiled + Toasted Peas) |
---|---|---|---|
Lucerne (chopped) | 450 | 225 | 225 |
Barley (crushed, Ø 3.5 mm) | 450 | 225 | 225 |
Wheat straw (chopped, Ø 6.0 mm) | 100 | 50 | 50 |
Native peas | 0 | 500 | 0 |
Ensiled + toasted peas | 0 | 0 | 500 |
Mineral feed 1 | 10 | 10 | 10 |
Lucerne | Wheat Straw | Barley | Native Peas | Ensiled + Toasted Peas | Mixed Diet (Control) | Mixed Diet (Including Native Peas) 1 | Mixed Diet (Including Ensiled + Toasted Peas) 1 | |
---|---|---|---|---|---|---|---|---|
Dry matter | 927 | 945 | 888 | 779 | 970 | 912 | 851 | 942 |
Crude ash | 71 | 71 | 22 | 31 | 32 | 50 | 41 | 41 |
Organic matter | 929 | 929 | 978 | 969 | 968 | 950 | 959 | 959 |
Crude protein | 146 | 46 | 115 | 186 | 186 | 122 | 152 | 155 |
Acid ether extract | 21 | 10 | 25 | 13 | 10 | 22 | 18 | 16 |
Starch | 8 | 14 | 537 | 533 | 496 | 240 | 375 | 372 |
Sugars | 47 | 12 | 42 | 77 | 38 | 41 | 58 | 40 |
Crude fiber | 363 | 448 | 52 | 62 | 61 | 236 | 157 | 146 |
Neutral detergent fiber | 524 | 843 | 210 | 128 | 197 | 420 | 285 | 305 |
Acid detergent fiber | 389 | 506 | 64 | 80 | 79 | 259 | 176 | 166 |
Acid detergent lignin | 85 | 59 | 8 | 5 | 15 | 49 | 29 | 31 |
Cellulose | 56 | 447 | 304 | 75 | 64 | 210 | 147 | 135 |
Hemicellulose | 135 | 337 | 146 | 48 | 118 | 161 | 109 | 139 |
Nitrogen-free extract | 399 | 425 | 786 | 708 | 711 | 570 | 632 | 642 |
ESOM | 555 | 344 | 880 | 953 | 944 | 675 | 803 | 814 |
Gross energy | 19.1 | 17.9 | 18.6 | 18.4 | 18.3 | 18.8 | 18.6 | 18.5 |
Native Peas | Ensiled + Toasted Peas | |
---|---|---|
Crude protein (CP) | 186 | 186 |
True protein 1 | 179 | 175 |
Protein solubility 2 | 74 | 16 |
Protein fraction A | 6.5 | 9.0 |
Protein fraction B1 | 67.7 | 7.2 |
Protein fraction B2 | 24.5 | 56.7 |
Protein fraction B3 | 0.9 | 24.5 |
Protein fraction C | 0.5 | 2.6 |
CPip | 5.2 | 7.2 |
NDICP | 1.1 | 61.6 |
Native Peas | Ensiled + Toasted Peas | |
---|---|---|
Organic matter | 0.94 (0.019) | 0.94 (0.026) |
Crude ash | 0.38 (0.200) | 0.39 (0.140) |
Crude protein | 0.90 (0.033) | 0.89 (0.042) |
Acid ether extract | 0.49 (0.049) | 0.61 (0.088) |
Crude fiber | 0.61 (0.055) | 0.65 (0.078) |
Neutral detergent fiber | 0.69 (0.059) b | 0.81 (0.055) a |
Acid detergent fiber | 0.65 (0.069) | 0.66 (0.074) |
Nitrogen-free extract | 0.99 (0.008) | 0.99 (0.015) |
Starch | 1.00 (0.0007) | 1.00 (0.001) |
Sugars | 1.00 (0.003) | 0.99 (0.006) |
Gross energy | 0.91 (0.022) | 0.91 (0.027) |
Native Peas | Ensiled + Toasted Peas | |||||
---|---|---|---|---|---|---|
Measured/Calculated 1 | GfE 2 | NRC 3 | Measured/Calculated 1 | GfE 2 | NRC 3 | |
GE | 18.4 | 18.6 | n.a. | 18.3 | 18.6 | n.a. |
ME | 13.8 4 | 13.9 | 13.9 | 13.9 4 | 13.7 | 13.5 |
NEL | 8.9 4 | 8.9 | 9.0 | 8.9 4 | 8.8 | 8.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachmann, M.; Kuhnitzsch, C.; Okon, P.; Martens, S.D.; Greef, J.M.; Steinhöfel, O.; Zeyner, A. Ruminal In Vitro Protein Degradation and Apparent Digestibility of Energy and Nutrients in Sheep Fed Native or Ensiled + Toasted Pea (Pisum sativum) Grains. Animals 2019, 9, 401. https://doi.org/10.3390/ani9070401
Bachmann M, Kuhnitzsch C, Okon P, Martens SD, Greef JM, Steinhöfel O, Zeyner A. Ruminal In Vitro Protein Degradation and Apparent Digestibility of Energy and Nutrients in Sheep Fed Native or Ensiled + Toasted Pea (Pisum sativum) Grains. Animals. 2019; 9(7):401. https://doi.org/10.3390/ani9070401
Chicago/Turabian StyleBachmann, Martin, Christian Kuhnitzsch, Paul Okon, Siriwan D. Martens, Jörg M. Greef, Olaf Steinhöfel, and Annette Zeyner. 2019. "Ruminal In Vitro Protein Degradation and Apparent Digestibility of Energy and Nutrients in Sheep Fed Native or Ensiled + Toasted Pea (Pisum sativum) Grains" Animals 9, no. 7: 401. https://doi.org/10.3390/ani9070401