Developmental Competence of Domestic Cat Vitrified Oocytes in 3D Enriched Culture Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animals and Oocyte Retrieval
2.3. Experimental Design
- −
- VOs in 3D coculture: VOs (n = 76) cultured in the 3D system in association with fresh COCs (i.e., COCs in 3D coculture, n = 77);
- −
- VOs cultured separately in 3D (n = 75);
- −
- VOs cultured separately in 2D (n = 77);
- −
- COCs cultured separately in 2D (fresh control group, n = 87).
2.4. Vitrification and Warming of Immature Cumulus-Oocyte Complexes (COCs)
2.5. Viability Assessment
2.6. In Vitro Maturation in Three-Dimensional (3D) and Two-Dimensional (2D) Systems
2.7. Epididymal Sperm Recovery, In Vitro Fertilization, and Embryo Culture
2.8. Assessment of Maturation and Embryonic Developmental Rates
- −
- germinal vesicle (GV): identification of nucleolus and very fine filaments of chromatin;
- −
- germinal vesicle break-down–anaphase I (GVBD–AI): identification of different patterns of chromatin condensation (GVBD) or identification of bivalents (AI);
- −
- telophase I–metaphase II (TI–MII): identification of two groups of chromosomes moving to opposite ends of meiotic spindle (TI) or two sets of chromosomes clearly visible (MII);
- −
- degenerated: collapsed nucleus or irregular nuclear conformation.
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fahy, G.M.; Wowk, B. Principles of cryopreservation by vitrification. Methods Mol. Biol. 2015, 1257, 21–82. [Google Scholar] [CrossRef] [PubMed]
- Moussa, M.; Shu, J.; Zhang, X.; Zeng, F. Cryopreservation of mammalian oocytes and embryos: Current problems and future perspectives. Sci. China Life Sci. 2014, 57, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Luvoni, G.C. Gamete cryopreservation in the domestic cat. Theriogenology 2006, 66, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Brambillasca, F.; Guglielmo, M.C.; Coticchio, G.; Mignini Renzini, M.; Dal Canto, M.; Fadini, R. The current challenges to efficient immature oocyte cryopreservation. J. Assist. Reprod. Genet. 2013, 30, 1531–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, G.T.; Dubey, P.K.; Chandra, V. Morphological changes, DNA damage and developmental competence of in vitro matured, vitrified-thawed buffalo (Bubalus bubalis) oocytes: A comparative study of two cryoprotectants and two cryodevices. Cryobiology 2010, 60, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Morató, R.; Mogas, T.; Maddox-Hyttel, P. Ultrastructure of bovine oocytes exposed to Taxol prior to OPS vitrification. Mol. Reprod. Dev. 2008, 75, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Boiso, I.; Martí, M.; Santaló, J.; Ponsá, M.; Barri, P.N.; Veiga, A. A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum. Reprod. 2002, 17, 1885–1891. [Google Scholar] [CrossRef]
- Pickering, S.J.; Braude, P.R.; Johnson, M.H. Cryoprotection of human oocytes: Inappropriate exposure to DMSO reduces fertilization rates. Hum. Reprod. 1991, 6, 142–143. [Google Scholar] [CrossRef]
- Knight, E.; Przyborski, S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J. Anat. 2015, 227, 746–756. [Google Scholar] [CrossRef]
- Heywood, H.K.; Sembi, P.K.; Lee, D.A.; Bader, D.L. Cellular utilization determines viability and matrix distribution profiles in chondrocyte-seeded alginate constructs. Tissue Eng. 2004, 10, 1467–1479. [Google Scholar] [CrossRef]
- Jongpaiboonkit, L.; King, W.J.; Lyons, G.E.; Paguirigan, A.L.; Warrick, J.W.; Beebe, D.J.; Murphy, W.L. An adaptable hydrogel array format for 3-dimensional cell culture and analysis. Biomaterials 2008, 29, 3346–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topman, G.; Shoham, N.; Sharabani-Yosef, O.; Lin, F.H.; Gefen, A. A new technique for studying directional cell migration in a hydrogel-based three-dimensional matrix for tissue engineering model systems. Micron 2013, 51, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Pangas, S.A.; Saudye, H.; Shea, L.D.; Woodruff, T.K. Novel approach for the three-dimensional culture of granulosa cell–oocyte complexes. Tissue Eng. 2003, 9, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Kreeger, P.K.; Deck, J.W.; Woodruff, T.K.; Shea, L.D. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 2006, 27, 714–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Kreeger, P.K.; Shea, L.D.; Woodruff, T.K. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006, 12, 2739–2746. [Google Scholar] [CrossRef]
- Sargus-Patino, C.N.; Wright, E.C.; Plautz, S.A.; Miles, J.R.; Vallet, J.L.; Pannier, A.K. In vitro development of preimplantation porcine embryos using alginate hydrogels as a three-dimensional extracellular matrix. Reprod. Fertil. Dev. 2014, 26, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, Z.X.; Gao, H.; Wu, Y.; Fang, Y.; Wu, S.S.; Li, M.J.; Bai, J.H.; Liu, Y.; Evans, A.; et al. A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development invitro. Theriogenology 2015, 84, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Battiston, K.G.; Cheung, J.W.C.; Jain, D.; Santerre, J.P. Biomaterials in co-culture systems: Towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials 2014, 35, 4465–4476. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, R.B.; Lane, M.; Thompson, J.G. Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 2008, 14, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Hovatta, O.; Wright, C.; Krausz, T.; Hardy, K.; Winston, R.M. Human primordial, primary and secondary ovarian follicles in long-term culture: Effect of partial isolation. Hum. Reprod. 1999, 14, 2519–2524. [Google Scholar] [CrossRef]
- Luvoni, G.C.; Colombo, M.; Morselli, M.G. The never-ending search of an ideal culture system for domestic cat oocytes and embryos. Reprod. Domest. Anim. 2018, 53, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morselli, M.G.; Luvoni, G.C.; Comizzoli, P. The nuclear and developmental competence of cumulus–oocyte complexes is enhanced by three-dimensional coculture with conspecific denuded oocytes during in vitro maturation in the domestic cat model. Reprod. Domest. Anim. 2017, 52 (Suppl. 2), 82–87. [Google Scholar] [CrossRef] [PubMed]
- Morselli, M.G.; Canziani, S.; Vigo, D.; Luvoni, G.C. A three-dimensional alginate system for in vitro culture of cumulus-denuded feline oocytes. Reprod. Domest. Anim. 2017, 52, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Casillas, F.; Ducolomb, Y.; Lemus, A.E.; Cuello, C.; Betancourt, M. Porcine embryo production following in vitro fertilization and intracytoplasmic sperm injection from vitrified immature oocytes matured with a granulosa cell co-culture system. Cryobiology 2015, 71, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Casillas, F.; Teteltitla-Silvestre, M.; Ducolomb, Y.; Lemus, A.E.; Salazar, Z.; Casas, E.; Betancourt, M. Co-culture with granulosa cells improve the in vitro maturation ability of porcine immature oocytes vitrified with cryolock. Cryobiology 2014, 69, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, L.; De Rosa, A.; De Blasi, M.; Neglia, G.; Zicarelli, L.; Campanile, G.; Gasparrini, B. The influence of cumulus cells during in vitro fertilization of buffalo (Bubalus bubalis) denuded oocytes that have undergone vitrification. Theriogenology 2010, 74, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.C.; Wildt, D.E. Effect of the quality of the cumulus-oocyte complex in the domestic cat on the ability of oocytes to mature, fertilize and develop into blastocysts in vitro. J. Reprod. Fertil. 1997, 110, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Kuwayama, M.; Vajta, G.; Kato, O.; Leibo, S.P. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 2005, 11, 300–308. [Google Scholar] [CrossRef]
- Cobo, A.; Domingo, J.; Pérez, S.; Crespo, J.; Remohí, J.; Pellicer, A. Vitrification: An effective new approach to oocyte banking and preserving fertility in cancer patients. Clin. Transl. Oncol. 2008, 10, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.E.; Crichton, E.G.; Gómez, M.C.; Dumas, C.; Dresser, B.L. Birth of domestic cat kittens of predetermined sex after transfer of embryos produced by in vitro fertilization of oocytes with flow-sorted sperm. Theriogenology 2009, 71, 864–871. [Google Scholar] [CrossRef]
- Bolamba, D.; Borden-Russ, K.D.; Durrant, B.S. In vitro maturation of domestic dog oocytes cultured in advanced preantral and early antral follicles. Theriogenology 1998, 49, 933–942. [Google Scholar] [CrossRef]
- Hewitt, D.A.; England, G.C.W. Synthetic oviductal fluid and oviductal cell coculture for canine oocyte maturation in vitro. Anim. Reprod. Sci. 1999, 55, 63–75. [Google Scholar] [CrossRef]
- Luvoni, G.C.; Pellizzari, P. Embryo development in vitro of cat oocytes cryopreserved at different maturation stages. Theriogenology 2000, 53, 1529–1540. [Google Scholar] [CrossRef]
- Comizzoli, P.; Wildt, D.E.; Pukazhenthi, B.S. In vitro compaction of germinal vesicle chromatin is beneficial to survival of vitrified cat oocytes. Reprod. Domest. Anim. 2009, 44, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Cocchia, N.; Ciani, F.; Russo, M.; El Rass, R.; Rosapane, I.; Avallone, L.; Tortora, G.; Lorizio, R. Immature cat oocyte vitrification in open pulled straws (OPSs) using a cryoprotectant mixture. Cryobiology 2010, 60, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalez, L.; Jewgenow, K. Cryopreservation of feline oocytes by vitrification using commercial kits and slush nitrogen technique. Reprod. Domest. Anim. 2017, 52, 230–234. [Google Scholar] [CrossRef]
- Galeati, G.; Spinaci, M.; Vallorani, C.; Bucci, D.; Porcu, E.; Tamanini, C. Pig oocyte vitrification by cryotop method: Effects on viability, spindle and chromosome configuration and in vitro fertilization. Anim. Reprod. Sci. 2011, 127, 43–49. [Google Scholar] [CrossRef]
- Gombotz, W.R.; Wee, S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 2012, 64, 194–205. [Google Scholar] [CrossRef]
- Vigo, D.; Torre, M.L.; Faustini, M.; Munari, E.; Russo, V.; Norberti, R.; Villani, S.; Asti, A.; Bini, P.P.; Conte, U. Barium alginate capsules for 3D immobilisation of living cells: Morphology, membrane properties and permeability. J. Drug Deliv. Sci. Technol. 2004, 14, 167–172. [Google Scholar] [CrossRef]
- Desai, N.; Alex, A.; AbdelHafez, F.; Calabro, A.; Goldfarb, J.; Fleischman, A.; Falcone, T. Three-dimensional in vitro follicle growth: Overview of culture models, biomaterials, design parameters and future directions. Reprod. Biol. Endocrinol. 2010, 8, 1–12. [Google Scholar] [CrossRef]
- Sananmuang, T.; Tharasanit, T.; Nguyen, C.; Phutikanit, N.; Techakumphu, M. Culture medium and embryo density influence on developmental competence and gene expression of cat embryos. Theriogenology 2011, 75, 1708–1719. [Google Scholar] [CrossRef]
- Paria, B.C.; Dey, S.K. Preimplantation embryo development in vitro: Cooperative interactions among embryos and role of growth factors. Proc. Natl. Acad. Sci. USA 1990, 87, 4756–4760. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Gardner, D. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Hum. Reprod. 1992, 7, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Rijnders, P.M.; Jansen, C.A. Influence of group culture and culture volume on the formation of human blastocysts: A prospective randomized study. Hum. Reprod. 1999, 14, 2333–2337. [Google Scholar] [CrossRef] [PubMed]
- Amorim, C.A.; Van Langendonckt, A.; David, A.; Dolmans, M.M.; Donnez, J. Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum. Reprod. 2009, 24, 92–99. [Google Scholar] [CrossRef]
- Xu, M.; Banc, A.; Woodruff, T.K.; Shea, L.D. Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol. Bioeng. 2009, 103, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Zhou, C.; Bian, J.; Montag, M.; Xu, Y.; Li, Y.; Li, T. Solid-surface vitrification is an appropriate and convenient method for cryopreservation of isolated rat follicles. Reprod. Biol. Endocrinol. 2010, 8, 42. [Google Scholar] [CrossRef]
- Desai, N.; Abdelhafez, F.; Calabro, A.; Falcone, T. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: A preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod. Biol. Endocrinol. 2012, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ting, A.Y.; Yeoman, R.R.; Lawson, M.S.; Zelinski, M.B. Synthetic polymers improve vitrification outcomes of macaque ovarian tissue as assessed by histological integrity and the in vitro development of secondary follicles. Cryobiology 2012, 65, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ting, A.Y.; Yeoman, R.R.; Campos, J.R.; Lawson, M.S.; Mullen, S.F.; Fahy, G.M.; Zelinski, M.B. Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Hum. Reprod. 2013, 28, 1267–1279. [Google Scholar] [CrossRef] [Green Version]
- Asgari, F.; Valojerdi, M.R.; Ebrahimi, B.; Fatehi, R. Three dimensional in vitro culture of preantral follicles following slow-freezing and vitrification of mouse ovarian tissue. Cryobiology 2015, 71, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Sadr, S.Z.; Ebrahimi, B.; Shahhoseini, M.; Fatehi, R.; Favaedi, R. Mouse preantral follicle development in two-dimensional and three-dimensional culture systems after ovarian tissue vitrification. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 194, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Abdi, S.; Salehnia, M.; Hosseinkhani, S. Quality of oocytes derived from vitrified ovarian follicles cultured in two-and three-dimensional culture system in the presence and absence of kit Ligand. Biopreserv. Biobank. 2016, 14, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.R.; Yan, J.; Lu, C.L.; Xia, X.; Yin, T.L.; Zhi, X.; Zhu, X.H.; Ding, T.; Hu, W.H.; Guo, H.Y.; et al. Human single follicle growth in vitro from cryopreserved ovarian tissue after slow freezing or vitrification. Hum. Reprod. 2016, 31, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, L.; Shirazi, A.; Naderi, M.M.; Shams-Esfandabadi, N.; Borjian Boroujeni, S.; Sarvari, A.; Sadeghnia, S.; Behzadi, B.; Akhondi, M.M. Platelet-rich plasma promotes the development of isolated human primordial and primary follicles to the preantral stage. Reprod. Biomed. Online 2017, 35, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Guedes, J.; Rodrigues, J.; Campos, A.; Moraes, C.; Caetano, J.; Marinho, R. Follicle Viability after Vitrification of Bovine Ovarian Tissue. Rev. Bras. Ginecol. e Obs./RBGO Gynecol. Obstet. 2017, 39, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Sadr, S.Z.; Fatehi, R.; Maroufizadeh, S.; Amorim, C.A.; Ebrahimi, B. Utilizing fibrin-alginate and matrigel-alginate for mouse follicle development in three-dimensional culture systems. Biopreserv. Biobank. 2018, 16, 120–127. [Google Scholar] [CrossRef]
- Carabatsos, M.J.; Sellitto, C.; Goodenough, D.A.; Albertini, D.F. Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 2000, 226, 167–179. [Google Scholar] [CrossRef]
- Tharasanit, T.; Colenbrander, B.; Stout, T.A.E. Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes. Mol. Reprod. Dev. 2006, 73, 627–637. [Google Scholar] [CrossRef]
- Coticchio, G.; Dal Canto, M.; Renzini, M.M.; Guglielmo, M.C.; Brambillasca, F.; Turchi, D.; Novara, P.V.; Fadini, R. Oocyte maturation: Gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum. Reprod. Update 2015, 21, 427–454. [Google Scholar] [CrossRef]
- Hussein, T.S.; Thompson, J.G.; Gilchrist, R.B. Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 2006, 296, 514–521. [Google Scholar] [CrossRef]
- Tanghe, S.; Van Soom, A.; Nauwynck, H.; Coryn, M.; De Kruif, A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 2002, 61, 414–424. [Google Scholar] [CrossRef]
- Vigo, D.; Villani, S.; Faustini, M.; Accorsi, P.A.; Galeati, G.; Spinaci, M.; Munari, E.; Russo, V.; Asti, A.; Conte, U.; et al. Follicle-like model by granulosa cell encapsulation in a barium alginate–protamine membrane. Tissue Eng. 2005, 11, 709–714. [Google Scholar] [CrossRef]
Groups | Maturation 1 | Embryonic Development | Degeneration | Unfertilized Oocytes | ||||
---|---|---|---|---|---|---|---|---|
Cleavage (2–4 cells) | 8–16 cells | M + BL | (M + BL)/Cleaved | Immaturity (GV) | Meiosis Resumption (GVBD–AI) | |||
VOs in 3D coculture (n = 76) | 21.25 ± 18.98 a | 18.39 ± 16.67 a | 7.39 ± 7.94 a | 1.79 ± 3.07 a | 9.52 ± 16.27 a,b | 58.23 ± 28.51 | 4.65 ± 7.39 | 15.87 ± 14.43 |
VOs cultured separately in 3D (n = 75) | 19.46 ± 13.71 a | 17.42 ± 11.83 a | 4.59 ± 9.38 a | 1.79 ± 4.72 a | 4.76 ± 12.60 b | 59.00 ± 21.21 | 8.38 ± 12.92 | 13.16 ± 14.91 |
VOs cultured separately in 2D (n = 77) | 21.89 ± 11.98 a | 14.96 ± 8.80 a | 8.04 ± 5.82 a | 5.97 ± 7.27 a,b | 38.89 ± 49.07 a,b | 60.15 ± 19.19 | 10.48 ± 10.60 | 7.48 ± 9.34 |
COCs in 3D coculture (n = 77) | 47.44 ± 17.47 b | 44.58 ± 17.98 b | 33.00 ± 12.18 b | 16.76 ± 14.97 b,c | 39.22 ± 29.55 a,b | 37.27 ± 24.88 | 0.84 ± 2.22 | 14.44 ± 15.11 |
COCs cultured separately in 2D (n = 87) | 52.16 ± 14.38 b | 50.88 ± 13.71 b | 46.23 ± 15.15 b | 25.68 ± 7.91 c | 52.49 ± 17.56 a | 36.46 ± 11.79 | 4.12 ± 6.44 | 7.26 ± 9.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, M.; Morselli, M.G.; Tavares, M.R.; Apparicio, M.; Luvoni, G.C. Developmental Competence of Domestic Cat Vitrified Oocytes in 3D Enriched Culture Conditions. Animals 2019, 9, 329. https://doi.org/10.3390/ani9060329
Colombo M, Morselli MG, Tavares MR, Apparicio M, Luvoni GC. Developmental Competence of Domestic Cat Vitrified Oocytes in 3D Enriched Culture Conditions. Animals. 2019; 9(6):329. https://doi.org/10.3390/ani9060329
Chicago/Turabian StyleColombo, Martina, Maria Giorgia Morselli, Mariana Riboli Tavares, Maricy Apparicio, and Gaia Cecilia Luvoni. 2019. "Developmental Competence of Domestic Cat Vitrified Oocytes in 3D Enriched Culture Conditions" Animals 9, no. 6: 329. https://doi.org/10.3390/ani9060329
APA StyleColombo, M., Morselli, M. G., Tavares, M. R., Apparicio, M., & Luvoni, G. C. (2019). Developmental Competence of Domestic Cat Vitrified Oocytes in 3D Enriched Culture Conditions. Animals, 9(6), 329. https://doi.org/10.3390/ani9060329