Next Article in Journal
Comparative Analysis of the aquaporin Gene Family in 12 Fish Species
Previous Article in Journal
Taiwanese Consumers’ Willingness to Pay for Broiler Welfare Improvement
Article Menu

Export Article

Open AccessArticle

Metatranscriptomic Analysis of Sub-Acute Ruminal Acidosis in Beef Cattle

1
College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, Kentucky, KY 40601, USA
2
Department of Animal Sciences, University of Florida, Gainesville, Florida, FL 32611, USA
*
Author to whom correspondence should be addressed.
Animals 2019, 9(5), 232; https://doi.org/10.3390/ani9050232
Received: 14 April 2019 / Revised: 3 May 2019 / Accepted: 10 May 2019 / Published: 12 May 2019
(This article belongs to the Section Cattle)
  |  
PDF [2099 KB, uploaded 12 May 2019]
  |  

Simple Summary

This study evaluated the functional activity of rumen microbiota during sub-acute ruminal acidosis, a metabolic disease of ruminants characterized by low pH caused by feeding highly fermentable carbohydrate feeds. The abundance of rumen bacteria that degrade cellulose (Fibrobacter succinogenes, Ruminococcus albus, and R. bicirculans) were reduced by induced acidotic challenge. Genes mapped to carbohydrate, amino acid, energy, vitamin and co-factor metabolism pathways, and bacterial biofilm formation pathways were enriched in beef cattle challenged with sub-acute acidosis. This study enhances our understanding of the response of rumen microbiota to sub-acute ruminal acidosis by revealing transcriptionally active taxa and metabolic pathways of rumen microbiota.

Abstract

Subacute ruminal acidosis (SARA) is a metabolic disease of ruminants characterized by low pH, with significant impacts on rumen microbial activity, and animal productivity and health. Microbial changes during subacute ruminal acidosis have previously been analyzed using quantitative PCR and 16S rRNA sequencing, which do not reveal the actual activity of the rumen microbial population. Here, we report the functional activity of the rumen microbiota during subacute ruminal acidosis. Eight rumen-cannulated Holstein steers were assigned randomly to acidosis-inducing or control diet. Rumen fluid samples were taken at 0, 3, 6, and 9 h relative to feeding from both treatments on the challenge day. A metatranscriptome library was prepared from RNA extracted from the samples and the sequencing of the metatranscriptome library was performed on Illumina HiSeq4000 following a 2 × 150 bp index run. Cellulolytic ruminal bacteria including Fibrobacter succinogenes, Ruminococcus albus, and R. bicirculans were reduced by an induced acidotic challenge. Up to 68 functional genes were differentially expressed between the two treatments. Genes mapped to carbohydrate, amino acid, energy, vitamin and co-factor metabolism pathways, and bacterial biofilm formation pathways were enriched in beef cattle challenged with sub-acute acidosis. This study reveals transcriptionally active taxa and metabolic pathways of rumen microbiota during induced acidotic challenge. View Full-Text
Keywords: acidosis; rumen microbiota; metatranscriptomics acidosis; rumen microbiota; metatranscriptomics
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Ogunade, I.; Pech-Cervantes, A.; Schweickart, H. Metatranscriptomic Analysis of Sub-Acute Ruminal Acidosis in Beef Cattle. Animals 2019, 9, 232.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Animals EISSN 2076-2615 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top