Effects of Maternal Undernutrition during Mid-Gestation on the Yield, Quality and Composition of Kid Meat Under an Extensive Management System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Body Weight and Body Size Measurement
2.3. Slaughtering, Carcass Traits and Meat Quality Determination
2.4. Chemical Composition, Amino Acid and Fatty Acid Determination
2.5. Statistical Analysis
3. Results
3.1. Kidding Performance, DM Intake, and BW of Dams
3.2. Body Weight and Body Size of Kids
3.3. Carcass Trait and Meat Quality of the Kids
3.4. Fatty Acids and Amino Acids in the LT Muscle of the Kids
4. Discussion
5. Conclusions
Author Contributions
Acknowledgements
Conflicts of Interest
References
- Domaradzki, P.; Stanek, P.; Litwińczuk, Z.; Skałecki, P.; Florek, M. Slaughter value and meat quality of suckler calves: A review. Meat Sci. 2017, 134, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Casey, N.H.; Webb, E.C. Managing goat production for meat quality. Small Rumin. Res. 2010, 89, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Fahey, A.J.; Brameld, J.M.; Parr, T.; Buttery, P.J. Ontogeny of factors associated with proliferation and differentiation of muscle in the ovine fetus. J. Anim. Sci. 2005, 83, 2330–2338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.J.; Ford, S.P.; Nathanielsz, P.W.; Du, M. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol. Reprod. 2004, 71, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, C.M.; Madgwick, A.J.; Ward, S.S.; Stickland, N.C. Effect of maternal undernutrition in early gestation on the development of fetal myofibres in the guinea-pig. Reprod. Fertil. Dev. 1995, 7, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Fahey, A.J.; Brameld, J.M.; Parr, T.; Buttery, P.J. The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. J. Anim. Sci. 2005, 83, 2564–2571. [Google Scholar] [CrossRef]
- Du, M.; Wang, B.; Fu, X.; Yang, Q.; Zhu, M.J. Fetal programming in meat production. Meat Sci. 2015, 109, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Rooke, J.A.; Arnott, G.; Dwyer, C.M.; Rutherford, K.M.D. The importance of the gestation period for welfare of lambs: Maternal stressors and lamb vigour and wellbeing. J. Agric. Sci. 2014, 153, 497–519. [Google Scholar] [CrossRef]
- Sen, U.; Sirin, E.; Ensoy, U.; Aksoy, Y.; Ulutas, Z.; Kuran, M. The effect of maternal nutrition level during mid-gestation on postnatal muscle fibre composition and meat quality in lambs. Anim. Prod. Sci. 2016, 56, 834–843. [Google Scholar] [CrossRef]
- Mohrhauser, D.A.; Taylor, A.R.; Gonda, M.G.; Underwood, K.R.; Pritchard, R.H.; Wertz-Lutz, A.E.; Blair, A.D. The influence of maternal energy status during mid-gestation on beef offspring tenderness, muscle characteristics, and gene expression. Meat Sci. 2015, 110, 201–211. [Google Scholar] [CrossRef]
- Piaggio, L.; Quintans, G.; San Julian, R.; Ferreira, G.; Ithurralde, J.; Fierro, S.; Pereira, A.S.C.; Baldi, F.; Banchero, G.E. Growth, meat and feed efficiency traits of lambs born to ewes submitted to energy restriction during mid-gestation. Animal 2018, 12, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.F. Nutrition Parameters and Feeding Standard for Animals, 2nd ed.; China Agriculture Press: Beijing, China, 2010. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Alvarenga, T.I.; Copping, K.J.; Han, X.; Clayton, E.H.; Meyer, R.J.; Rodgers, R.J.; McMillen, I.C.; Perry, V.E.; Geesink, G. The influence of peri-conception and first trimester dietary restriction of protein in cattle on meat quality traits of entire male progeny. Meat Sci. 2016, 121, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Zhu, N.H.; Niu, P.P.; Shi, F.X.; Hughes, C.L.; Tian, G.X.; Huang, R.H. Effects of dietary chromium methionine on growth performance, carcass composition, meat colour and expression of the colour-related gene myoglobin of growing-finishing pigs. Asian Australas. J. Anim. Sci. 2013, 26, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.Y.; Zhong, R.Z.; Tan, Z.L.; Han, X.F.; Tang, S.X.; Xiao, W.J.; Sun, Z.H.; Wang, M. Dietary inclusion of tea catechins changes fatty acid composition of muscle in goats. Lipids 2011, 46, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Gilka, J.; Jelínek, P.; Janková, B.; Knesel, P.; Krejčí; Mašek, J.; Dočekalová, H. Amino acid composition of meat, fatty acid composition of fat and content of some chemical elements in the tissues of male lambs fed monensin or lasalocid. Meat Sci. 1989, 25, 273–280. [Google Scholar] [CrossRef]
- He, Z.X.; Sun, Z.H.; Beauchemin, K.A.; Yang, W.Z.; Tang, S.X.; Zhou, C.S.; Han, X.F.; Wang, M.; Kang, J.H.; Tan, Z.L. Effect of protein or energy restriction during late gestation on hormonal and metabolic status in pregnant goats and postnatal male offspring. Animal 2015, 9, 1843–1851. [Google Scholar] [CrossRef]
- Beauchamp, B.; Harper, M.E. In utero undernutrition programs skeletal and cardiac muscle metabolism. Front. Physiol. 2015, 6, 401. [Google Scholar] [CrossRef] [PubMed]
- McGregor, B.A. The effects of nutrition and parity on the development and productivity of Angora goats: 1. Manipulation of mid pregnancy nutrition on energy intake and maintenance requirement, kid birth weight, kid survival, doe live weight and mohair production. Small Rumin. Res. 2016, 145, 65–75. [Google Scholar] [CrossRef]
- Meyer, A.M.; Reed, J.J.; Neville, T.L.; Thorson, J.F.; Maddock-Carlin, K.R.; Taylor, J.B.; Reynolds, L.P.; Redmer, D.A.; Luther, J.S.; Hammer, C.J.; et al. Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes. J. Anim. Sci. 2011, 89, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Palin, M.F.; Martel-Kennes, Y. Impact of diet deprivation and subsequent overallowance during gestation on mammary gland development and lactation performance. J. Anim. Sci. 2014, 92, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Munoz, C.; Carson, A.F.; McCoy, M.A.; Dawson, L.E.; Wylie, A.R.; Gordon, A.W. Effects of plane of nutrition of ewes in early and mid-pregnancy on performance of the offspring: Female reproduction and male carcass characteristics. J. Anim. Sci. 2009, 87, 3647–3655. [Google Scholar] [CrossRef] [PubMed]
- Mohrhauser, D.A.; Taylor, A.R.; Underwood, K.R.; Pritchard, R.H.; Wertz-Lutz, A.E.; Blair, A.D. The influence of maternal energy status during midgestation on beef offspring carcass characteristics and meat quality. J. Anim. Sci. 2015, 93, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Calnan, H.; Jacob, R.H.; Pethick, D.W.; Gardner, G.E. Production factors influence fresh lamb longissimus colour more than muscle traits such as myoglobin concentration and pH. Meat Sci. 2016, 119, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Daniel, Z.C.; Brameld, J.M.; Craigon, J.; Scollan, N.D.; Buttery, P.J. Effect of maternal dietary restriction during pregnancy on lamb carcass characteristics and muscle fiber composition. J. Anim. Sci. 2007, 85, 1565–1576. [Google Scholar] [CrossRef]
- Zhu, M.J.; Ford, S.P.; Means, W.J.; Hess, B.W.; Nathanielsz, P.W.; Du, M. Maternal nutrient restriction affects properties of skeletal muscle in offspring. J. Physiol. 2006, 575, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, T.L.; Gerrard, D.E. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci. 2007, 77, 7–16. [Google Scholar] [CrossRef]
- den Hertog-Meischke, M.J.A.; van Laack, R.J.L.M.; Smulders, F.J.M. The water-holding capacity of fresh meat. Vet. Q. 1997, 19, 175–181. [Google Scholar] [CrossRef]
- Valvo, M.A.; Lanza, M.; Bella, M.; Fasone, V.; Scerra, M.; Biondi, L.; Priolo, A. Effect of ewe feeding system (grass v. concentrate) on intramuscular fatty acids of lambs raised exclusively on maternal milk. Anim. Sci. 2005, 81, 431–436. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Papadomichelakis, G.; Sparaggis, D.; Sotirakoglou, K.; Georgiadou, M.; Zervas, G. The effect of maternal or artificial milk, age and sex on three muscles fatty acid profile of Damascus breed goat kids. Livest. Sci. 2016, 188, 142–152. [Google Scholar] [CrossRef]
- Scollan, N.; Hocquette, J.-F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef] [PubMed]
Item | Dams | Kids |
---|---|---|
Ingredients (%) | ||
Miscanthus | 50.00 | 20.00 |
Maize | 33.50 | 36.00 |
Wheat bran | - | 14.40 |
Soybean meal | 10.33 | 14.16 |
Whey powder | - | 6.40 |
Fat powder | 4.00 | 6.40 |
Calcium carbonate | 0.49 | 0.24 |
Calcium hydrophosphate | 0.46 | 0.80 |
Sodium chloride | 0.22 | 0.40 |
Premix 1 | 1.00 | 1.20 |
Total | 100 | 100 |
Composition | ||
Metabolic energy (MJ/kg) 2 | 11.78 | 15.19 |
Crude protein (%) | 12.05 | 15.52 |
Ether extract (%) | 8.97 | 10.46 |
Neutral detergent fiber (%) | 64.44 | 24.99 |
Acid detergent fiber (%) | 28.32 | 11.67 |
Ash (%) | 5.89 | 3.59 |
Calcium (%) | 0.53 | 0.76 |
Phosphorus (%) | 0.20 | 0.32 |
Treatment 1 | ||||
---|---|---|---|---|
Item | UR | R | SEM 2 | p-Value |
n Kidding performance of dams | 12 | 14 | - | - |
Birth rate (%) | 175 | 160 | 23.19 | 0.651 |
Survival rate of kids at 90 d after birth (%) | 68.1 | 53.6 | 11.27 | 0.375 |
Selection criterion for harvesting of kids | ||||
Initial BW of dams (kg) giving birth to the selected kids | 29.9 | 29.2 | 4.55 | 0.925 |
Number of selected kids in different types of litter size | 8 | 8 | - | - |
From singletons (n) | 2 | 2 | - | - |
From twins with two surviving kids (n) | 2 | 2 | - | - |
From twins with one surviving kid (n) | 1 | 1 | ||
From triplets with two surviving kids (n) | 2 | 2 | ||
From triplets with one surviving kid (n) | 1 | 1 | - | - |
Treatment 1 | ||||
---|---|---|---|---|
Item (kg) | UR | R | SEM 2 | p-Value |
n | 6 | 6 | - | - |
Daily DM intake during 45 to 100 d of gestation | 0.93 | 0.65 | 0.06 | 0.014 |
Daily DM intake after kidding | 1.06 | 1.21 | 0.23 | 0.298 |
Weight at 100 d of gestation | 35.8 | 31.9 | 5.02 | 0.596 |
Weight gain at 100 d of gestation 3 | 6.9 | 2.6 | 0.92 | 0.014 |
Weight at 130 d of gestation | 38.5 | 36.6 | 5.57 | 0.809 |
Weight gain at 130 d of gestation 3 | 8.7 | 7.3 | 1.25 | 0.472 |
Weight at weaning | 31.4 | 32.8 | 3.58 | 0.794 |
Weight gain at weaning 3 | 1.5 | 3.5 | 2.21 | 0.542 |
Age | p-Values after Birth | ||||||||
---|---|---|---|---|---|---|---|---|---|
Item | Treatment 1 | Birth | 30 d | 60 d | 90 d | Treatment | Sex | Litter Size | Age |
Body weight (kg) | UR | 2.1 | 5.3 | 7.8 | 9.5 | <0.001 | 0.849 | 0.405 | <0.001 |
R | 1.8 | 4.0 | 6.0 | 7.8 | |||||
SEM 2 | 0.14 | 0.17 | 0.18 | 0.51 | |||||
Average daily gain (g/d) | UR | - | 104.2 | 92.6 | 81.6 | 0.001 | 0.543 | 0.853 | 0.023 |
R | - | 72.5 | 71.1 | 66.0 | |||||
SEM | - | 5.71 | 6.88 | 13.31 | |||||
Diagonal length (cm) | UR | 24.8 | 34.0 | 40.8 | 44.9 | <0.001 | 0.191 | 0.148 | <0.001 |
R | 24.0 | 31.8 | 37.6 | 40.6 | |||||
SEM | 0.61 | 0.61 | 0.67 | 0.56 | |||||
Height at the withers (cm) | UR | 27.1 | 34.0 | 38.7 | 41.9 | <0.001 | 0.274 | 0.025 | <0.001 |
R | 24.6 | 31.3 | 35.3 | 38.1 | |||||
SEM | 0.83 | 0.45 | 0.55 | 0.59 | |||||
Heart girth (cm) | UR | 31.6 | 41.9 | 47.2 | 49.2 | <0.001 | 0.979 | 0.233 | <0.001 |
R | 29.1 | 37.2 | 43.9 | 45.1 | |||||
SEM | 0.96 | 0.80 | 0.80 | 1.07 | |||||
Cannon girth (cm) | UR | 5.3 | 5.9 | 6.3 | 6.5 | <0.001 | 0.022 | 0.056 | 0.001 |
R | 4.8 | 5.4 | 5.7 | 5.9 | |||||
SEM | 0.13 | 0.12 | 0.13 | 0.15 |
Treatment 1 | p-Values | |||||
---|---|---|---|---|---|---|
Item | UR | R | SEM 2 | Treatment | Sex | Litter Size |
Hot carcass weight (kg) 3 | 3.78 | 2.78 | 0.24 | 0.017 | 0.461 | 0.773 |
Hot carcass yield (%) | 42.10 | 39.09 | 1.12 | 0.115 | 0.881 | 0.805 |
LM area (cm2) | 5.39 | 5.35 | 0.66 | 0.996 | 0.767 | 0.262 |
Water loss percentage (%) | 9.73 | 11.37 | 1.24 | 0.431 | 0.606 | 0.474 |
pH45min 4 | 6.38 | 6.32 | 0.09 | 0.639 | 0.866 | 0.585 |
pH24h 4 | 5.61 | 5.63 | 0.05 | 0.375 | 0.103 | 0.490 |
L*45min 4 | 43.32 | 46.41 | 0.93 | 0.029 | 0.472 | 0.379 |
a*45min 4 | 12.46 | 10.78 | 0.95 | 0.258 | 0.371 | 0.589 |
b*45min 4 | 4.54 | 4.90 | 0.29 | 0.335 | 0.673 | 0.234 |
L*24h 4 | 48.25 | 51.78 | 1.66 | 0.387 | 0.441 | 0.359 |
a*24h 4 | 13.12 | 11.74 | 0.65 | 0.228 | 0.219 | 0.822 |
b*24h 4 | 6.68 | 7.97 | 0.64 | 0.115 | 0.146 | 0.008 |
Moisture (%) | 77.67 | 78.53 | 0.66 | 0.426 | 0.870 | 0.974 |
Protein (%, DM basis) | 76.06 | 76.53 | 0.81 | 0.602 | 0.334 | 0.329 |
Intramuscular fat (%, DM basis) | 6.96 | 5.58 | 0.98 | 0.273 | 0.915 | 0.589 |
Treatment 1 | p-Values | |||||
---|---|---|---|---|---|---|
Fatty Acid Profile (% of Total Fatty Acids) | UR | R | SEM 2 | Treatment | Sex | Litter Size |
C14:0 | 3.2 | 2.7 | 0.43 | 0.419 | 0.998 | 0.315 |
C16:0 | 19.7 | 19.4 | 0.59 | 0.634 | 0.960 | 0.275 |
C16:1 | 2.0 | 1.7 | 0.19 | 0.254 | 0.171 | 0.266 |
C17:0 | 0.9 | 0.9 | 0.07 | 0.912 | 0.050 | 0.978 |
C18:0 | 16.4 | 18.3 | 1.03 | 0.106 | 0.001 | 0.030 |
C18:1 n-9, trans | 3.0 | 2.6 | 0.21 | 0.091 | 0.083 | 0.768 |
C18:1 n-9, cis | 33.5 | 31.4 | 1.81 | 0.480 | 0.497 | 0.191 |
C18:2 n-6 | 9.3 | 9.6 | 0.76 | 0.647 | 0.260 | 0.246 |
C20:0 | 0.1 | 0.1 | 0.01 | 0.115 | 0.080 | 0.256 |
C18:3 n-6 | 0.1 | 0.1 | 0.01 | 0.493 | 0.722 | 0.277 |
C18:3 n-3 | 0.1 | 0.1 | 0.01 | 0.840 | 0.741 | 0.293 |
C20:1 n-9 | 0.4 | 0.4 | 0.02 | 0.484 | 0.548 | 0.057 |
C20:3 n-6 | 0.5 | 0.6 | 0.08 | 0.617 | 0.709 | 0.405 |
C20:4 n-6 | 10.2 | 11.4 | 1.68 | 0.572 | 0.614 | 0.425 |
C22:6 n-3 | 0.5 | 0.5 | 0.06 | 0.771 | 0.487 | 0.362 |
SFA 3 | 40.3 | 41.5 | 1.14 | 0.621 | 0.007 | 0.993 |
UFA 3 | 59.7 | 58.4 | 1.11 | 0.519 | 0.007 | 0.947 |
UFA/SFA | 1.5 | 1.4 | 0.06 | 0.443 | 0.006 | 0.939 |
Treatment 1 | p-Values | |||||
---|---|---|---|---|---|---|
Concentration of Amino Acids (mg/g, DM Basis) | UR | R | SEM 2 | Treatment | Sex | Litter Size |
Asp | 87.9 | 86.5 | 1.91 | 0.656 | 0.267 | 0.394 |
Thr | 43.1 | 42.8 | 0.90 | 0.923 | 0.301 | 0.686 |
Ser | 34.1 | 34.2 | 0.71 | 0.825 | 0.180 | 0.646 |
Glu | 114.1 | 117.2 | 2.29 | 0.331 | 0.287 | 0.743 |
Gly | 44.4 | 47.3 | 2.76 | 0.353 | 0.116 | 0.344 |
Ala | 56.3 | 55.6 | 1.46 | 0.803 | 0.068 | 0.270 |
Cys | 8.6 | 7.9 | 1.47 | 0.651 | 0.339 | 0.709 |
Val | 45.5 | 45.4 | 1.06 | 0.943 | 0.452 | 0.550 |
Met | 18.5 | 20.8 | 1.41 | 0.159 | 0.055 | 0.311 |
Ile | 41.0 | 40.5 | 1.04 | 0.868 | 0.514 | 0.968 |
Leu | 64.1 | 66.1 | 1.44 | 0.349 | 0.543 | 0.939 |
Tyr | 22.1 | 26.7 | 1.35 | 0.046 | 0.714 | 0.644 |
Phe | 29.0 | 30.2 | 0.96 | 0.376 | 0.572 | 0.753 |
Lys | 82.4 | 80.8 | 1.96 | 0.589 | 0.468 | 0.536 |
His | 28.0 | 26.5 | 0.88 | 0.347 | 0.092 | 0.769 |
Arg | 56.7 | 59.2 | 1.75 | 0.283 | 0.194 | 0.752 |
EAA 3 | 416.8 | 420.2 | 7.09 | 0.782 | 0.309 | 0.583 |
NEAA 4 | 358.9 | 367.4 | 6.29 | 0.334 | 0.083 | 0.357 |
EAA/NEAA | 1.2 | 1.1 | 0.01 | 0.350 | 0.455 | 0.323 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yan, Q.; Yang, H.; Ren, A.; Kong, Z.; Tang, S.; Han, X.; He, Z.; Bamikole, M.A.; Tan, Z. Effects of Maternal Undernutrition during Mid-Gestation on the Yield, Quality and Composition of Kid Meat Under an Extensive Management System. Animals 2019, 9, 173. https://doi.org/10.3390/ani9040173
Zhou X, Yan Q, Yang H, Ren A, Kong Z, Tang S, Han X, He Z, Bamikole MA, Tan Z. Effects of Maternal Undernutrition during Mid-Gestation on the Yield, Quality and Composition of Kid Meat Under an Extensive Management System. Animals. 2019; 9(4):173. https://doi.org/10.3390/ani9040173
Chicago/Turabian StyleZhou, Xiaoling, Qiongxian Yan, Hong Yang, Ao Ren, Zhiwei Kong, Shaoxun Tang, Xuefeng Han, Zhixiong He, Musibau Adungbe Bamikole, and Zhiliang Tan. 2019. "Effects of Maternal Undernutrition during Mid-Gestation on the Yield, Quality and Composition of Kid Meat Under an Extensive Management System" Animals 9, no. 4: 173. https://doi.org/10.3390/ani9040173
APA StyleZhou, X., Yan, Q., Yang, H., Ren, A., Kong, Z., Tang, S., Han, X., He, Z., Bamikole, M. A., & Tan, Z. (2019). Effects of Maternal Undernutrition during Mid-Gestation on the Yield, Quality and Composition of Kid Meat Under an Extensive Management System. Animals, 9(4), 173. https://doi.org/10.3390/ani9040173