The Effect of Barley and Lysine Supplementation of Pasture-Based Diet on Growth, Carcass Composition and Physical Quality Attributes of Meat from Farmed Fallow Deer (Dama dama)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Diets
2.2. Feed Chemical Composition
2.3. Slaughter Processing, Carcass Composition and Muscle Sampling
2.4. Physical Analysis
2.5. Statistical Analysis
3. Results
3.1. Animal Performance
3.2. Carcass Composition
3.3. Physical Quality Attributes
4. Discussion
4.1. Growth Performance
4.2. Slaughter Traits
4.3. Carcass Composition
4.4. Physical Characteristics
4.4.1. pH Values
4.4.2. Meat Color
4.4.3. Warner–Bratzler Shear Force
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cawthorn, D.-M.; Hoffman, L.C. The role of traditional and non-traditional meat animals in feeding a growing and evolving world. Anim. Front. 2014, 4, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Sans, P.; Combris, P. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Sci. 2015, 109, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babiker, S.A.; Khider, I.A.E.; Shafie, S.A. Chemical composition and quality attributes of goat meat and lamb. Meat Sci. 1990, 28, 273–277. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Hnatyk, N.; Dąbrowski, D.; Janiszewski, P.; Gugołek, A.; Kubiak, D.; Śmiecińska, K.; Winarski, R.; Koba-Kowalczyk, M. A comparison of the quality of the Longissimus lumborum muscle from wild and farm-raised fallow deer (Dama dama L.). Small Rumin. Res. 2015, 129, 77–83. [Google Scholar] [CrossRef]
- Ludwiczak, A.; Stanisz, M.; Bykowska, M.; Składanowska, J.; Ślósarz, P. Effect of storage on quality traits of the semimembranosus muscle of farmed fallow deer (Dama dama) bucks and does. Anim. Sci. J. 2017, 88, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Bureš, D.; Bartoň, L.; Kotrba, R.; Hakl, J. Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus). J. Sci. Food Agric. 2015, 95, 2299–2306. [Google Scholar] [CrossRef] [PubMed]
- Dahlan, I. Characteristics and cutability of farmed rusa deer (Cervus timorensis) carcasses for marketing of venison. Asian-Australas. J. Anim. Sci. 2009, 22, 740–746. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors—A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef]
- Hutchison, C.L.; Mulley, R.C.; Wiklund, E.; Flesch, J. Effect of concentrate feeding on instrumental meat quality and sensory characteristics of fallow deer venison. Meat Sci. 2012, 90, 801–806. [Google Scholar] [CrossRef]
- Volpelli, L.A.; Valusso, R.; Morgante, M.; Pittia, P.; Piasentier, E. Meat quality in male fallow deer (Dama dama): Effects of age and supplementary feeding. Meat Sci. 2003, 65, 555–562. [Google Scholar] [CrossRef]
- Volpelli, L.A.; Valusso, R.; Piasentier, E. Carcass quality in male fallow deer (Dama dama): Effects of age and supplementary feeding. Meat Sci. 2002, 60, 427–432. [Google Scholar] [CrossRef]
- Phillip, L.E.; Oresanya, T.F.; Jacques, J.S. Fatty acid profile, carcass traits and growth rate of red deer fed diets varying in the ratio of concentrate:dried and pelleted roughage, and raised for venison production. Small Rumin. Res. 2007, 71, 215–221. [Google Scholar] [CrossRef]
- Wiklund, E.; Manley, T.; Littlejohn, R.; Stevenson-Barry, J. Fatty acid composition and sensory quality of Musculus longissimus and carcass parameters in red deer (Cervus elaphus) grazed on natural pasture or fed a commercial feed mixture. J. Sci. Food Agric. 2003, 83, 419–424. [Google Scholar] [CrossRef]
- Prado, I.N.; Campo, M.M.; Muela, E.; Valero, M.V.; Catalan, O.; Olleta, J.L.; Sañudo, C. Effects of castration age, dietary protein level and lysine/methionine ratio on animal performance, carcass and meat quality of Friesian steers intensively reared. Animal 2014, 8, 1561–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brelurut, A.; Theriez, M.; Bechet, G. Effects of winter feeding level on the performance of red deer calves (Cervus elaphus). Anim. Sci. 1995, 60, 151–156. [Google Scholar] [CrossRef]
- Wiklund, E.; Johansson, L.; Malmfors, G. Sensory meat quality, ultimate pH values, blood parameters and carcass characteristics in reindeer (Rangifer tarandus tarandus L.) grazed on natural pastures or fed a commercial feed mixture. Food Qual. Prefer. 2003, 14, 573–581. [Google Scholar] [CrossRef]
- Wiklund, E.; Hutchison, C.L.; Flesch, J.; Mulley, R.C.; Littlejohn, R. Colour stability and water-holding capacity of M. longissimus and carcass characteristics in fallow deer (Dama dama) grazed on natural pasture or fed barley. Rangifer 2005, 25, 97–106. [Google Scholar] [CrossRef]
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffman, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef]
- Wiklund, E.; Sampels, S.; Manley, T.; Picková, J.; Littlejohn, R. Effects of feeding regimen and chilled storage on water-holding capacity, colour stability, pigment content and oxidation in red deer (Cervus elaphus) meat. J. Sci. Food Agric. 2006, 86, 98–106. [Google Scholar] [CrossRef]
- Wang, T.; Crenshaw, M.; Regmi, N.; Armstrong, T.; Blanton, J.R.; Liao, S.F. Effect of dietary lysine fed to pigs at late finishing stage on the market-value associated carcass characteristics. J. Anim. Vet. Adv. 2015, 14, 232–236. [Google Scholar]
- Hickling, D.; Guenteri, W.; Jackson, M.E. The effects of dietary methionine and lysine on broiler chicken performance and breast meat yield. Can. J. Anim. Sci. 1990, 70, 673–678. [Google Scholar] [CrossRef]
- Coble, K.; Dritz, S.; Usry, J.; Nemechek, J.; Tokach, M.; DeRouchey, J.M.; Goodband, R.D.; Woodworth, J.C.; Hill, G.M. Effects of standardized ileal digestible lysine level in diets containing tribasic copper chloride on finishing pig growth performance, carcass characteristics, and fat quality. Swine Day 2014, 2014, 138–154. [Google Scholar] [CrossRef]
- Tous, N.; Lizardo, R.; Vilà, B.; Gispert, M.; Font-i-Furnols, M.; Esteve-Garcia, E. Effect of reducing dietary protein and lysine on growth performance, carcass characteristics, intramuscular fat, and fatty acid profile of finishing barrows. J. Anim. Sci. 2014, 92, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.S.; Berger, L.L. Feedlot performance and carcass characteristics of Holstein steers as affected by source of dietary protein and level of ruminally protected lysine and methionine. J. Anim. Sci. 1995, 73, 3503–3509. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, R.H.; Titgemeyer, E.C. Limiting amino acids for growing Holstein steers limit-fed soybean hull-based diets. J. Anim. Sci. 1997, 78, 1997–2004. [Google Scholar] [CrossRef]
- Torrentera, N.R.; Carrasco, R.; Salinas-Chavira, J.; Plascencia, A.; Zinn, R.A. Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves. Asian-Australas. J. Anim. Sci. 2017, 30, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.T.; Zhang, T.T.; Kun, B.; Li, G.Y.; Wang, K.Y. Effect of supplementation of lysine and methionine on growth performance, nutrient digestibility and serum biochemical indices for growing sika deer (Cervus Nippon) fed protein deficient diet. Ital. J. Anim. Sci. 2015, 14, 61–65. [Google Scholar] [CrossRef]
- Abe, M.; Iriki, T.; Funaba, M.; Onda, S. Limiting amino acids for a corn and soybean meal diet in weaned calves less than three months of age. J. Anim. Sci. 1998, 76, 628–636. [Google Scholar] [CrossRef]
- Klemesrud, M.J.; Klopfenstein, T.J.; Stock, R.A.; Lewis, A.J.; Herold, D.W. Effect of dietary concentration of metabolizable lysine on finishing cattle performance. J. Anim. Sci. 1999, 78, 1060–1066. [Google Scholar] [CrossRef]
- Xue, F.; Zhou, Z.; Ren, L.; Meng, Q. Influence of rumen-protected lysine supplementation on growth performance and plasma amino acid concentrations in growing cattle offered the maize stalk silage/maize grain-based diet. Anim. Feed Sci. Technol. 2011, 169, 61–67. [Google Scholar] [CrossRef]
- Broderick, G.; Wallace, R.; Ørskov, E.R. Control of rate and extent of protein degradation. In Physiological Aspects of Digestion and Metabolism in Ruminants. Proceedings of the Seventh International Symposium on Ruminant Physiology; Tsuda, T., Sakai, Y., Kawashima, R., Eds.; Academic Press Ltd.: London, UK, 1991; pp. 541–592. [Google Scholar]
- Han, K.; Ha, J.; Lee, S.; Ko, Y.; Lee, H. Effect of supplementing rumen-protected lysine on growth performance and plasma amino acid concentrations in sheep. Asian-Australas. J. Anim. Sci. 1996, 9, 309–313. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Maggiolino, A.; Gallego, L.; Pateiro, M.; Serrano, M.P.; Domínguez, R.; García, A.; Landete-Castillejos, T.; De Palo, P. Effect of age on nutritional properties of Iberian wild red deer meat. J. Sci. Food Agric. 2018. [Google Scholar] [CrossRef] [PubMed]
- Jančík, F.; Kubelková, P.; Kubát, V.; Koukolová, M.; Homolka, P. Effects of drying procedures on chemical composition and nutritive value of alfalfa forage. S. Afr. J. Anim. Sci. 2017, 47, 96–101. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- SAS Release 9.1 (TS1M3) of the SAS® System for Microsoft® Windows®, SAS Institute Inc.: Cary, NC, USA, 2006.
- Bovolenta, S.; Corazzin, M.; Messina, M.; Focardi, S.; Piasentier, E. Supplementary feeding of farmed fallow deer: Effect on milk composition and fawn performance. Ital. J. Anim. Sci. 2013, 12, 596–603. [Google Scholar]
- Hogg, B.W.; Catcheside, L.M.; Mercer, G.J.K. Carcass composition in male fallow deer: Age and castration effects on dissected tissue distribution. Anim. Sci. 1990, 51, 405–413. [Google Scholar] [CrossRef]
- Janiszewski, P.; Daszkiewicz, T.; Cilulko, J. The effect of wintering conditions on the body weight and carcass quality of farm-raised fallow deer (Dama dama). Bulg. J. Agric. Sci. 2015, 21, 668–673. [Google Scholar]
- Sibbald, I.R.; Wolynetz, M.S. Effects of dietary lysine and feed intake on energy utilization and tissue synthesis by broiler chicks. Poult. Sci. 1986, 65, 98–105. [Google Scholar] [CrossRef]
- Grisoni, M.; Uzu, G.; Larbier, M.; Geraert, P. Effect of dietary lysine level on lipogenesis in broilers. Reprod. Nutr. Dev. 1991, 31, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A. Performance, carcass characteristics, meat quality and plasma constituents of meat type drakes fed diets containing different levels of lysine with or without a microbial phytase. Arch. Anim. Nutr. 2003, 51, 39–48. [Google Scholar] [CrossRef]
- Drew, K.R. Plenary lecture: Venison and other deer products. In The Biology of Deer; Brown, R.D., Ed.; Springer Science & Business Media: New York, NY, USA, 1992; pp. 225–232. [Google Scholar]
- Hocquette, J.-F.; Van Wezemael, L.; Chriki, S.; Legrand, I.; Verbeke, W.; Farmer, L.; Scollan, N.D.; Polkinghorne, R.; Rødbotten, R.; Allen, P.; et al. Modelling of beef sensory quality for a better prediction of palatability. Meat Sci. 2014, 97, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthorn, D.; Fitzhenry, L.B.; Muchenje, V.; Bureš, D.; Kotrba, R.; Hoffman, L.C. Physical quality attributes of male and female wild fallow deer (Dama dama) muscles. Meat Sci. 2018, 137, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.C.; van Schalkwyk, S.; Muller, M. Quality characteristics of blue wildebeest (Connochaetes taurinus) meat. S. Afr. J. Wildl. Res. 2011, 41, 210–213. [Google Scholar] [CrossRef]
- Maggiolino, A.M.; Pateiro, M.; Serrano, M.P.; Landete-Castillejos, T.; Domínguez, R.; García, A.; Gallego, L.; De Palo, P.; Lorenzo, J.M. Carcass and meat quality characteristics from Iberian wild red deer (Cervus elaphus) hunted at different ages. J. Sci. Food Agric. 2018. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Neethling, N.E.; Suman, S.P.; Sigge, G.O.; Hoffman, L.C.; Hunt, M.C. Exogenous and endogenous factors influencing color of fresh meat from ungulates. Meat Muscle Biol. 2017, 1, 253–275. [Google Scholar] [CrossRef]
- Ramanzin, M.; Amici, A.; Casoli, C.; Esposito, L.; Lupi, P.; Marsico, G.; Mattiello, S.; Olivieri, O.; Ponzetta, M.P.; Russo, C.; et al. Meat from wild ungulates: Ensuring quality and hygiene of an increasing resource. Ital. J. Anim. Sci. 2010, 9, 318–331. [Google Scholar]
- Young, O.A.; West, J. Meat color. In Meat Science and Applications; Hui, H., Nip, W.K., Rogers, R., Young, O.A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 39–69. [Google Scholar]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Mulley, R.C.; Hutchison, C.L.; Flesch, J.S.; Wiklund, E.; Nicetic, O. Venison Quality—The Relationship of Body Condition Score with Consumer Perception; Rural Industries Research and Development Corporation: Canberra, Australia, 2006; ISBN 1-74151-306-5.
- Kim, G.-D.; Jeong, J.-Y.; Hur, S.-J.; Yang, H.-S.; Jeon, J.-T.; Joo, S.-T. The relationship between meat color (CIE L* and a*), myoglobin content, and their influence on muscle fiber characteristics and pork quality. Korean J. Food Sci. 2010, 30, 626–633. [Google Scholar] [CrossRef]
- Vestergaard, M.; Oksbjerg, N.; Henckel, P. Influence of feeding intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls. Meat Sci. 2000, 54, 177–185. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Nicholson, A. Meat quality of wether lambs grazed on either saltbush (Atriplex nummularia) plus supplements or lucerne (Medicago sativa). Meat Sci. 1999, 51, 91–95. [Google Scholar] [CrossRef]
- Sullivan, G.A.; Calkins, C.R. Ranking beef muscles for Warner-Bratzler shear force and trained sensory panel ratings from published literature. J. Food Qual. 2011, 34, 195–203. [Google Scholar] [CrossRef]
Composition, g/kg Dry Matter | Barley | Pasture |
---|---|---|
Crude protein | 11.27 | 12.74 |
Crude fat | 2.44 | 1.91 |
Crude fiber | 6.68 | 31.61 |
Ash | 2.51 | 8.49 |
Nitrogen-free compounds | 77.10 | 45.25 |
Lignin | 0.83 | 5.00 |
Acid detergent fiber (ADF) | 7.26 | 35.23 |
Neutral detergent fiber (NDF) | 30.40 | 65.42 |
Item | Nutrition (Each n = 15) | SEM 1 | P-Value | ||
---|---|---|---|---|---|
Pasture (P) | Barley (B) | Lysine (BL) | |||
Initial weight (kg) | 28.4 | 28.5 | 27.9 | 0.47 | 0.589 |
End weight—Phase I (kg) | 37.1 | 39.1 | 38.2 | 0.56 | 0.054 |
Slaughter weight (kg) | 45.3 B | 50.5 A | 49.8 A | 1.03 | <0.001 |
Daily gain—Phase I (g/day) | 97.1 B | 118.4 A | 115.0 A | 4.73 | 0.062 |
Daily gain—Phase II (g/day) | 106.3 B | 147.0 A | 148.2 A | 9.28 | <0.001 |
Daily gain—entire experiment (g/day) | 100.7 B | 131.0 A | 130.1 A | 6.22 | <0.001 |
Carcass weight (kg) | 23.0 B | 28.4 A | 27.8 A | 0.48 | <0.001 |
Dressing-out (g/kg) | 508 B | 562 A | 559 A | 4.56 | <0.001 |
Total internal fat (g/kg slaughter weight) | 83 C | 197 A | 165 B | 7.81 | <0.001 |
Item | Nutrition (Each n = 15) | SEM 1 | P-Value | ||
---|---|---|---|---|---|
Pasture (P) | Barley (B) | Lysine (BL) | |||
Weight (kg) | |||||
Right-side weight | 11.26 B | 13.89 A | 13.65 A | 0.24 | <0.001 |
Total meat | 8.58 B | 10.63 A | 10.56 A | 0.20 | <0.001 |
Bones and tendons | 2.52 B | 2.84 A | 2.81 A | 0.05 | <0.001 |
Separable fat | 0.16 C | 0.42 A | 0.28 B | 0.04 | <0.001 |
High-priced meat | 5.24 B | 6.24 A | 6.29 A | 0.13 | <0.001 |
Low-priced meat | 3.34 B | 4.39 A | 4.27 A | 0.10 | <0.001 |
Right Side Proportion (g/kg Right-Side Weight) | |||||
Total meat | 762.1 | 765.9 | 773.4 | 3.76 | 0.052 |
High-priced meat | 465.2 A | 450.1 B | 462.2 AB | 3.36 | 0.004 |
Low-priced meat | 296.9 B | 315.8 A | 311.2 A | 5.04 | <0.001 |
Meat from: Rump | 314.0 A | 298.5 B | 303.4 B | 2.12 | <0.001 |
Shoulder | 73.0 B | 73.2 B | 84.0 A | 2.57 | <0.001 |
Loin | 58.2 | 59.2 | 54.4 | 2.82 | 0.821 |
Tenderloin | 20.0 AB | 19.2 B | 20.4 A | 0.54 | 0.033 |
Bones and tendons | 223.4 A | 204.6 B | 205.7 B | 2.88 | <0.001 |
Separable fat | 14.5 C | 29.5 A | 20.9 B | 2.86 | <0.001 |
Ratio | |||||
Meat/bones | 3.42 B | 3.75 A | 3.77 A | 0.06 | <0.001 |
High/low-priced meat | 1.57 A | 1.43 B | 1.48 B | 0.04 | 0.002 |
Item | Nutrition (Each n = 15) | SEM 1 | P-Value | ||
---|---|---|---|---|---|
Pasture (P) | Barley (B) | Lysine (BL) | |||
Longissimus lumborum | |||||
Weight (g) | 833 B | 967 A | 942 A | 30.00 | 0.010 |
pHu | 5.78 | 5.70 | 5.70 | 0.24 | 0.347 |
WB shear force (N) | 24.63 | 26.59 | 26.14 | 2.16 | 0.295 |
Color | |||||
Lightness, L* | 35.32 | 36.59 | 36.68 | 0.71 | 0.285 |
Redness, a* | 12.26 B | 14.98 A | 13.38 AB | 0.39 | <0.001 |
Yellowness, b* | 9.90 B | 12.26 A | 11.31 AB | 0.44 | 0.002 |
Chroma | 15.77 B | 19.39 A | 17.55 B | 0.52 | <0.001 |
Hue angle | 55.52 | 54.05 | 52.09 | 2.58 | 0.644 |
Semitendinosus | |||||
Weight (g) | 185 | 176 | 179 | 5.11 | 0.472 |
pHu | 5.93 | 5.88 | 5.77 | 0.28 | 0.126 |
WB shear force (N) | 41.77 | 39.21 | 43.37 | 2.41 | 0.252 |
Color | |||||
Lightness, L* | 37.65 | 39.91 | 40.01 | 1.01 | 0.186 |
Redness, a* | 12.28 | 13.58 | 13.26 | 0.68 | 0.385 |
Yellowness, b* | 10.88 | 13.03 | 12.94 | 0.67 | 0.048 |
Chroma | 16.47 | 18.88 | 18.60 | 0.86 | 0.110 |
Hue angle | 48.01 | 40.44 | 39.66 | 3.88 | 0.255 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudrnáčová, E.; Bureš, D.; Bartoň, L.; Kotrba, R.; Ceacero, F.; Hoffman, L.C.; Kouřimská, L. The Effect of Barley and Lysine Supplementation of Pasture-Based Diet on Growth, Carcass Composition and Physical Quality Attributes of Meat from Farmed Fallow Deer (Dama dama). Animals 2019, 9, 33. https://doi.org/10.3390/ani9020033
Kudrnáčová E, Bureš D, Bartoň L, Kotrba R, Ceacero F, Hoffman LC, Kouřimská L. The Effect of Barley and Lysine Supplementation of Pasture-Based Diet on Growth, Carcass Composition and Physical Quality Attributes of Meat from Farmed Fallow Deer (Dama dama). Animals. 2019; 9(2):33. https://doi.org/10.3390/ani9020033
Chicago/Turabian StyleKudrnáčová, Eva, Daniel Bureš, Luděk Bartoň, Radim Kotrba, Francisco Ceacero, Louwrens C. Hoffman, and Lenka Kouřimská. 2019. "The Effect of Barley and Lysine Supplementation of Pasture-Based Diet on Growth, Carcass Composition and Physical Quality Attributes of Meat from Farmed Fallow Deer (Dama dama)" Animals 9, no. 2: 33. https://doi.org/10.3390/ani9020033
APA StyleKudrnáčová, E., Bureš, D., Bartoň, L., Kotrba, R., Ceacero, F., Hoffman, L. C., & Kouřimská, L. (2019). The Effect of Barley and Lysine Supplementation of Pasture-Based Diet on Growth, Carcass Composition and Physical Quality Attributes of Meat from Farmed Fallow Deer (Dama dama). Animals, 9(2), 33. https://doi.org/10.3390/ani9020033