Next Article in Journal
Effects of Outdoor Access and Indoor Stocking Density on Behaviour and Stress in Broilers in the Subhumid Tropics
Next Article in Special Issue
Using Thermal Imaging to Monitor Body Temperature of Koalas (Phascolarctos cinereus) in A Zoo Setting
Previous Article in Journal
Use of Medicinal Mushrooms in Layer Ration
Previous Article in Special Issue
Measuring Faecal Glucocorticoid Metabolites to Assess Adrenocortical Activity in Reindeer
Open AccessCommunication

Parasite Load and Site-Specific Parasite Pressure as Determinants of Immune Indices in Two Sympatric Rodent Species

1
Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands
2
Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
*
Author to whom correspondence should be addressed.
Present address: Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 7, 90183 Umeå, Sweden.
Animals 2019, 9(12), 1015; https://doi.org/10.3390/ani9121015
Received: 22 October 2019 / Revised: 15 November 2019 / Accepted: 20 November 2019 / Published: 22 November 2019
Wild animals can host diseases that affect humans (i.e., zoonotic diseases). However, not all wild animals are equal in their hosting capacities. In fact, the immune system, the main defense against diseases, varies within and among species. Within species, variation relates to two factors: parasite load and parasite pressure. Parasite load refers to the amount of parasites in or on an individual. Parasite pressure refers to the amount of parasites in a location. The importance of these factors in shaping the immune system of wild rodents, a group of animals known to host zoonotic diseases, is poorly understood. Overall, the rodent species we studied (bank voles and wood mice) hosted 5 microparasites, 9 ectoparasites, and 8 gastrointestinal parasites. We found that parasite load and parasite pressure related to different facets of the immune system. We also found that bank voles exhibited higher levels of one immune defense than wood mice, but higher levels of this defense correlated with a worm infection only in wood mice. Lastly, a white blood cell ratio correlated with infection by a zoonotic parasite. Studies like ours help to document the complexities of host–parasite interactions and how these interactions shape zoonotic disease risk in a changing world.
Wildlife is exposed to parasites from the environment. This parasite pressure, which differs among areas, likely shapes the immunological strategies of animals. Individuals differ in the number of parasites they encounter and host, and this parasite load also influences the immune system. The relative impact of parasite pressure vs. parasite load on different host species, particularly those implicated as important reservoirs of zoonotic pathogens, is poorly understood. We captured bank voles (Myodes glareolus) and wood mice (Apodemus sylvaticus) at four sites in the Netherlands. We sampled sub-adult males to quantify their immune function, infestation load for ecto- and gastrointestinal parasites, and infection status for vector-borne microparasites. We then used regression trees to test if variation in immune indices could be explained by among-site differences (parasite pressure), among-individual differences in infestation intensity and infection status (parasite load), or other intrinsic factors. Regression trees revealed splits among sites for haptoglobin, hemagglutination, and body-mass corrected spleen size. We also found splits based on infection/infestation for haptoglobin, hemolysis, and neutrophil to lymphocyte ratio. Furthermore, we found a split between species for hemolysis and splits based on body mass for haptoglobin, hemagglutination, hematocrit, and body-mass corrected spleen size. Our results suggest that both parasite pressure and parasite load influence the immune system of wild rodents. Additional studies linking disease ecology and ecological immunology are needed to understand better the complexities of host–parasite interactions and how these interactions shape zoonotic disease risk. View Full-Text
Keywords: rodents; ecological immunology; natural antibodies; haptoglobin; neutrophil to lymphocyte ratio; immune strategy; vector-borne pathogens; parasitology; zoonosis rodents; ecological immunology; natural antibodies; haptoglobin; neutrophil to lymphocyte ratio; immune strategy; vector-borne pathogens; parasitology; zoonosis
Show Figures

Graphical abstract

MDPI and ACS Style

Hofmeester, T.R.; Bügel, E.J.; Hendrikx, B.; Maas, M.; Franssen, F.F.J.; Sprong, H.; Matson, K.D. Parasite Load and Site-Specific Parasite Pressure as Determinants of Immune Indices in Two Sympatric Rodent Species. Animals 2019, 9, 1015.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop