Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Fish and Sample Collection
2.3. Transcriptomics
2.4. Protein Samples Preparation
2.5. D-PAGE Separation
2.6. Western Blot Analysis
2.7. In-Gel Digestion and MALDI-MS and MS/MS Analysis
3. Results
3.1. Identification of Transferrin Transcripts in Sterlet
3.2. Expression of Transferrin in Reproductive Organs of Sterlet Males
3.3. 2-DE Analysis and Western Blot of Sterlet Seminal Plasma and Spermatozoa
3.4. Identification of Transferrin by MALDI-MS and MS/MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mackenzie, E.L.; Iwasaki, K.; Tsuji, Y. Intracellular iron transport and storage: From molecular mechanisms to health implications. Antioxid. Redox Signal. 2014, 10, 997–1030. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.E. Immunity to bacteria in fish. Fish. Shellfish Immunol. 1999, 9, 291–308. [Google Scholar] [CrossRef]
- Stafford, J.L.; Belosevic, M. Transferrin and the innate immune response of fish: Identification of a novel mechanism of macrophage activation. Dev. Comp. Immunol. 2003, 2, 539–554. [Google Scholar] [CrossRef]
- Jurecka, P.; Irnazarow, I.; Stafford, J.L.; Ruszczyk, A.; Taverne, N.; Belosevic, M. The induction of nitric oxide response of carp macrophages by transferrin is induced by the allelic diversity of the molecule. Fish. Shellfish Immunol. 2009, 26, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hulak, M.; Koubek, P.; Sulc, M.; Dzyuba, B.; Boryshpolets, S.; Rodina, M.; Gela, D.; Manaskova-Postlerova, P.; Peknicova, J.; et al. Ice-age endurance: The effects of cryopreservation on proteins of sperm of common carp, Cyprinus carpio L. Theriogenology 2010, 74, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.A.; Żmijewski, D.; Karol, H.; Hejmej, A.; Bilińska, B.; Jurecka, P.; Irnazarow, I.; Słowińska, M.; Hliwa, P.; Ciereszko, A. Isolation and characterization of transferrin from common carp (Cyprinus carpio L) seminal plasma. Fish. Shellfish Immunol. 2010, 29, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.A.; Dietrich, G.J.; Hliwa, P.; Ciereszko, A. Carp transferrin can protect spermatozoa against toxic effects of cadmium ions. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 153, 422–429. [Google Scholar] [CrossRef]
- Wojtczak, M.; Dietrich, G.J.; Ciereszko, A. Transferrin and antiproteases are major proteins of common carp seminal plasma. Fish. Shellfish Immunol. 2005, 19, 387–391. [Google Scholar] [CrossRef]
- Barthelemy, C.; Khalfoun, B.; Guillaumin, J.M.; Lecomte, P.; Bardos, P. Seminal fluid transferrin as an index of gonadal function in men. J. Reprod. Infertil. 1988, 82, 113–118. [Google Scholar] [CrossRef]
- Wojtczak, M.; Dietrich, G.J.; Irnazarow, I.; Jurecka, P.; Slowinska, M.; Ciereszko, A. Polymorphism of transferrin of carp seminal plasma: Relationship to blood transferrin and sperm motility characteristics. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 148, 426–431. [Google Scholar] [CrossRef]
- Nynca, J.; Arnold, G.J.; Froehlich, T.; Otte, K.; Flenkenthaler, F.; Ciereszko, A. Proteomic identification of rainbow trout seminal plasma proteins. Proteomics 2014, 14, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Nynca, J.; Dietrich, M.A.; Adamek, M.; Steinhagen, D.; Bilinska, B.; Hejmej, A.; Ciereszko, A. Purification, characterization and expression of transferrin from rainbow trout seminal plasma. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2017, 208, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Griswold, M.D. Secretion of testicular transferrin by cultured Sertoli cells is regulated by hormones and retinoids. Biol. Reprod. 1982, 27, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Griswold, M.D. Sertoli cells synthesize and secrete transferrin-like protein. J. Biol. Chem. 1980, 255, 9523–9525. [Google Scholar] [PubMed]
- Mudumana, S.P.; Wan, H.Y.; Singh, M.; Korzh, V.; Gong, Z.Y. Expression analyses of zebrafish transferrin, ifabp, and elastaseB mRNAs as differentiation markers for the three major endodermal organs: Liver, intestine, and exocrine pancreas. Dev. Dyn. 2004, 230, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Denovan-Wright, E.M.; Ramsey, N.B.; McCormick, C.J.; Lazier, C.B.; Wright, J.M. Nucleotide sequence of transferrin cDNAs and tissue-specific of the transferrin gene in Atlantic cod (Gadus morhua). Physiol. B Biochem. Mol. Biol. 1996, 113, 269–273. [Google Scholar] [CrossRef]
- Mikawa, N.; Hirono, I.; Aoki, T. Structure of medaka transferrin gene and its 59-flanking region. Mol. Mar. Biol. Biotechnol. 1996, 5, 225–229. [Google Scholar] [PubMed]
- Lee, J.Y.; Tange, N.; Yamashita, H.; Hirono, I.; Aoki, T. Cloning and Characterization of Transferrin cDNA from Coho Salmon (Oncorhynchus kisutch). Fish. Pathol. 1995, 30, 271–277. [Google Scholar] [CrossRef]
- Ford, M.J. Molecular evolution of transferrin: Evidence for positive selection in salmonids. Mol. Biol. Evol. 2001, 18, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.M.H.; Cosson, J. Sperm motility in fishes. (II) Effects of ions and osmolality: A review. Cell Biol. Int. 2006, 30, 1–14. [Google Scholar] [CrossRef]
- Alavi, S.; Rodina, M.; Gela, D.; Linhart, O. Sperm biology and control of reproduction in sturgeon: (I) testicular development, sperm maturation and seminal plasma characteristics. Rev. Fish. Biol. Fisher. 2012, 22, 695–717. [Google Scholar] [CrossRef]
- Dzyuba, B.; Cosson, J.; Boryshpolets, S.; Bondarenko, O.; Dzyuba, V.; Prokopchuk, G.; Gazo, I.; Rodina, M.; Linhart, O. In vitro sperm maturation in sterlet, Acipenser ruthenus. Reprod. Biol. 2014, 14, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Dzyuba, B.; Boryshpolets, S.; Cosson, J.; Dzyuba, V.; Fedorov, P.; Saito, T.; Psenicka, M.; Linhart, O.; Rodina, M. Motility and fertilization ability of sterlet Acipenser ruthenus testicular sperm after cryopreservation. Cryobiology 2014, 69, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Dzyuba, B.; Bondarenko, O.; Rodina, M.; Dzyuba, V.; Cosson, J.; Linhart, O.; Shelton, W.L.; Boryshpolets, S.; Fedorov, P. Sperm maturation in sturgeon (Actinopterygii, Acipenseriformes): A review. Theriogenology 2017, 97, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, R.M.; Seppey, M.; Simão, F.A.; Manni, M.; Ioannidis, P.; Klioutchnikov, G.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2017, 35, 543–548. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12. [Google Scholar] [CrossRef]
- Huang, Y.; Chain, F.J.; Panchal, M.; Eizaguirre, C.; Kalbe, M.; Lenz, T.L.; Samonte, I.E.; Stoll, M.; Bornberg-Bauer, E.; Reusch, T.B.; et al. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks. Mol. Ecol. 2016, 25, 943–958. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Minh, B.Q.; Susko, E.; Roger, A.J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 2017, 67, 216–235. [Google Scholar] [CrossRef] [PubMed]
- Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, P.G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1, 2856–2860. [Google Scholar] [CrossRef]
- Rehulka, P.; Zahradnikova, M.; Rehulkova, H.; Dvorakova, P.; Nenutil, R.; Valik, D.; Vojtesek, B.; Hernychova, L.; Novotny, M.V. Microgradient separation technique for purification and fractionation of permethylated N-glycans before mass spectrometric analyses. J. Sep. Sci. 2018, 41, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Dillies, M.A.; Rau, A.; Aubert, J.; Hennequet-Antier, C.; Jeanmougin, M.; Servant, N.; Keime, C.; Marot, G.; Castel, D.; Estelle, J.; et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 2013, 14, 671–683. [Google Scholar] [CrossRef]
- Hughes, A.L.; Friedman, R. Evolutionary diversification of the vertebrate transferrin multi-gene family. Immunogenetics 2014, 66, 651–661. [Google Scholar] [CrossRef]
- Brière, N.; Ferrari, J.; Chailler, P. Insulin and transferrin restore important cellular functions of human fetal kidney in serum-free organ culture. Biochem. Cell Biol. 1991, 69, 256–262. [Google Scholar] [CrossRef]
- Zak, O.; Aisen, P. A new method for obtaining human transferrin C-lobe in the native conformation: Preparation and properties. Biochemistry 2002, 41, 1647–1653. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhu, Z.; Wang, R.; Sun, Y.; Xu, T. Miiuy croaker transferrin gene and evidence for positive selection events reveal different evolutionary patterns. PLoS ONE 2012, 7, e43936. [Google Scholar] [CrossRef] [PubMed]
- Ciuraszkiewicz, J.; Olczak, M.; Watorek, W. Isolation and characterisation of crocodile and python ovotransferrins. Acta Biochim. Pol. 2007, 54, 175–182. [Google Scholar] [PubMed]
- Siqueiros-Cendón, T.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.F.; García-Montoya, I.A.; Salazar-Martínez, J.; Rascón-Cruz, Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol. Sin. 2014, 35, 557–566. [Google Scholar] [CrossRef]
- Gomme, P.T.; McCann, K.B.; Bertolini, J. Transferrin: Structure, function and potential therapeutic actions. Drug Discov. Today 2005, 10, 267–273. [Google Scholar] [CrossRef]
- Hevesy, G.; Lockner, D.; Sletten, K. Iron metabolism and erythrocyte formation in fish. Acta Physiol. Scand. 1964, 60, 256–266. [Google Scholar] [CrossRef]
- Dunn, L.L.; Sekyere, E.O.; Rahmanto, Y.S.; Richardson, D.R. The function of melanotransferrin: A role in melanoma cell proliferation and tumorigenesis. Carcinogenesis 2006, 27, 2157–2169. [Google Scholar] [CrossRef]
- Sekyere, E.O.; Dunn, L.L.; Rahmanto, Y.S.; Richardson, D.R. Role of melanotransferrin in iron metabolism: Studies using targeted gene disruption in vivo. Blood 2006, 107, 2599–2601. [Google Scholar] [CrossRef]
- Kawamoto, T.; Pan, H.; Yan, W.Q.; Ishida, H.; Usui, E.; Oda, R.; Nakamasu, K.; Noshiro, M.; Kawashima-Ohya, Y.; Fujii, M.; et al. Expression of membrane-bound transferrin-like protein p97 on the cell surface of chondrocytes. Eur. J. Biochem. 1998, 256, 503–509. [Google Scholar] [CrossRef]
- Brown, J.P.; Woodbury, R.G.; Hart, C.E.; Hellström, I.; Hellström, K.E. Quantitative analysis of melanoma-associated antigen p97 in normal and neoplastic tissues. Proc. Natl. Acad. Sci. USA 1981, 78, 539–543. [Google Scholar] [CrossRef]
- Danielsen, E.M.; van Deurs, B. A transferrin-like GPI-linked iron-binding protein in detergent-insoluble noncaveolar microdomains at the apical surface of fetal intestinal epithelial cells. J. Cell Biol. 1995, 131, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Rahmanto, Y.S.; Dunn, L.L.; Richardson, D.R. Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo. Carcinogenesis 2007, 28, 2172–2183. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Gomez, F.; Ortiz-Pineda, P.A.; Rojas-Cartagena, C.; Suarez-Castillo, E.C.; Garcia-Ararras, J.E. Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima. Immunogenetics 2008, 60, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.M.; Plowman, G.D.; Teplow, D.B.; Dreyer, W.J.; Hellström, K.E.; Brown, J.P. Primary Structure of the Human Melanoma-Associated Antigen p97 (Melanotransferrin) Deduced from the mRNA Sequence. Proc. Natl. Acad. Sci. USA 1986, 83, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Pasos, J.; Valentin-Tirado, G.; Garcia-Arraras, J.E. Melanotransferrin: New Homolog Genes and Their Differential Expression during Intestinal Regeneration in the Sea Cucumber Holothuria glaberrima. J. Exp. Zool. B Mol. Dev. Evol. 2017, 328, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Betancur-R, R.; Wiley, E.O.; Arratia, G.; Acero, A.; Bailly, N.; Miya, M.; Lecointre, G.; Orti, G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.A.; Arnold, G.J.; Nynca, J.; Fröhlich, T.; Otte, K.; Ciereszko, A. Characterization of carp seminal plasma proteome in relation to blood plasma. J. Proteom. 2014, 98, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Papadimas, I.; Papadopoulou, F.; Ioannidis, S.; Katsavelir, R.; Tarlatzis, B.; Bontis, I.; Mantalenakis, S. Seminal plasma transferrin in infertile men. Arch. Androl. 1992, 28, 125–133. [Google Scholar] [CrossRef]
- De Smet, H.; Blust, R.; Moens, L. Cadmium-binding to transferrin in the plasma of the common carp Cyprinus carpio. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001, 128, 45–53. [Google Scholar] [CrossRef]
- Sylvester, S.R.; Griswold, M.D. Localization of transferrin and transferrin receptors in rat testes. Biol. Reprod. 1984, 31, 195–203. [Google Scholar] [CrossRef]
- Leichtmann-Bardoogo, Y.; Cohen, L.A.; Weiss, A.; Marohn, B.; Schubert, S.; Meinhardt, A.; Meyron-Holtz, E.G. Compartmentalization and regulation of iron metabolism proteins protect male germ cells from iron overload. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1519–E1530. [Google Scholar] [CrossRef] [PubMed]
Transcript Name | NCBI Accession Number | Length (nt) | ORF |
---|---|---|---|
Serotransferrin isoform 1 | MN045270 | 465 | 1–465 * |
Serotransferrin isoform 2 | MN045271 | 1790 | 285–1790 * |
Serotransferrin isoform 3 | MN045272 | 2651 | 285–1907 |
Serotransferrin isoform 4 | MN045273 | 1212 | 187–1212 * |
Serotransferrin isoform 5 | MN045274 | 425 | 1–425 * |
Serotransferrin isoform 6 | MN045275 | 1310 | 285–1310 * |
Melanotransferrin isoform 1 | MN045278 | 4514 | 263–2467 |
Serotransferrin | Melanotransferrin | ||||||
---|---|---|---|---|---|---|---|
Isoforms | 1 | 2 | 3 | 4 | 5 | 6 | 1 |
SM T | 0.92 | 0.23 | 0.44 | 0.36 | 0.33 | 0.66 | 0.48 |
OOS T | 0.68 | 0.12 | 0.32 | 0.69 | 0.08 | 0.16 | 1.07 |
SM K | 207.37 | 3.66 | 94.61 | 22.17 | 7.34 | 205.45 | 0.07 |
OOS K | 55.46 | 13.02 | 31.93 | 46.99 | 23.07 | 17.46 | 0.09 |
SM WD | 11.17 | 0.01 | 5.31 | 6.54 | 0.09 | 5.57 | 0.24 |
OOS WD | 4.09 | 0.24 | 1.85 | 3.61 | 0.54 | 1.13 | 0.73 |
Spot No. | Accession No. (a) | Description (b) | Organism | MW, kDa/pI (c) | Score (d) | No. of Peptides (e) | SC, % (f) |
---|---|---|---|---|---|---|---|
1 | MN045272 | serotransferrin isoform 3 | Acipenser ruthenus | 58.50/6.78 | 482.87 | 11 | 24.80 |
MN045273 | serotransferrin isoform 4 | Acipenser ruthenus | 37.40/6.79 | 367.31 | 9 | 25.70 | |
8 | gi|966652723 | hypothetical protein cypCar_00035444 (Triosephosphate isomerase) | Cyprinus carpio | 26.50/5.13 | 113.60 | 2 | 8.70 |
Spot No. | Accession No. (a) | Description (b) | Organism | MW, kDa/pI (c) | Score (d) | No. of Peptides (e) | SC, % (f) |
---|---|---|---|---|---|---|---|
1 | gi|1025390473 | PREDICTED: beta-enolase | Sinocyclocheilus rhinocerous | 47.40/6.58 | 513.09 | 10 | 24.90 |
gi|966672540 | hypothetical protein cypCar_00005974, partial (enolase-like) | Cyprinus carpio | 47.30/4.81 | 338.33 | 5 | 18.20 | |
2 | gi|1025390473 | PREDICTED: beta-enolase | Sinocyclocheilus rhinocerous | 47.40/6.58 | 355.54 | 11 | 21.00 |
gi|966672540 | hypothetical protein cypCar_00005974, partial (enolase-like) | Cyprinus carpio | 47.30/4.81 | 321.81 | 6 | 14.30 | |
19 | gi|82414773 | UNVERIFIED_ORG: zgc:123298 | Danio rerio | 49.90/5.01 | 847.58 | 13 | 35.80 |
gi|45709036 | Tuba1 protein | Danio rerio | 50.10/4.94 | 808.62 | 14 | 40.40 | |
gi|47940377 | Zgc:55461 | Danio rerio | 49.80/4.79 | 634.28 | 11 | 31.00 | |
gi|468861133 | tubulin alpha 1-like protein 2 | Hypophthalmichthys molitrix | 49.20/4.91 | 628.46 | 12 | 37.70 | |
gi|295314924 | tubulin beta 1 | Hypophthalmichthys molitrix | 49.70/4.79 | 613.81 | 11 | 27.60 | |
gi|966714399 | hypothetical protein cypCar_00019490 (tubulin) | Cyprinus carpio | 49.80/5.05 | 555.40 | 9 | 25.40 | |
20 | gi|295314924 | tubulin beta 1 | Hypophthalmichthys molitrix | 49.70/4.79 | 740.86 | 13 | 42.70 |
gi|1025170763 | PREDICTED: tubulin beta chain-like | Sinocyclocheilus rhinocerous | 49.60/4.81 | 658.89 | 10 | 35.10 | |
gi|966703762 | hypothetical protein cypCar_00027299 (tubulin) | Cyprinus carpio | 50.40/4.72 | 582.05 | 9 | 32.30 | |
gi|1101617233 | PREDICTED: tubulin beta chain-like isoform X1 | Cyprinus carpio | 55.90/5.33 | 553.66 | 9 | 26.30 | |
22 | gi|1101525613 | PREDICTED: tubulin beta-1 chain-like | Cyprinus carpio | 49.70/4.75 | 87.37 | 2 | 6.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, M.; Vechtova, P.; Shaliutina-Kolesova, A.; Fussy, Z.; Loginov, D.; Dzyuba, B.; Linhart, O.; Boryshpolets, S.; Rodina, M.; Li, P.; et al. Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System. Animals 2019, 9, 753. https://doi.org/10.3390/ani9100753
Xin M, Vechtova P, Shaliutina-Kolesova A, Fussy Z, Loginov D, Dzyuba B, Linhart O, Boryshpolets S, Rodina M, Li P, et al. Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System. Animals. 2019; 9(10):753. https://doi.org/10.3390/ani9100753
Chicago/Turabian StyleXin, Miaomiao, Pavlina Vechtova, Anna Shaliutina-Kolesova, Zoltan Fussy, Dmitry Loginov, Borys Dzyuba, Otomar Linhart, Serhii Boryshpolets, Marek Rodina, Ping Li, and et al. 2019. "Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System" Animals 9, no. 10: 753. https://doi.org/10.3390/ani9100753
APA StyleXin, M., Vechtova, P., Shaliutina-Kolesova, A., Fussy, Z., Loginov, D., Dzyuba, B., Linhart, O., Boryshpolets, S., Rodina, M., Li, P., Loginova, Y., & Sterba, J. (2019). Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System. Animals, 9(10), 753. https://doi.org/10.3390/ani9100753