Effects of Maternal Low-Protein Diet on Microbiota Structure and Function in the Jejunum of Huzhu Bamei Suckling Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. 16S rRNA Sequencing and KEGG Analysis
2.3. 16S rRNA Gene Quantification by Relative Quantitative Real-Time PCR
2.4. Statistical Analysis
3. Results
3.1. Animal Monitoring and Litter Size Analysis
3.2. Maternal Low-Protein Diet Induced Changes to the Jejunum Microbiome
4. Discussion
5. Conclusions
Availability of Data and Materials
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kabat, A.M.; Srinivasan, N.; Maloy, K.J. Modulation of immune development and function by intestinal microbiota. Trends Immunol. 2014, 35, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Rosa, K.B.; Zehra-Esra, I.; Dae-Wook, K.; Dibaise, J.K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 2015, 27, 201–214. [Google Scholar]
- Bahrndorff, S.; Jonge, N.D.; Hansen, J.K.; Lauritzen, J.M.S.; Spanggaard, L.H.; Sørensen, M.H.; Yde, M.; Nielsen, J.L. Diversity and metabolic potential of the microbiota associated with a soil arthropod. Sci. Rep. 2018, 8, 2491. [Google Scholar] [CrossRef] [PubMed]
- Niyazov, S.A.; Kalnitsky, B.D. Effects of Low-Protein Diets with Different Levels of Essential Amino Acids and Metabolizable Energy on Productivity and Metabolic Processes in Pigs. Russ. Agric. Sci. 2018, 44, 75–79. [Google Scholar] [CrossRef]
- Mithieux, G. Gut nutrient sensing and microbiota function in the control of energy homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 273. [Google Scholar] [CrossRef]
- Vadder, F.D.; Mithieux, G. Gut-brain signaling in energy homeostasis: The unexpected role of microbiota-derived succinate. J. Endocrinol. 2018, 236, R105–R108. [Google Scholar] [CrossRef] [PubMed]
- Kamdar, K.; Johnson, A.; Chac, D.; Myers, K.; Kulur, V.; Truevillian, K.; Depaolo, R.W. Innate Recognition of the Microbiota by TLR1 Promotes Epithelial Homeostasis and Prevents Chronic Inflammation. J. Immunol. 2018, 201, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, J.; Gang, W.; Shuang, C.; Zeng, X.; Qiao, S. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 2018, 9, 60–74. [Google Scholar] [CrossRef]
- Rist, V.T.S.; Weiss, E.; Eklund, M.; Mosenthin, R. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: A review. Animal 2013, 7, 1067–1078. [Google Scholar] [CrossRef]
- Chen, X.; Song, P.; Fan, P.; He, T.; Jacobs, D.; Levesque, C.L.; Johnston, L.J.; Ji, L.; Ning, M.; Chen, Y. Moderate Dietary Protein Restriction Optimized Gut Microbiota and Mucosal Barrier in Growing Pig Model. Front. Cell. Infect. Microbiol. 2018, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Huber, L.A.; Rudar, M.; Trottier, N.L.; Cant, J.P.; de Lange, C.F.M. Whole-Body Nitrogen Utilization and Tissue Protein and Casein Synthesis in Lactating Primiparous Sows Fed Low- and High- Protein Diets. J. Anim. Sci. 2018, 96, 2380–2391. [Google Scholar] [CrossRef] [PubMed]
- Len, N.T.; Hong, T.T.T.; Ogle, B.; Lindberg, J.E. Comparison of total tract digestibility, development of visceral organs and digestive tract of Mong cai and Yorkshire x Landrace piglets fed diets with different fibre sources. J. Anim. Physiol. Anim. Nutr. 2010, 93, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Hu, L.; Liu, Y.; Yan, C.; Fang, Z.F.; Lin, Y.; Xu, S.Y.; Li, J.; Wu, C.M.; Chen, D.W. Effects of low-protein diets supplemented with indispensable amino acids on growth performance, intestinal morphology and immunological parameters in 13 to 35 kg pigs. Animal 2016, 10, 1812–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alireza, J.M.; Luhovyy, B.L.; Dalia, E.K.; Harvey, G.A. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 2011, 3, 574–603. [Google Scholar]
- Gloaguen, M.; Le Floc’H, N.; Corrent, E.; Primot, Y.; van Milgen, J. The use of free amino acids allows formulating very low crude protein diets for piglets. J. Anim. Sci. 2014, 92, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.M.; Ma, X.Y.; Yang, X.F.; Fan, Q.L.; Xiong, Y.X.; Qiu, Y.Q.; Wang, L.; Wen, X.L.; Jiang, Z.Y. Influence of low protein diets on gene expression of digestive enzymes and hormone secretion in the gastrointestinal tract of young weaned piglets. J. Zhejiang Univ. Sci. B 2016, 17, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Tanja, M.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Werner, J.J.; Zhou, D.; Caporaso, J.G.; Knight, R.; Angenent, L.T. Comparison of Illumina paired-end and single-direction sequencing for microbial 16S rRNA gene amplicon surveys. ISME J. 2012, 6, 1273–1276. [Google Scholar] [CrossRef]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, X.; Xu, S.; Wu, C.; Qin, N.; Chen, S.D.; Xiao, Q. Detection of Microbial 16S rRNA Gene in the Blood of Patients with Parkinson’s Disease. Front. Aging Neurosci. 2018, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.; Hertel, C.; Tannock, G.W.; Lis, C.M.; Munro, K.; Hammes, W.P. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 2001, 67, 2578–2585. [Google Scholar] [CrossRef] [PubMed]
- Chugh, K.; Kaur, J.; Saini, A.S.; Lal, H. Effects of feeding low protein diet with and without leucine supplementation on protein status of lactating females and their pups. Indian J. Physiol. Pharmacol. 1991, 35, 117–120. [Google Scholar] [PubMed]
- Osgerby, J.C.; Wathes, D.C.; Howard, D.; Gadd, T.S. The effect of maternal undernutrition on ovine fetal growth. J. Endocrinol. 2002, 173, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recharla, N.; Kim, K.; Park, J.; Jeong, J.; Jeong, Y.; Lee, H.; Hwang, O.; Ryu, J.; Baek, Y.; Oh, Y. Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta. J. Anim. Sci. Technol. 2017, 59, 28. [Google Scholar] [CrossRef] [PubMed]
- Pluske, J.R.; Pethick, D.W.; Hopwood, D.E.; Hampson, D.J. Nutritional influences on some major enteric bacterial diseases of pig. Nutr. Res. Rev. 2002, 15, 333–371. [Google Scholar] [CrossRef] [PubMed]
- Looft, T.; Allen, H.K.; Cantarel, B.L.; Levine, U.Y.; Bayles, D.O.; Alt, D.P.; Henrissat, B.; Stanton, T.B. Bacteria, phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 2014, 8, 1566–1576. [Google Scholar] [CrossRef]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Requena, T.; Cotter, P.; Shahar, D.R.; Kleiveland, C.R.; Martínez-Cuesta, M.C.; Peláez, C.; Lea, T. Interactions between gut microbiota, food and the obese host. Trends Food Sci. Technol. 2013, 34, 44–53. [Google Scholar] [CrossRef]
- Collins, S.M.; Michael, S.; Premysl, B. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef]
- Libao-Mercado, A.J.O.; Zhu, C.L.; Cant, J.P.; Hélène, L.; Thibault, J.N.; Bernard, S.; Fuller, M.F.; de Lange, C.F.M. Dietary and endogenous amino acids are the main contributors to microbial protein in the upper gut of normally nourished pigs. J. Nutr. 2009, 139, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Gensollen, T.; Blumberg, R.S. Correlation between early-life regulation of the immune system by microbiota and allergy development. J. Allergy Clin. Immunol. 2017, 139, 1084–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinke, P.C.; Aidy, S.E.; Dijk, G.V. The Role of Supplemental Complex Dietary Carbohydrates and Gut Microbiota in Promoting Cardiometabolic and Immunological Health in Obesity: Lessons from Healthy Non-Obese Individuals. Front. Nutr. 2017, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Donia, M.S.; Fischbach, M.A. HUMAN MICROBIOTA. Small molecules from the human microbiota. Science 2015, 349, 1254766. [Google Scholar] [CrossRef] [PubMed]
- Malmuthuge, N.; Le, L.G. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. J. Dairy Sci. 2017, 100, 5996–6005. [Google Scholar] [CrossRef] [PubMed]
- Cerdó, T.; Ruiz, A.; Jáuregui, R.; Azaryah, H.; Torres-Espínola, F.J.; García-Valdés, L.; Segura, M.T.; Suárez, A.; Campoy, C. Maternal obesity is associated with gut microbial metabolic potential in offspring during infancy. J. Physiol. Biochem. 2018, 74, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gibson, M.K.; Wang, B.; Ahmadi, S.; Burnham, C.A.D.; Tarr, P.I.; Warner, B.B.; Dantas, G. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 2016, 1, 16024. [Google Scholar] [CrossRef] [PubMed]
- Relman, D.A.; Lipsitch, M. Microbiome as a tool and a target in the effort to address antimicrobial resistance. Proc. Natl. Acad. Sci. USA 2018, 115, 12902–12910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, D.L.; Simões, F.S.; Saavedra, L.P.J.; Moraes, A.M.P.; Matiusso, C.C.I.; Malta, A.; Palma-Rigo, K.; Mathias, P.C.D.F. Maternal low-protein diet during lactation combined with early overfeeding impair male offspring’s long-term glucose homeostasis. Endocrine 2019, 63, 62–69. [Google Scholar] [CrossRef]
- Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients Mediate Intestinal Bacteria–Mucosal Immune Crosstalk. Front. Immunol. 2018, 9, 5. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ Clin. Res. 2018, 361, k2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toru, M.; Junichi, T.; Tomoyuki, N.; Naoya, S. Antibiotics production by an actinomycete isolated from the termite gut. J. Basic Microbiol. 2012, 52, 731–735. [Google Scholar]
- Poppleton, D.I.; Duchateau, M.; Hourdel, V.; Matondo, M.; Flechsler, J.; Klingl, A.; Beloin, C.; Gribaldo, S. Outer Membrane Proteome of Veillonella parvula: A Diderm Firmicute of the Human Microbiome. Front. Microbiol. 2017, 8, 1215. [Google Scholar] [CrossRef] [PubMed]
- Strati, F.; Cavalieri, D.; Albanese, D.; Felice, C.D.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Marie-Claire, A.; Stiemsma, L.T.; Dimitriu, P.A.; Lisa, T.; Shannon, R.; Sophie, Y.D.; Boris, K.; Gold, M.J.; Britton, H.M.; Lefebvre, D.L. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015, 7, 307ra152. [Google Scholar]
- Hasegawa, K.; Linnemann, R.W.; Mansbach, J.M.; Ajami, N.J.; Espinola, J.A.; Petrosino, J.F.; Piedra, P.A.; Stevenson, M.D.; Sullivan, A.F.; Thompson, A.D. The Fecal Microbiota Profile and Bronchiolitis in Infants. Pediatrics 2016, 138, e20160218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep. 2017, 7, 43412. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. Gut microbiota: Changes in gut microbes and host metabolism: Squaring the circle? Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 563–564. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef]
- Turroni, S.; Brigidi, P.; Cavalli, A.; Candela, M. Microbiota-host Transgenomic Metabolism, Bioactive Molecules from the Inside. J. Med. Chem. 2017, 61, 47–61. [Google Scholar] [CrossRef]
- Htoo, J.K.; Araiza, B.A.; Sauer, W.C.; Rademacher, M.; Zhang, Y.; Cervantes, M.; Zijlstra, R.T. Effect of dietary protein content on ileal amino acid digestibility, growth performance, and formation of microbial metabolites in ileal and cecal digesta of early-weaned pigs. J. Anim. Sci. 2007, 85, 3303–3312. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Interaction between Microbes and Host Intestinal Health: Modulation by Dietary Nutrients and Gut-Brain-Endocrine-Immune Axis. Curr. Protein Pept. Sci. 2015, 16, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Opapeju, F.O.; Krause, D.O.; Payne, R.L.; Rademacher, M.; Nyachoti, C.M. Effect of dietary protein level on growth performance, indicators of enteric health, and gastrointestinal microbial ecology of weaned pigs induced with postweaning colibacillosis. J. Anim. Sci. 2009, 87, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Estelle, D.; Mcintosh, F.M.; Duncan, S.H.; John, R.W. Metabolism of linoleic acid by human gut bacteria: Different routes for biosynthesis of conjugated linoleic acid. J. Bacteriol. 2007, 189, 2566–2570. [Google Scholar]
- Fan, P. Metabolites of Dietary Protein and Peptides by Intestinal Microbes and their Impacts on Gut. Curr. Protein Pept. Sci. 2015, 16, 646–654. [Google Scholar] [CrossRef]
- Berer, K.; Krishnamoorthy, G. Microbial view of central nervous system autoimmunity. FEBS Lett. 2014, 588, 4207–4213. [Google Scholar] [CrossRef] [PubMed]
- Sealy, L.; Chalkley, R. The effect of sodium butyrate on histone modification. Cell 1978, 14, 115–121. [Google Scholar] [CrossRef]
- Gerard, C.; Stilling, R.M.; Kennedy, P.J.; Catherine, S.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol. 2014, 28, 1221–1238. [Google Scholar]
Item | Content (%) a | ||
---|---|---|---|
VLP | LP | NP | |
Ingredient composition | |||
Corn | 56.14 | 50.60 | 44.90 |
Soybean meal | 0.70 | 4.50 | 9.80 |
Rapeseed Meal | 0.00 | 2.50 | 2.70 |
Wheat bran | 38.36 | 37.78 | 38.14 |
Lys | 0.45 | 0.34 | 0.20 |
Met | 0.10 | 0.07 | 0.05 |
Thr | 0.21 | 0.15 | 0.10 |
Trp | 0.03 | 0.02 | 0.01 |
Val | 0.01 | 0.04 | 0.10 |
4% premix b | 4.00 | 4.00 | 4.00 |
Nutrient levels | |||
DE (MJ/kg) | 11.71 | 11.72 | 11.73 |
CP | 10.00 | 12.04 | 14.00 |
Lys | 0.80 | 0.81 | 0.80 |
Met+Cys | 0.31 | 0.33 | 0.31 |
Thr | 0.36 | 0.35 | 0.35 |
Trp | 0.09 | 0.08 | 0.08 |
Val | 0.25 | 0.26 | 0.23 |
Total Ca | 0.61 | 0.62 | 0.62 |
Total P | 0.52 | 0.51 | 0.54 |
Salt | 3.20 | 3.20 | 3.20 |
Item | NP | LP | VLP |
---|---|---|---|
Litter size | 11.80 ± 0.61 b | 13.40 ± 0.52 a | 12.40 ± 0.40 ab |
Live litter rate (%) | 87.47 ± 4.45 | 85.64 ± 4.82 | 86.09 ± 2.72 |
Birth weight (kg) | 0.91 ± 0.20 a | 0.84 ± 0.20 b | 0.90 ± 0.19 a |
Diarrhea rate (%) | 30.93 ± 13.56 a | 20.43 ± 7.27 b | 19.90 ± 4.88 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Zhang, L.; Jia, J.; Chen, Q.; Yuan, Z.; Zhang, X.; Sun, W.; Ma, C.; Xu, F.; Zhan, S.; et al. Effects of Maternal Low-Protein Diet on Microbiota Structure and Function in the Jejunum of Huzhu Bamei Suckling Piglets. Animals 2019, 9, 713. https://doi.org/10.3390/ani9100713
Jin J, Zhang L, Jia J, Chen Q, Yuan Z, Zhang X, Sun W, Ma C, Xu F, Zhan S, et al. Effects of Maternal Low-Protein Diet on Microbiota Structure and Function in the Jejunum of Huzhu Bamei Suckling Piglets. Animals. 2019; 9(10):713. https://doi.org/10.3390/ani9100713
Chicago/Turabian StyleJin, Jipeng, Liping Zhang, Jianlei Jia, Qian Chen, Zan Yuan, Xiaoyan Zhang, Weibo Sun, Cunming Ma, Fafang Xu, Shoujun Zhan, and et al. 2019. "Effects of Maternal Low-Protein Diet on Microbiota Structure and Function in the Jejunum of Huzhu Bamei Suckling Piglets" Animals 9, no. 10: 713. https://doi.org/10.3390/ani9100713
APA StyleJin, J., Zhang, L., Jia, J., Chen, Q., Yuan, Z., Zhang, X., Sun, W., Ma, C., Xu, F., Zhan, S., Ma, L., & Zhou, G. (2019). Effects of Maternal Low-Protein Diet on Microbiota Structure and Function in the Jejunum of Huzhu Bamei Suckling Piglets. Animals, 9(10), 713. https://doi.org/10.3390/ani9100713