Feeding Canola, Camelina, and Carinata Meals to Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Chemical Composition
2.1. Canola Meal
2.2. Camelina Meal
2.3. Carinata Meal
3. Dietary Inclusion and Effects on Dry Matter Intake
3.1. Canola Meal
3.2. Camelina Meal
3.3. Carinata Meal
4. Effects on Ruminal Fermentation and Microbial Population
4.1. Canola Meal
4.2. Camelina Meal
4.3. Carinata Meal
5. Effects on Digestion and Metabolism
5.1. Canola Meal
5.2. Camelina Meal
5.3. Carinata Meal
6. Effects on Milk Production and Composition
6.1. Canola Meal
6.2. Camelina Meal
6.3. Carinata Meal
7. Effects on Growth
7.1. Canola Meal
7.2. Camelina Meal
7.3. Carinata Meal
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; ISBN 9789251095515. [Google Scholar]
- Oltjen, J.W.; Beckett, J.L. Role of Ruminant Livestock in Sustainable Agricultural Systems. J. Anim. Sci. 1996, 74, 1406–1409. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M. Re-defining efficiency of feed use by livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canola Council of Canada. Canola Meal Feeding Guide, 5th ed.; Canola Council of Canada: Winnipeg, MB, Canada, 2015. [Google Scholar]
- Kramer, J.K.G.; Farnworth, E.R.; Johnston, K.M.; Wolynetz, M.S.; Modler, H.W.; Sauer, F.D. Myocardial changes in newborn piglets fed sow milk or milk replacer diets containing different levels of erucic acid. Lipids 1990, 25, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Mawson, R.; Heaney, R.K.; Zdunczyk, Z.; Kozlowska, H. Rapeseed meal-glucosinolates and their antinutritional effects. Part 5. Animal reproduction. Nahrung 1994, 38, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Zubr, J. Qualitative variation of Camelina sativa seed from different locations. Ind. Crop. Prod. 2003, 17, 161–169. [Google Scholar] [CrossRef]
- Vollmann, J.; Moritz, T.; Kargl, C.; Baumgartner, S.; Wagentristl, H. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind. Crop. Prod. 2007, 26, 270–277. [Google Scholar] [CrossRef]
- Moser, B.R. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol. 2010, 22, 270–273. [Google Scholar] [CrossRef]
- Lawrence, R.D.; Anderson, J.L.; Clapper, J.A. Evaluation of camelina meal as a feedstuff for growing dairy heifers. J. Dairy Sci. 2016, 99, 6215–6228. [Google Scholar] [CrossRef]
- Xin, H.; Falk, K.C.; Yu, P. Studies on Brassica carinata Seed. 2. Carbohydrate Molecular Structure in Relation to Carbohydrate Chemical Profile, Energy Values, and Biodegradation Characteristics. J. Agric. Food Chem. 2013, 61, 10127–10134. [Google Scholar] [CrossRef]
- Getinet, A.; Rakow, G.; Raney, J.P.; Downey, R.K. Development of zero erucic acid Ethiopian mustard through an interspecific cross with zero erucic acid Oriental mustard. Can. J. Plant Sci. 1994, 74, 793–795. [Google Scholar] [CrossRef]
- Dorado, M.P.; Ballesteros, E.; López, F.J.; Mittelbach, M. Optimization of Alkali-Catalyzed Transesterification of Brassica Carinata Oil for Biodiesel Production. Energy Fuels 2004, 18, 77–83. [Google Scholar] [CrossRef]
- Ban, Y.; Khan, N.A.; Yu, P. Nutritional and Metabolic Characteristics of Brassica carinata Co-products from Biofuel Processing in Dairy Cows. J. Agric. Food Chem. 2017, 65, 5994–6001. [Google Scholar] [CrossRef]
- Velasco, L.; Fernandez-Martinez, J.; Haro, A. Isolation of induced mutants in Ethiopian mustard (Brassica carinata Braun) with low levels of erucic acid. Plant Breed. 1995, 114, 454–456. [Google Scholar] [CrossRef]
- Xin, H.; Yu, P. Rumen degradation, intestinal and total digestion characteristics and metabolizable protein supply of carinata meal (a non-conventional feed resource) in comparison with canola meal. Anim. Feed Sci. Technol. 2014, 191, 106–110. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- Maesoomi, S.M.; Ghorbani, G.R.; Alikhani, M.; Nikkhah, A. Short Communication: Canola Meal as a Substitute for Cottonseed Meal in Diet of Midlactation Holsteins. J. Dairy Sci. 2006, 89, 1673–1677. [Google Scholar] [CrossRef]
- Mulrooney, C.N.; Schingoethe, D.J.; Kalscheur, K.F.; Hippen, A.R. Canola meal replacing distillers grains with solubles for lactating dairy cows. J. Dairy Sci. 2009, 92, 5669–5676. [Google Scholar] [CrossRef]
- Hristov, A.N.; Domitrovich, C.; Wachter, A.; Cassidy, T.; Lee, C.; Shingfield, K.J.; Kairenius, P.; Davis, J.; Brown, J. Effect of replacing solvent-extracted canola meal with high-oil traditional canola, high-oleic acid canola, or high-erucic acid rapeseed meals on rumen fermentation, digestibility, milk production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2011, 94, 4057–4074. [Google Scholar] [CrossRef]
- Moshtaghi Nia, S.A.; Ingalls, J.R. Influence of Moist Heat Treatment on Ruminal and Intestinal Disappearance of Amino Acids from Canola Meal. J. Dairy Sci. 2010, 78, 1552–1560. [Google Scholar] [CrossRef]
- Paz, H.A.; Klopfenstein, T.J.; Hostetler, D.; Fernando, S.C.; Castillo-Lopez, E.; Kononoff, P.J. Ruminal degradation and intestinal digestibility of protein and amino acids in high-protein feedstuffs commonly used in dairy diets. J. Dairy Sci. 2014, 97, 6485–6498. [Google Scholar] [CrossRef]
- Weiss, W.P.; Wyatt, D.J.; Kleinschmit, D.H.; Socha, M.T. Effect of including canola meal and supplemental iodine in diets of dairy cows on short-term changes in iodine concentrations in milk. J. Dairy Sci. 2015, 98, 4841–4849. [Google Scholar] [CrossRef] [Green Version]
- Paula, E.M.; Monteiro, H.F.; Silva, L.G.; Benedeti, P.D.B.; Daniel, J.L.P.; Shenkoru, T.; Broderick, G.A.; Faciola, A.P. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems. J. Dairy Sci. 2017, 100, 5281–5292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paula, E.M.; Broderick, G.A.; Danes, M.A.C.; Lobos, N.E.; Zanton, G.I.; Faciola, A.P. Effects of replacing soybean meal with canola meal or treated canola meal on ruminal digestion, omasal nutrient flow, and performance in lactating dairy cows. J. Dairy Sci. 2018, 101, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Brandao, V.L.N.; Dai, X.; Paula, E.M.; Silva, L.G.; Marcondes, M.I.; Shenkoru, T.; Poulson, S.R.; Faciola, A.P. Effect of replacing calcium salts of palm oil with camelina seed at 2 dietary ether extract levels on digestion, ruminal fermentation, and nutrient flow in a dual-flow continuous culture system. J. Dairy Sci. 2018, 101, 5046–5059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Beauchemin, K.A.; Yang, W.Z. Effects of supplemental canola meal and various types of distillers grains on ruminal degradability, duodenal flow, and intestinal digestibility of protein and amino acids in backgrounded heifers. J. Anim. Sci. 2013, 91, 5399–5409. [Google Scholar] [CrossRef]
- Mustafa, A.F.; Christensen, D.A.; McKinnon, J.J. The effects of feeding high fiber canola meal on total tract digestibility and milk production. Can. J. Anim. Sci. 1997, 77, 133–140. [Google Scholar] [CrossRef]
- Nair, J.; Penner, G.B.; Yu, P.; Lardner, H.A.; McAllister, T.; Damiran, D.; McKinnon, J.J. Evaluation of canola meal derived from Brassica juncea and Brassica napus seed as an energy source for feedlot steers. Can. J. Anim. Sci 2015, 95, 599–607. [Google Scholar]
- Christen, K.A.; Schingoethe, D.J.; Kalscheur, K.F.; Hippen, A.R.; Karges, K.K.; Gibson, M.L. Response of lactating dairy cows to high protein distillers grains or 3 other protein supplements. J. Dairy Sci. 2010, 93, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Acharya, I.P.; Schingoethe, D.J.; Kalscheur, K.F.; Casper, D.P. Response of lactating dairy cows to dietary protein from canola meal or distillers’ grains on dry matter intake, milk production, milk composition, and amino acid status. Can. J. Anim. Sci. 2015, 95, 267–279. [Google Scholar] [CrossRef]
- Bell, J.M. Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci. 1993, 73, 689–697. [Google Scholar] [CrossRef]
- Van de Kerckhove, A.Y.; Lardner, H.A.; Yu, P.; McKinnon, J.J.; Walburger, K. Effect of dried distillers’ grain, soybean meal and grain or canola meal and grain-based supplements on forage intake and digestibility. Can. J. Anim. Sci. 2011, 91, 123–132. [Google Scholar] [CrossRef]
- Swanepoel, N.; Robinson, P.H.; Erasmus, L.J. Determining the optimal ratio of canola meal and high protein dried distillers grain protein in diets of high producing Holstein dairy cows. Anim. Feed Sci. Technol. 2014, 189, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Swanepoel, N.; Robinson, P.H.; Erasmus, L.J. Effects of ruminally protected methionine and/or phenylalanine on performance of high producing Holstein cows fed rations with very high levels of canola meal. Anim. Feed Sci. Technol. 2015, 205, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Tuncer, S.D.; Sacakli, P. Rumen degradability characteristics of xylose treated canola and soybean meals. Anim. Feed Sci. Technol. 2003, 107, 211–218. [Google Scholar] [CrossRef]
- Newkirk, R. Meal Nutrient Composition BT—Canola. Canola 2011, 229–244. [Google Scholar]
- McKinnon, J.J.; Olubobokun, J.A.; Mustafa, A.; Cohen, R.D.H.; Christensen, D.A. Influence of dry heat treatment of canola meal on site and extent of nutrient disappearance in ruminants. Anim. Feed Sci. Technol. 1995, 56, 243–252. [Google Scholar] [CrossRef]
- Maxin, G.; Ouellet, D.R.; Lapierre, H. Effect of substitution of soybean meal by canola meal or distillers grains in dairy rations on amino acid and glucose availability. J. Dairy Sci. 2013, 96, 7806–7817. [Google Scholar] [CrossRef]
- Broderick, G.A.; Faciola, A.P.; Armentano, L.E. Replacing dietary soybean meal with canola meal improves production and efficiency of lactating dairy cows. J. Dairy Sci. 2015, 98, 5672–5687. [Google Scholar] [CrossRef]
- Galindo, C.; Larsen, M.; Ouellet, D.R.; Maxin, G.; Pellerin, D.; Lapierre, H. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism. J. Dairy Sci. 2015, 98, 7962–7974. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.A.; Colombini, S.; Costa, S.; Karsli, M.A.; Faciola, A.P. Chemical and ruminal in vitro evaluation of Canadian canola meals produced over 4 years. J. Dairy Sci. 2016, 99, 7956–7970. [Google Scholar] [CrossRef] [Green Version]
- Piepenbrink, M.S.; Schingoethe, D.J. Ruminal degradation, amino acid composition, and estimated intestinal digestibilities of four protein supplements. J. Dairy Sci. 1998, 81, 454–461. [Google Scholar] [CrossRef]
- Brito, A.F.; Broderick, G.A. Effects of Different Protein Supplements on Milk Production and Nutrient Utilization in Lactating Dairy Cows. J. Dairy Sci. 2007, 90, 1816–1827. [Google Scholar] [CrossRef] [PubMed]
- Heendeniya, R.G.; Christensen, D.A.; Maenz, D.D.; McKinnon, J.J.; Yu, P. Protein fractionation byproduct from canola meal for dairy cattle. J. Dairy Sci. 2012, 95, 4488–4500. [Google Scholar] [CrossRef] [PubMed]
- Hickling, D. Maximized utilization of canola co-products in livestock industry. In Proceedings of the 29th Western Nutrition Conference, Edmonton, AB, Canada, 23–24 September 2008. [Google Scholar]
- Harker, N.K.; O’Donovan, T.J.; Turkington, K.T.; Blackshaw, E.R.; Lupwayi, Z.N.; Smith, G.E.; Klein-Gebbinck, H.; Dosdall, M.L.; Hall, M.L.; Willenborg, J.C.; et al. High-yield no-till canola production on the Canadian prairies. Can. J. Plant Sci. 2012, 92, 221–233. [Google Scholar] [CrossRef]
- Huhtanen, P.; Hetta, M.; Swensson, C. Evaluation of canola meal as a protein supplement for dairy cows: A review and a meta-analysis. Can. J. Anim. Sci. 2011, 91, 529–543. [Google Scholar] [CrossRef]
- Brito, A.F.; Broderick, G.A.; Reynal, S.M. Effects of Different Protein Supplements on Omasal Nutrient Flow and Microbial Protein Synthesis in Lactating Dairy Cows. J. Dairy Sci. 2007, 90, 1828–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newkirk, R.W.; Classen, H.; Scott, T.A.; Edney, M.J. The digestibility and content of amino acids in toasted and non-toasted canola meals. Can. J. Anim. Sci. 2003, 83, 131–139. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001; The National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- Holst, B.; Williamson, G. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep. 2004, 21, 425–447. [Google Scholar] [CrossRef] [PubMed]
- Martineau, R.; Ouellet, D.R.; Lapierre, H. Feeding canola meal to dairy cows: A meta-analysis on lactational responses. J. Dairy Sci. 2013, 96, 1701–1714. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Lebas, F. Camelina (Camelina sativa) Seeds and Oil Meal. Available online: https://feedipedia.org/node/4254 (accessed on 8 August 2019).
- Brandao, V.L.N.; Silva, L.G.; Paula, E.M.; Monteiro, H.F.; Dai, X.; Lelis, A.L.J.; Faccenda, A.; Poulson, S.R.; Faciola, A.P. Effects of replacing canola meal with solvent-extracted camelina meal on microbial fermentation in a dual-flow continuous culture system. J. Dairy Sci. 2018, 101, 9028–9040. [Google Scholar] [CrossRef]
- Moriel, P.; Nayigihugu, V.; Cappellozza, B.I.; Gonçalves, E.P.; Krall, J.M.; Foulke, T.; Cammack, K.M.; Hess, B.W. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers. J. Anim. Sci. 2011, 89, 4314–4324. [Google Scholar] [CrossRef]
- Kiarie, E.; Walsh, M.C.; He, L.; Velayudhan, D.E.; Yin, Y.L.; Nyachoti, C.M. Phytase improved digestible protein, phosphorous, and energy contents in camelina expellers fed to growing pigs. J. Anim. Sci. 2016, 94, 215–218. [Google Scholar] [CrossRef]
- Smit, M.N.; Beltranena, E. Effects of feeding camelina cake to weaned pigs on safety, growth performance, and fatty acid composition of pork1. J. Anim. Sci. 2017, 95, 2496–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombini, S.; Broderick, G.A.; Galasso, I.; Martinelli, T.; Rapetti, L.; Russo, R.; Reggiani, R. Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. J. Sci. Food Agric. 2014, 94, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Yu, P. Chemical Profile, Energy Values, and Protein Molecular Structure Characteristics of Biofuel/Bio-oil Co-products (carinata Meal) in Comparison with Canola Meal. J. Agric. Food Chem. 2013, 61, 3926–3933. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, S.; Garcia, I.L.; Lopez-Gimenez, F.J.; Luque de Castro, M.D.; Dorado, G.; Dorado, M.P. The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy Fuels 2009, 23, 2325–2341. [Google Scholar] [CrossRef]
- Matthäs, B. Antinutritive Compounds in Different Oilseeds. Eur. J. Lipid. Sci. Technol. 1997, 99, 170–174. [Google Scholar] [CrossRef]
- Lardy, G.P.; Kerley, M.S. Effect of increasing the dietary level of rapeseed meal on intake by growing beef steers1. J. Anim. Sci. 1994, 72, 1936–1942. [Google Scholar] [CrossRef]
- Hurtaud, C.; Peyraud, J.L. Effects of Feeding Camelina (Seeds or Meal) on Milk Fatty Acid Composition and Butter Spreadability. J. Dairy Sci. 2007, 90, 5134–5145. [Google Scholar] [CrossRef]
- Cappellozza, B.I.; Cooke, R.F.; Bohnert, D.W.; Cherian, G.; Carroll, J.A. Effects of Camelina meal supplementation on ruminal forage degradability, performance, and physiological responses of beef cattle. J. Anim. Sci. 2012, 90, 4042–4054. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sustain. Energy Rev. 2010, 14, 200–216. [Google Scholar] [CrossRef]
- Sorda, G.; Banse, M.; Kemfert, C. An overview of biofuel policies across the world. Energy Policy 2010, 38, 6977–6988. [Google Scholar] [CrossRef]
- Rodriguez-Hernandez, K.; Anderson, J.L. Evaluation of carinata meal as a feedstuff for growing dairy heifers: Effects on growth performance, rumen fermentation, and total-tract digestibility of nutrients. J. Dairy Sci. 2018, 101, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Falk, K.C.; Yu, P. Studies on Brassica carinata Seed. 1. Protein Molecular Structure in Relation to Protein Nutritive Values and Metabolic Characteristics. J. Agric. Food Chem. 2013, 61, 10118–10126. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Stern, M.D. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. J. Anim. Sci. 1995, 73, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Rinne, M.; Kuoppala, K.; Ahvenjarvi, S.; Vanhatalo, A. Dairy cow responses to graded levels of rapeseed and soya bean expeller supplementation on a red clover/grass silage-based diet. Animal 2015, 9, 1958–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargallo, S.; Calsamiglia, S.; Ferret, A. Technical note: A modified three-step in vitro procedure to determine intestinal digestion of proteins. J. Anim. Sci. 2006, 84, 2163–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chibisa, G.E.; Christensen, D.A.; Mutsvangwa, T. Effects of replacing canola meal as the major protein source with wheat dried distillers grains with solubles on ruminal function, microbial protein synthesis, omasal flow, and milk production in cows. J. Dairy Sci. 2012, 95, 824–841. [Google Scholar] [CrossRef] [PubMed]
- AAFCO. Ingredient Definitions Committee Meeting; The Association of American Feed Control Officials: Sacramento, CA, USA, 2014. [Google Scholar]
- Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Lampi, A.-M.; Toivonen, V.; Shingfield, K.J.; Vanhatalo, A. Effect of plant oils and camelina expeller on milk fatty acid composition in lactating cows fed diets based on red clover silage. J. Dairy Sci. 2011, 94, 4413–4430. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Martineau, R.; Gervais, R. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production. J. Dairy Sci. 2015, 98, 7993–8008. [Google Scholar] [CrossRef]
- Lock, A.L.; Shingfield, K.J. Optimising Milk Composition. BSAP Occas. Publ. 2004, 29, 107–188. [Google Scholar] [CrossRef]
- Schulmeister, T.M.; Ruiz-Moreno, M.; Silva, G.M.; Garcia-Ascolani, M.; Ciriaco, F.M.; Henry, D.D.; Lamb, G.C.; Dubeux, J.C.B., Jr.; DiLorenzo, N. Evaluation of Brassica carinata meal on ruminant metabolism and apparent total tract digestibility of nutrients in beef steers. J. Anim. Sci. 2019, 97, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Schulmeister, T.M.; Ruiz-Moreno, M.; Benitez, J.; Garcia-Ascolani, M.E.; Ciriaco, F.M.; Henry, D.D.; Lamb, G.C.; Dubeux, J.C.B.; DiLorenzo, N. 572 Evaluation of Brassica carinata meal as a protein supplement for growing beef heifers. J. Anim. Sci. 2017, 95, 280–281. [Google Scholar] [CrossRef]
- Tadelle, D.; Alemu, Y.; Moges, H.M.; Fasil, K. Effect of level of rapeseed (Brassica carinata) cake in rations on broiler performance. Livest. Res. Rural Dev. 2003, 15, 1–15. [Google Scholar]
- Ueda, K.; Ferlay, A.; Chabrot, J.; Loor, J.J.; Chilliard, Y.; Doreau, M. Effect of Linseed Oil Supplementation on Ruminal Digestion in Dairy Cows Fed Diets with Different Forage: Concentrate Ratios. J. Dairy Sci. 2003, 86, 3999–4007. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Ahvenjärvi, S.; Toivonen, V.; Vanhatalo, A.; Huhtanen, P.; Griinari, J.M. Effect of incremental levels of sunflower-seed oil in the diet on ruminal lipid metabolism in lactating cows. Br. J. Nutr. 2008, 99, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2007, 91, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Bu, D.P.; Wang, J.Q.; Hu, Z.Y.; Li, D.; Wei, H.Y.; Zhou, L.Y.; Loor, J.J. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal 2009, 3, 1562–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayat, A.R.; Kairenius, P.; Stefański, T.; Leskinen, H.; Comtet-Marre, S.; Forano, E.; Chaucheyras-Durand, F.; Shingfield, K.J. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J. Dairy Sci. 2015, 98, 3166–3181. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Shingfield, K.J.; Simpura, I.; Kokkonen, T.; Jaakkola, S.; Toivonen, V.; Vanhatalo, A. Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing Camelina expeller. J. Dairy Sci. 2016, 100, 305–324. [Google Scholar] [CrossRef]
- Dai, X.; Weimer, P.J.; Dill-McFarland, K.A.; Brandao, V.L.N.; Suen, G.; Faciola, A.P. Camelina Seed Supplementation at Two Dietary Fat Levels Change Ruminal Bacterial Community Composition in a Dual-Flow Continuous Culture System. Front. Microbiol. 2017, 8, 2147. [Google Scholar] [CrossRef]
- Paula, E.M.; Broderick, G.A.; Faciola, A.P. Effects of replacing soybean meal with canola meal for lactating dairy cows fed three different ratios of alfalfa to corn silage. J. Dairy Sci. Under review.
- Sánchez-Duarte, J.I.; Kalscheur, K.F.; Casper, D.P.; García, A.D. Performance of dairy cows fed diets formulated at 2 starch concentrations with either canola meal or soybean meal as the protein supplement. J. Dairy Sci. 2019, 102, 7970–7979. [Google Scholar] [CrossRef] [PubMed]
- Martineau, R.; Ouellet, D.R.; Lapierre, H. The effect of feeding canola meal on concentrations of plasma amino acids. J. Dairy Sci. 2014, 97, 1603–1610. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.L.; Jenkins, T.C. Fat in Lactation Rations: Review. J. Dairy Sci. 1980, 63, 1–14. [Google Scholar] [CrossRef]
- Jenkins, T.C. Lipid Metabolism in the Rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef]
- Szumacher-Strabel, M.; Cieślak, A.; Zmora, P.; Pers-Kamczyc, E.; Bielińska, S.; Stanisz, M.; Wójtowski, J. Camelina sativa cake improved unsaturated fatty acids in ewe’s milk. J. Sci. Food Agric. 2011, 91, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
- Cais-Sokolińska, D.; Wójtowski, J.; Pikul, J.; Danków, R.; Majcher, M.; Teichert, J.; Bagnicka, E. Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content. J. Dairy Sci. 2015, 98, 6692–6705. [Google Scholar] [CrossRef] [Green Version]
- Cieslak, A.; Stanisz, M.; Wojtowski, J.; Pers-Kamczyc, E.; Szczechowiak, J.; El-Sherbiny, M.; Szumacher-Strabel, M. Camelina sativa affects the fatty acid contents in M. longissimus muscle of lambs. Eur. J. Lipid Sci. Technol. 2013, 115, 1258–1265. [Google Scholar] [CrossRef]
- Mihhejev, K.; Henno, M.; Ots, M.; Rihma, E.; Elias, P.; Kuusik, S.; Kärt, O. Effects of fat-rich oil cakes on cheese fatty acid composition, and on cheese quality. Veterinarija Zootechnika 2007, 40, 55–61. [Google Scholar]
- Roy, A.; Ferlay, A.; Shingfield, K.J.; Chilliard, Y. Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis on trans-C 18:1 fatty acids and isomers of conjugated linoleic acid. Anim. Sci. 2006, 82, 479–492. [Google Scholar] [CrossRef]
- He, M.L.; Gibb, D.; McKinnon, J.J.; McAllister, T.A. Effect of high dietary levels of canola meal on growth performance, carcass quality and meat fatty acid profiles of feedlot cattle. Can. J. Anim. Sci. 2013, 93, 269–280. [Google Scholar] [CrossRef]
- Yang, W.Z.; Xu, L.; Li, C.; Beauchemin, K.A. Short Communication: Effects of supplemental canola meal and various types of distillers’ grains on growth performance of backgrounded steers. Can. J. Anim. Sci. 2013, 93, 281–286. [Google Scholar] [CrossRef]
- Górka, P.; McKinnon, J.J.; Penner, G.B. Short Communication: Use of high-lipid by-product pellets as a partial replacement for barley grain and canola meal in finishing diets for beef steers. Can. J. Anim. Sci. 2013, 93, 523–528. [Google Scholar] [CrossRef] [Green Version]
Item 1 | Canola Meal | SD 2 | n3 |
---|---|---|---|
Chemical composition, % of dry matter unless otherwise stated | |||
Dry matter, % | 91.4 | 1.86 | 20 |
Organic matter | 92.2 | 0.84 | 11 |
Crude protein | 39.8 | 3.55 | 28 |
Rumen degraded protein | 56.5 | 0.92 | 2 |
Rumen undegraded protein | 43.3 | 1.06 | 2 |
Neutral detergent fiber | 28.5 | 5.41 | 26 |
Acid detergent fiber | 19.4 | 3.33 | 24 |
Ether extract | 4.56 | 3.43 | 20 |
Ash | 7.69 | 0.93 | 14 |
Neutral detergent insoluble nitrogen, % total N | 17.5 | 6.52 | 9 |
Acid detergent insoluble nitrogen, % total N | 5.32 | 1.41 | 8 |
Non-fiber carbohydrate | 19.8 | 5.61 | 5 |
Starch | 4.07 | 5.44 | 8 |
Lignin | 9.82 | 1.36 | 4 |
Glucosinolates, µmol/g | 5.96 | 2.66 | 4 |
Mineral profile, % of dry matter unless stated | |||
Ca | 0.89 | 0.26 | 8 |
P | 1.11 | 0.06 | 9 |
Mg | 0.58 | 0.04 | 7 |
K | 1.10 | 0.44 | 7 |
S | 0.77 | 0.34 | 8 |
Na | 0.23 | 0.24 | 5 |
Cl | 0.11 | 0.03 | 4 |
Cu, mg/g | 5.99 | 0.34 | 3 |
Fe, mg/g | 179 | 37.3 | 3 |
Mn, mg/g | 56.5 | 8.42 | 3 |
Mo, mg/g | 1.27 | 0.19 | 3 |
Se, mg/g | 1.11 | 0.01 | 3 |
Zn, mg/g | 62.1 | 5.30 | 3 |
Item 1 | Canola Meal | SD 2 | n3 |
---|---|---|---|
Amino acid profile, % of total amino acid | |||
Histidine | 2.52 | 0.60 | 6 |
Isoleucine | 3.53 | 0.96 | 6 |
Leucine | 6.39 | 1.60 | 6 |
Lysine | 4.87 | 1.38 | 6 |
Methionine | 1.88 | 0.57 | 6 |
Phenylalanine | 3.74 | 0.84 | 6 |
Threonine | 3.87 | 1.08 | 6 |
Tryptophan | 1.35 | 0.03 | 3 |
Valine | 4.47 | 1.23 | 6 |
Arginine | 5.90 | 0.38 | 4 |
Total Essential AA | 39.3 | 4.50 | 4 |
Alanine | 4.43 | 0.15 | 5 |
Glycine | 5.13 | 0.23 | 5 |
Proline | 6.20 | 0.30 | 5 |
Serine | 4.13 | 0.37 | 5 |
Tyrosine | 2.90 | 0.20 | 5 |
Glutamic acid | 22.7 | 8.54 | 4 |
Cysteine | 2.43 | 0.21 | 4 |
Aspartic acid | 7.34 | 0.31 | 4 |
Total nonessential AA | 49.0 | 15.3 | 3 |
Vitamins, mg/kg | |||
Vit E | 13.8 | 0.75 | 2 |
Pantothenic acid | 9.40 | 0.10 | 2 |
Niacin | 158 | 2.00 | 2 |
Choline | 6600 | 100 | 2 |
Riboflavin | 5.75 | 0.05 | 2 |
Biotin | 1.02 | 0.06 | 2 |
Folic acid | 1.55 | 0.75 | 2 |
Pyridoxine | 7.10 | 0.10 | 2 |
Thiamin | 5.15 | 0.05 | 2 |
Item 1 | Camelina Meal | SD 2 | n3 |
---|---|---|---|
Chemical composition, % of dry matter unless otherwise stated | |||
Dry matter, % | 92.2 | 0.99 | 6 |
Organic matter | 93.9 | 0.49 | 4 |
Crude protein | 41.9 | 6.19 | 7 |
Neutral detergent fiber | 33.4 | 5.93 | 7 |
Acid detergent fiber | 23.8 | 5.79 | 7 |
Ether extract | 7.03 | 2.87 | 4 |
Ash | 5.98 | 0.58 | 5 |
Glucosinolates, µmol/g | 22.4 | 5.94 | 4 |
Mineral profile, % of dry matter unless stated | |||
Ca | 0.31 | 0.03 | 2 |
P | 0.82 | 0.13 | 3 |
Mg | 0.50 | - | 1 |
K | 1.50 | - | 1 |
S | 1.12 | - | 1 |
Na | 0.01 | - | 1 |
Cl | 0.20 | - | 1 |
Item 1 | Camelina Meal | SD 2 | n3 |
---|---|---|---|
Amino acid profile, % of total amino acid | |||
Alanine | 2.81 | 0.71 | 4 |
Aspartic acid | 4.35 | 1.50 | 3 |
Cysteine | 0.94 | 0.48 | 3 |
Glutamic acid | 7.60 | 3.08 | 3 |
Glycine | 3.00 | 0.88 | 3 |
Proline | 2.98 | 0.86 | 3 |
Serine | 2.81 | 0.78 | 3 |
Tyrosine | 0.78 | 0.65 | 4 |
Arginine | 4.13 | 1.51 | 3 |
Histidine | 1.72 | 0.48 | 4 |
Isoleucine | 2.17 | 0.68 | 3 |
Leucine | 3.24 | 1.14 | 4 |
Lysine | 2.27 | 0.91 | 4 |
Methionine | 1.08 | 0.31 | 4 |
Phenylalanine | 2.27 | 0.76 | 4 |
Threonine | 1.59 | 0.82 | 4 |
Valine | 2.81 | 0.94 | 4 |
Item 1 | Camelina Meal | SD 2 | n3 |
---|---|---|---|
Fatty acid composition, % of total 1 | |||
C16:0 | 8.21 | 1.22 | 4 |
C18:0 | 2.51 | 0.27 | 3 |
C18:1 | 17.9 | 2.73 | 4 |
C18:2n-6 | 25.4 | 2.99 | 4 |
C18:3n-3 | 29.1 | 7.13 | 4 |
C20:0 | 0.81 | 0.84 | 1 |
C22:1 n-9 | 2.38 | 1.11 | 3 |
Fatty Acid Composition, % of Total 1 | B. carinata | B. carinata (Low Erucic Acid) |
---|---|---|
C16:0 | 4 to 6 | 5.5 |
C18:0 | 1.3 | 0.5 |
C18:1 | 10 to 17 | 42 to 44 |
cis-9, cis-12, C18:2 | 17 to 25 | 35 to 37 |
cis-9, cis-12, cis-15, C18:3 | 10 to 17 | 15 to 16 |
C20:0 | 0.7 | - |
C22:1 | 45.4 | - |
Total fatty acid | 42 | - |
Item | B. carinata | |||
---|---|---|---|---|
Seed 1 | Cold Pressed 2 | Pressed Cake 3 | Meal 4 | |
Crude protein | 24.8 to 23.1 | 38.7 | 48.5 | 48.17 to 53 |
Neutral detergent fiber | 9.67 to 13.4 | 20 | 10.2 | 14. to 18.8 |
Acid detergent fiber | 6.43 to 4.95 | 12 | 6.7 | 10.2 to 11.4 |
Ether extract | 38.5 to 40.4 | 20.1 | 2.5 | 0.3 |
Glucosinolates, µmol/g | - | 43.97 | 168.5 | 115.2 |
Rumen undegraded protein, % crude protein | - | - | 10.7 | 23.7 |
Rumen degraded protein, % of crude protein | - | - | 89.3 | 76.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paula, E.M.; da Silva, L.G.; Brandao, V.L.N.; Dai, X.; Faciola, A.P. Feeding Canola, Camelina, and Carinata Meals to Ruminants. Animals 2019, 9, 704. https://doi.org/10.3390/ani9100704
Paula EM, da Silva LG, Brandao VLN, Dai X, Faciola AP. Feeding Canola, Camelina, and Carinata Meals to Ruminants. Animals. 2019; 9(10):704. https://doi.org/10.3390/ani9100704
Chicago/Turabian StylePaula, Eduardo Marostegan, Lorrayny Galoro da Silva, Virginia Lucia Neves Brandao, Xiaoxia Dai, and Antonio Pinheiro Faciola. 2019. "Feeding Canola, Camelina, and Carinata Meals to Ruminants" Animals 9, no. 10: 704. https://doi.org/10.3390/ani9100704