Behavioral and Perceptual Differences between Sexes in Dogs: An Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Personality Traits
2.1. Aggressiveness
2.2. Boldness and Courage
2.3. Sociability
3. Cognitive Processes
3.1. Spatial Cognition
3.2. Lateralization
4. Perception
4.1. Visual Focusing
4.2. Olfactory Skills
5. Discussion
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Sih, A.; Bell, A.M.; Johnson, J.C.; Ziemba, R.E. Behavioural syndromes: An integrative overview. Q. Rev. Biol. 2004, 79, 241–277. [Google Scholar] [CrossRef] [PubMed]
- Budaev, S.; Zworykin, D.; Mochek, A. Consistency of individual differences in behaviour of the lion-headed cichlid, Steatocranus casuarius. Behav. Processes. 1999, 48, 49–55. [Google Scholar] [CrossRef]
- Kralj-Fišer, S.; Scheiber, I.; Blejec, A.; Moestl, E.; Kotrschal, K. Individualities in a flock of free-roaming greylag geese: Behavioral and physiological consistency over time and across situations. Horm. Behav. 2007, 51, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Øverli, Ø.; Pottinger, T.; Carrick, T.; Øverli, E.; Winberg, S. Differences in behaviour between rainbow trout selected for high- and low-stress responsiveness. J. Exp. Biol. 2002, 205, 391–395. [Google Scholar] [PubMed]
- Pavlova, D.; Pinxten, R.; Eens, M. Seasonal singing patterns and individual consistency in song activity in female European starlings (Sturnus vulgaris). Behaviour 2007, 144, 663–680. [Google Scholar] [CrossRef]
- Lopez, P.; Hawlena, D.; Polo, V.; Amo, L.; Martin, J. Sources of individual shy-bold variations in antipredator behaviour of male Iberian rock lizards. Anim. Behav. 2005, 69, 1–9. [Google Scholar] [CrossRef]
- Fitzpatrick, S.; Berglund, A.; Rosenqvist, G. Ornaments or offspring: Costs to reproductive success restrict sexual selection processes. Biol. J. Linnean. Soc. 1995, 55, 251–260. [Google Scholar] [CrossRef]
- Cain, K.E.; Ketterson, E.D. Competitive females are successful females; phenotype, mechanism and selection in a common songbird. Behav. Ecol. Sociobiol. 2012, 66, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Tobias, J.A.; Montgomerie, R.D.; Lyon, B.E. The evolution of female ornaments and weaponry: Social selection, sexual selection and ecological competition. Philos. Trans. R. Soc. B 2012, 367, 2274–2293. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.J. Intra-sexual selection in Drosophila. Heredity 1948, 2, 349–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, G.C. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought; Princeton University Press: Princeton, NJ, USA, 1996; ISBN 0-691026-157. [Google Scholar]
- Shuster, S.M.; Wade, M.J. Mating Systems and Strategies: (Monographs in Behavior and Ecology); Princeton University Press: Princeton, NJ, USA, 2003; ISBN 0-691-04930-0. [Google Scholar]
- Rubenstein, D.R.; Lovette, I.J. Reproductive skew and selection on female ornamentation in social species. Nature 2009, 462, 786–789. [Google Scholar] [CrossRef] [PubMed]
- Rosvall, K.A. Intrasexual competition in females: Evidence for sexual selection? Behav. Ecol. 2011, 22, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Schuett, W.; Tregenza, T.; Dall, S.R.X. Sexual selection and animal personality. Biol. Rev. 2010, 85, 217–246. [Google Scholar] [CrossRef] [PubMed]
- Kimura, D. Sex and Cognition; MIT Press: Cambridge, MA, USA, 1999; ISBN 9780262611640. [Google Scholar]
- Halpern, D.F. Sex Differences in Cognitive Abilities, 3rd ed.; Lawrence Erlbaum Associates: London, UK, 2000; ISBN 978-0805827927. [Google Scholar]
- Becker, J.B.; Koob, G.F. Sex Differences in Animal Models: Focus on Addiction. Pharmacol. Rev. 2016, 68, 242–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, M.M.; Arnold, A.P.; Ball, G.F.; Blaustein, J.D.; De Vries, G.J. Sex differences in the brain: The not so inconvenient truth. J. Neurosci. 2012, 32, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Lighthall, N.R.; Sakaki, M.; Vasunilashorn, S.; Nga, L.; Somayajula, S.; Chen, E.Y.; Samii, N.; Mather, M. Gender differences in reward-related decision processing under stress. Soc. Cogn. Affect. Neurosci. 2012, 7, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, P.J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 1980, 28, 1140–1162. [Google Scholar] [CrossRef]
- Mills, D.S. What’s in a word? A review of the attributes of a command affecting the performance of pet dogs. Anthrozoös 2005, 18, 208–221. [Google Scholar] [CrossRef]
- Kaminski, J.; Call, J.; Fischer, J. Word learning in a domestic dog: Evidence for “fast mapping”. Science 2004, 304, 1682–1683. [Google Scholar] [CrossRef] [PubMed]
- Pilley, J.W.; Reid, A.K. Border collie comprehends object names as verbal referents. Behav. Process. 2011, 86, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Andics, A.; Gábor, A.; Gácsi, M.; Faragó, T.; Szabó, D.; Miklósi, Á. Neural mechanisms for lexical processing in dogs. Science 2016, 353, 1030–1032. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, B.; Scandurra, A.; Alterisio, A.; Valsecchi, P.; Prato-Previde, E. The importance of gestural communication: A study of human–dog communication using incongruent information. Anim. Cogn. 2016, 19, 1231–1235. [Google Scholar] [CrossRef] [PubMed]
- Scandurra, A.; Alterisio, A.; Marinelli, L.; Mongillo, P.; Semin, G.R.; D’Aniello, B. Effectiveness of verbal and gestural signals and familiarity with signal-senders on the performance of working dogs. Appl. Anim. Behav. Sci. 2017, 191, 78–83. [Google Scholar] [CrossRef]
- Scandurra, A.; Alterisio, A.; Aria, M.; Vernese, R.; D’Aniello, B. Should I fetch one or the other? A study on dogs on the object choice in the bimodal contrasting paradigm. Anim. Cogn. 2018, 21, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Grassmann, S.; Kaminski, J.; Tomasello, M. How two word-trained dogs integrate pointing and naming. Anim. Cogn. 2012, 15, 657–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Aniello, B.; Alterisio, A.; Scandurra, A.; Petremolo, E.; Iommelli, M.R.; Aria, M. What’s the point? Golden and Labrador retrievers living in kennels do not understand human pointing gestures. Anim. Cogn. 2017, 20, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Siniscalchi, M.; d’Ingeo, S.; Quaranta, A. The dog nose “KNOWS” fear: Asymmetric nostril use during sniffing at canine and human emotional stimuli. Behav. Brain Res. 2016, 304, 34–41. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, B.; Semin, G.R.; Alterisio, A.; Aria, M.; Scandurra, A. Interspecies transmission of emotional information via chemosignals: From humans to dogs (Canis lupus familiaris). Anim. Cogn. 2018, 21, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Hare, B.; Brown, M.; Williamson, C.; Tomasello, M. The domestication of social cognition in dogs. Science 2002, 298, 1634–1636. [Google Scholar] [CrossRef] [PubMed]
- Hare, B.; Tomasello, M. Human-like social skills in dogs? Trends Cogn. Sci. 2005, 9, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Topál, J.; Gergely, G.; Erdőhegyi, Á.; Csibra, G.; Miklósi, Á. Differential sensitivity to human communication in dogs, wolves, and human infants. Science 2009, 325, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Miklósi, Á.; Topál, J. What does it take to become “best friends”? Evolutionary changes in canine social competence. Trends Cogn. Sci. 2013, 17, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Udell, M.A.; Wynne, C.D. A review of domestic dogs’ (Canis familiaris) human-like behaviors: Or why behavior analysts should stop worrying and love their dogs. J. Exp. Anal. Behav. 2008, 89, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Udell, M.A.; Wynne, C.D. Ontogeny and phylogeny: Both are essential to human-sensitive behaviour in the genus Canis. Anim. Behav. 2010, 79, e9–e14. [Google Scholar] [CrossRef]
- Wynne, C.D.; Udell, M.A.; Lord, K.A. Ontogeny’s impacts on human–dog communication. Anim. Behav. 2008, 76, e1–e4. [Google Scholar] [CrossRef]
- D’Aniello, B.; Scandurra, A.; Prato-Previde, E.; Valsecchi, P. Gazing toward humans: A study on water rescue dogs using the impossible task paradigm. Behav. Process. 2015, 110, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Scandurra, A.; Prato-Previde, E.; Valsecchi, P.; Aria, M.; D’Aniello, B. Guide dogs as a model for investigating the effect of life experience and training on gazing behaviour. Anim. Cogn. 2015, 18, 937–944. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, B.; Scandurra, A. Ontogenetic effects on gazing behaviour: A case study of kennel dogs (Labrador Retrievers) in the impossible task paradigm. Anim. Cogn. 2016, 19, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Gácsi, M.; Gyoöri, B.; Virányi, Z.; Kubinyi, E.; Range, F.; Belényi, B.; Miklósi, Á. Explaining dog wolf differences in utilizing human pointing gestures: Selection for synergistic shifts in the development of some social skills. PLoS ONE 2009, 4, e6584. [Google Scholar] [CrossRef]
- Price, E.O. Animal Domestication and Behavior; CABI: Wallingford, UK, 2002; ISBN 9780851997728. [Google Scholar]
- Range, F.; Virányi, Z. Wolves are better imitators of conspecifics than dogs. PLoS ONE 2014, 9, e86559. [Google Scholar] [CrossRef] [PubMed]
- Scandurra, A.; Mongillo, P.; Marinelli, L.; Aria, M.; D’Aniello, B. Conspecific observational learning by adult dogs in a training context. Appl. Anim. Behav. Sci. 2016, 174, 116–120. [Google Scholar] [CrossRef]
- Range, F.; Virányi, Z. Social learning from humans or conspecifics: Differences and similarities between wolves and dogs. Front. Psychol. 2013, 4, 868. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M. Sexual Selection; Princeton University Press: Princeton, NJ, USA, 1994; ISBN 9780691000572. [Google Scholar]
- Johnson, R.N. Aggression in Man and Animals, 3rd ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1972; ISBN 978-0721651606. [Google Scholar]
- Leshner, A.I. Introduction to Behavioral Endocrinology; Oxford University Press: Oxford, UK, 1978; ISBN 978-0195022674. [Google Scholar]
- D’Eath, R.B.; Lawrence, A.B. Early life predictors of the development of aggressive behaviour in the domestic pig. Anim. Behav. 2004, 67, 501–509. [Google Scholar] [CrossRef]
- Glickman, S.E.; Frank, L.G.; Davidson, J.M.; Smith, E.R.; Siiteri, P.K. Androstenedione may organize or activate sex-reversed traits in female spotted hyenas. Proc. Natl. Acad. Sci. USA 1987, 84, 3444–3447. [Google Scholar] [CrossRef] [PubMed]
- Mehrkam, L.R.; Wynne, C.D. Behavioral differences among breeds of domestic dogs (Canis lupus familiaris): Current status of the science. Appl. Anim. Behav. Sci. 2014, 155, 12–27. [Google Scholar] [CrossRef]
- Scott, J.P.; Fuller, J.L. Dog Behavior: The Genetic Basis; University of Chicago Press: Chicago, IL, USA, 1965. [Google Scholar]
- Houpt, K.A. Genetics of canine behavior. Acta Vet. Brno 2007, 76, 431–444. [Google Scholar] [CrossRef]
- Barsky, P.I. Environment, genes, and experience: Lessons from behavior genetics. J. Physiol.-Paris 2010, 104, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Howell, T.J.; King, T.; Bennett, P.C. Puppy parties and beyond: The role of early age socialization practices on adult dog behavior. Vet. Med. Res. Rep. 2015, 6, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Serpell, J.; Jagoe, J.A. Early experience and the development of behaviour. In The Domestic Dog: Its Evolution, Behaviour and Interactions with People; Serpell, J., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 79–102. ISBN 978-0521425377. [Google Scholar]
- Borchelt, P.L. Aggressive behavior of dogs kept as companion animals: Classification and influence of sex, reproductive status and breed. Appl. Anim. Ethol. 1983, 10, 45–61. [Google Scholar] [CrossRef]
- Hart, B.L.; Hart, L.A. Selecting pet dogs on the basis of cluster analysis of breed behavior profiles and gender. J. Am. Vet. Med. Assoc. 1985, 186, 1181–1185. [Google Scholar] [PubMed]
- Cameron, D.B. Canine dominance-associated aggression: Concepts, incidence, and treatment in a private behavior practice. Appl. Anim. Behav. Sci. 1997, 52, 265–274. [Google Scholar] [CrossRef]
- Pérez-Guisado, J.; Lopez-Rodríguez, R.; Muñoz-Serrano, A. Heritability of dominant-aggressive behaviour in English Cocker Spaniels. Appl. Anim. Behav. Sci. 2006, 100, 219–227. [Google Scholar] [CrossRef]
- Pérez-Guisado, J.; Muñoz-Serrano, A.; López-Rodríguez, R. Evaluation of the Campbell test and the influence of age, sex, breed, and coat color on puppy behavioral responses. Can. J. Vet. Res. 2008, 72, 269–277. [Google Scholar]
- Pérez-Guisado, J.; Muñoz-Serrano, A.; López-Rodríguez, R. Perros peligrosos, la agresividad por dominancia (parte 1): Factores asociados dependientes del dueño. RECVET 2008, 1, 1–13. [Google Scholar]
- Pérez-Guisado, J.; Muñoz-Serrano, A. Factors linked to dominance aggression in dogs. J. Anim. Vet. Adv. 2009, 8, 336–342. [Google Scholar]
- Wright, J.C.; Nesselrote, M.S. Classification of behavior problems in dogs: Distributions of age, breed, sex and reproductive status. Appl. Anim. Behav. Sci. 1987, 19, 169–178. [Google Scholar] [CrossRef]
- Foyer, P.; Wilsson, E.; Wright, D.; Jensen, P. Early experiences modulate stress coping in a population of German shepherd dogs. Appl. Anim. Behav. Sci. 2013, 146, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Lofgren, S.E.; Wiener, P.; Blott, S.C.; Sanchez-Molano, E.; Woolliams, J.A.; Clements, D.N.; Haskell, M.J. Management and personality in Labrador Retriever dogs. Appl. Anim. Behav. Sci. 2014, 156, 44–53. [Google Scholar] [CrossRef]
- Rooney, N.J.; Bradshaw, J.W. Breed and sex differences in the behavioural attributes of specialist search dogs-a questionnaire survey of trainers and handlers. Appl. Anim. Behav. Sci. 2004, 86, 123–135. [Google Scholar] [CrossRef]
- Asp, H.E.; Fikse, W.F.; Nilsson, K.; Strandberg, E. Breed differences in everyday behaviour of dogs. Appl. Anim. Behav. Sci. 2015, 169, 69–77. [Google Scholar] [CrossRef]
- Hopkins, S.G.; Schubert, T.A.; Hart, B.L. Castration of adult male dogs: Effects on roaming, aggression, urine marking, and mounting. J. Am. Vet. Med. Assoc. 1976, 168, 1108–1110. [Google Scholar] [PubMed]
- Knol, B.W.; Egberink-Alink, S.T. Treatment of problem behaviour in dogs and cats by castration and progestagen administration: A review. Vet. Q. 1989, 11, 102–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maarschalkerweerd, R.J.; Endenburg, N.; Kirpensteijn, J.; Knol, B.W. Influence of orchiectomy on canine behaviour. Vet. Rec. 1997, 140, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Neilson, J.C.; Eckstein, R.A.; Hart, B.L. Effects of castration on problem behaviors in male dogs with reference to age and duration of behavior. J. Am. Vet. Med. Assoc. 1997, 211, 180–182. [Google Scholar] [PubMed]
- Gershman, K.A.; Sacks, J.J.; Wright, J.C. Which dogs bite? A case-control study of risk factors. Pediatrics 1994, 93, 913–917. [Google Scholar] [PubMed]
- Guy, N.C.; Luescher, U.A.; Dohoo, S.E.; Spangler, E.; Miller, J.B.; Dohoo, I.R.; Bate, L.A. Risk factors for dog bites to owners in a general veterinary caseload. Appl. Anim. Behav. Sci. 2001, 74, 29–42. [Google Scholar] [CrossRef]
- Le Boeuf, B.J. Copulatory and aggressive behavior in the prepuberally castrated dog. Horm. Behav. 1970, 1, 127–136. [Google Scholar] [CrossRef]
- Podberscek, A.L.; Serpell, J.A. The English Cocker Spaniel: Preliminary findings on aggressive behaviour. Appl. Anim. Behav. Sci. 1996, 47, 75–89. [Google Scholar] [CrossRef]
- Hart, B.L.; Eckstein, R.A. The role of gonadal hormones in the occurrence of objectionable behaviours in dogs and cats. Appl. Anim. Behav. Sci. 1997, 52, 331–344. [Google Scholar] [CrossRef]
- Casey, R.A.; Loftus, B.; Bolster, C.; Richards, G.J.; Blackwell, E.J. Inter-dog aggression in a UK owner survey: Prevalence, co-occurrence in different contexts and risk factors. Vet. Rec. 2013, 172. [Google Scholar] [CrossRef] [PubMed]
- Garde, E.; Pérez, G.E.; Vanderstichel, R.; Dalla Villa, P.F.; Serpell, J.A. Effects of surgical and chemical sterilization on the behavior of free-roaming male dogs in Puerto Natales, Chile. Prev. Vet. Med. 2016, 123, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Casey, R.A.; Loftus, B.; Bolster, C.; Richards, G.J.; Blackwell, E.J. Human directed aggression in domestic dogs (Canis familiaris): Occurrence in different contexts and risk factors. Appl. Anim. Behav. Sci. 2014, 152, 52–63. [Google Scholar] [CrossRef]
- Slauterbeck, J.R.; Pankratz, K.; Xu, K.T.; Bozeman, S.C.; Hardy, D.M. Canine ovariohysterectomy and orchiectomy increases the prevalence of ACL injury. Clin. Orthop. Relat. Res. 2004, 429, 301–305. [Google Scholar] [CrossRef]
- Bamberger, M.; Houpt, K.A. Signalment factors, comorbidity, and trends in behavior diagnoses in dogs: 1644 cases (1991–2001). J. Am. Vet. Med. Assoc. 2006, 229, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, C.A.; Forndran, S.; Stau-ber, C.; Woerner, K.; Gansloßer, U. The social behaviour of neutered male dogs compared to intact dogs (Canis lupus familiaris): Video analyses, questionnaires and case studies. Vet. Med. Open J. 2017, 2, 22–37. [Google Scholar] [CrossRef]
- O’Farrell, V.; Peachey, E. Behavioural effects of ovariohysterectomy on hitches. J. Small Anim. Pract. 1990, 31, 595–598. [Google Scholar] [CrossRef]
- Reisner, I.R.; Houpt, K.A.; Shofer, F.S. National survey of owner-directed aggression in English Springer Spaniels. J. Am. Vet. Med. Assoc. 2005, 227, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Yeon, S.C.; Houpt, K.A.; Lee, H.C.; Chang, H.H.; Lee, H.J. Effects of ovariohysterectomy on reactivity in German Shepherd dogs. Vet. J. 2006, 172, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.; Hallam, R.; O’Connor, K.; Rachman, S. An experimental analysis of fearlessness and courage. Br. J. Psychol. 1983, 74, 107–117. [Google Scholar] [CrossRef] [PubMed]
- McMillan, T.M.; Rachman, S.J. Fearlessness and courage in paratroopers undergoing training. Personal. Individ. Differ. 1988, 9, 373–378. [Google Scholar] [CrossRef]
- Zuckerman, M. An alternative five-factor model for personality. In The Developing Structure of Temperament and Personality from Infancy to Adulthood; Halverson, C.F., Kohnstamm, G.A., Martin, R., Eds.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1994; pp. 53–68. ISBN 9780805816693. [Google Scholar]
- Krueger, R.F.; Hicks, B.M.; McGue, M. Altruism and antisocial behavior: Independent tendencies, unique personality correlates, distinct etiologies. Psychol. Sci. 2001, 12, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Svartberg, K.; Forkman, B. Personality traits in the domestic dog (Canis familiaris). Appl. Anim. Behav. Sci. 2002, 79, 133–155. [Google Scholar] [CrossRef]
- Svartberg, K. Shyness–boldness predicts performance in working dogs. Appl. Anim. Behav. Sci. 2002, 79, 157–174. [Google Scholar] [CrossRef]
- Sih, A.; Del Guidice, M. Linking behavioural syndromes and cognition: A behavioural ecology perspective. Philips. Trans. R. Soc. B 2012, 367, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Réale, D.; Reader, S.M.; Sol, D.; McDougall, P.; Dingemanse, N.J. Integrating animal temperament within ecology and evolution. Biol. Rev. 2007, 82, 291–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.; van Doorn, G.S.; Leimar, O.; Weissing, F.J. Life-history trade-offs favour the evolution of animal personalities. Nature 2007, 447, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Biro, P.A.; Stamps, J.A. Are animal personality traits linked to life-history productivity? Trends Ecol. Evol. 2008, 23, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Øverli, Ø.; Sorensen, C.; Nilsson, G.E. Behavioral indicators of stress-coping style in rainbow trout: Do males and females react differently to novelty? Psysiol. Behav. 2006, 87, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuett, W.; Dall, S. Sex differences, social context and personality in zebra finches, Taeniopygia guttata. Anim. Behav. 2009, 77, 1041–1050. [Google Scholar] [CrossRef]
- Johnsson, J.I.; Sernland, E.; Blixt, M. Sex-specific aggression and antipredator behaviour in young brown trout. Ethology 2001, 107, 587–599. [Google Scholar] [CrossRef]
- Piyapong, C.; Krause, J.; Chapman, B.B.; Ramnarine, I.W.; Louca, V.; Croft, D.P. Sex matters: A social context to boldness in guppies (Poecilia reticulata). Behav. Ecol. 2009, 21, 3–8. [Google Scholar] [CrossRef]
- Ward-Fear, G.; Brown, G.P.; Pearson, D.J.; West, A.; Rollins, L.A.; Shine, R. The ecological and life history correlates of boldness in free-ranging lizards. Ecosphere 2018, 9, e02125. [Google Scholar] [CrossRef] [Green Version]
- Van Oers, K.; Klunder, M.; Drent, P.J. Context dependence of personalities: Risk-taking behavior in a social and a nonsocial situation. Behav. Ecol. 2005, 16, 716–723. [Google Scholar] [CrossRef]
- Atwell, J.W.; Cardoso, G.C.; Whittaker, D.J.; Campbell-Nelson, S.; Robertson, K.W.; Ketterson, E.D. Boldness behaviour and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behav. Ecol. 2012, 23, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Dammhahn, M. Are personality differences in a small iteroparous mammal maintained by a life-history trade-off? Proc. R. Soc. B 2012, 279, 2645–2651. [Google Scholar] [CrossRef] [PubMed]
- Petelle, M.B.; McCoy, D.E.; Alejandro, V.; Martin, J.G.A.; Blumstein, D.T. Development of boldness and docility in yellow-bellied marmots. Anim. Behav. 2013, 86, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Gosling, S.D. Personality dimensions in spotted hyenas (Crocuta crocuta). J. Comp. Psychol. 1998, 112, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Gyuris, E.; Feró, O.; Tartally, A.; Barta, Z. Individual behaviour in firebugs (Pyrrhocoris apterus). Proc. R. Soc. Lond. B 2011, 278, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, A.V.; Kortet, R. Sex differences in the repeatability of boldness over metamorphosis. Behav. Ecol. Sociobiol. 2012, 66, 407–412. [Google Scholar] [CrossRef]
- Koolhaas, J.M.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; De Jong, I.C.; Ruis, M.A.W.; Blokhuis, H.J. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
- Bell, A.M.; Stamps, J.A. Development of behavioural differences between individuals and populations of sticklebacks, Gasterosteus aculeatus. Anim. Behav. 2004, 68, 1339–1348. [Google Scholar] [CrossRef]
- Groothuis, T.G.G.; Carere, C. Avian personalities: Characterization and epigenesis. Neurosci. Biobehav. Rev. 2005, 29, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.S.; Clark, A.B.; Coleman, K.; Dearstyne, T. Shyness and boldness in humans and other animals. Trends Ecol. Evol. 1994, 9, 442–446. [Google Scholar] [CrossRef]
- Svartberg, K. A comparison of behaviour in test and in everyday life: Evidence of three consistent boldness-related personality traits in dogs. Appl. Anim. Behav. Sci. 2005, 91, 103–128. [Google Scholar] [CrossRef]
- Turcsán, B.; Kubinyi, E.; Miklósi, Á. Trainability and boldness traits differ between dog breed clusters based on conventional breed categories and genetic relatedness. Appl. Anim. Behav. Sci. 2011, 132, 61–70. [Google Scholar] [CrossRef]
- Carter, A.J.; Feeney, W.E. Taking a comparative approach: Analysing personality as a multivariate behavioural response across species. PLoS ONE 2012, 7, e42440. [Google Scholar] [CrossRef] [PubMed]
- Starling, M.J.; Branson, N.; Thomson, P.C.; McGreevy, P.D. “Boldness” in the domestic dog differs among breeds and breed groups. Behav. Process. 2013, 97, 53–62. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.R.; Chips, M.J.; McGuirk, M.; Armagost, F.; DiRienzo, N.; Pruitt, J.N. Boldness is influenced by sublethal interactions with predators and is associated with successful harem infiltration in Madagascar hissing cockroaches. Behav. Ecol. Sociobiol. 2014, 68, 425–435. [Google Scholar] [CrossRef]
- Toms, C.N.; Echevarria, D.J.; Jouandot, D.J. A methodological review of personality-related studies in fish: Focus on the shy-bold axis of behavior. Intern. J. Comp. Psychol. 2010, 23, 1–25. [Google Scholar]
- Beckmann, C.; Biro, P.A. On the validity of a single (boldness) assay in personality research. Ethology 2013, 119, 937–947. [Google Scholar] [CrossRef]
- Reuterwall, C.; Ryman, N. An estimate of the magnitude of additive genetic variation of some mental characters in Alsatian dogs. Hereditas 1973, 73, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.E.; Beilharz, R.G. Genetic and environmental factors affecting the suitability of dogs as guide dogs for the blind. Theor. Appl. Genet. 1982, 62, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.E.; Beilharz, R.G. Genetics of traits which determine the suitability of dogs as guide-dogs for the blind. Appl. Anim. Ethol. 1983, 9, 299–315. [Google Scholar] [CrossRef]
- McKenzie, B. Evaluating the benefits and risks of neutering dogs and cats. CAB Rev. 2010, 5, 1–18. [Google Scholar] [CrossRef]
- Goddard, M.E.; Beilharz, R.G. The relationship of fearfulness to, and the effects of, sex, age and experience on exploration and activity in dogs. Appl. Anim. Behav. Sci. 1984, 12, 267–278. [Google Scholar] [CrossRef]
- Wilsson, E.; Sundgren, P.E. The use of a behaviour test for the selection of dogs for service and breeding, I: Method of testing and evaluating test results in the adult dog, demands on different kinds of service dogs, sex and breed differences. Appl. Anim. Behav. Sci. 1997, 53, 279–295. [Google Scholar] [CrossRef]
- Strandberg, E.; Jacobsson, J.; Saetre, P. Direct genetic, maternal and litter effects on behaviour in German shepherd dogs in Sweden. Livest. Prod. Sci. 2005, 93, 33–42. [Google Scholar] [CrossRef]
- Fält, L. Kompendium Mentalitet; Svenska Brukshundklubben: Stockholm, Sweden, 1997. [Google Scholar]
- Kubinyi, E.; Turcsán, B.; Miklósi, Á. Dog and owner demographic characteristics and dog personality trait associations. Behav. Process. 2009, 81, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Starling, M.J.; Branson, N.; Thomson, P.C.; McGreevy, P.D. Age, sex and reproductive status affect boldness in dogs. Vet. J. 2013, 197, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Van Schaik, C.P. Social evolution in primates: The role of ecological factors and male behaviour. Proc. Br. Acad. 1996, 88, 9–31. [Google Scholar]
- Sterck, E.H.M.; Watts, D.P.; van Schaik, C.P. The evolution of female social relationships in nonhuman primates. Behav. Ecol. Sociobiol. 1997, 415, 291–309. [Google Scholar] [CrossRef]
- Wrangham, R.W.; Smuts, B.B. Sex differences in the behavioural ecology of chimpanzees in the Gombe National Park, Tanzania. J. Reprod. Fertil. Suppl. 1980, 28, 13–31. [Google Scholar] [PubMed]
- Muller, M.; Mitani, J.C. Conflict and cooperation in wild chimpanzees. In Advances in the Study of Behavior; Slater, P.J.B., Rosenblatt, J., Snowdon, C., Roper, T., Naguib, M., Eds.; Elsevier: New York, NY, USA, 2005; pp. 275–331. [Google Scholar]
- Furuichi, T.; Ihobe, H. Variation in male relationships in bonobos and chimpanzees. Behaviour 1994, 130, 211–228. [Google Scholar] [CrossRef]
- Watts, D.P. Coalitionary mate guarding by male chimpanzees at Ngogo, Kibale National Park, Uganda. Behav. Ecol. Sociobiol. 1998, 441, 43–55. [Google Scholar] [CrossRef]
- Connor, R.C.; Smolker, R.A.; Richards, A.F. Dolphin alliances and coalitions. In Coalitions and Alliances in Humans and Other Animals; Harcourt, A.H., De Waal, F.B.M., Eds.; Oxford University Press: New York, NY, USA, 1992; pp. 419–440. ISBN 0-19-854273-9. [Google Scholar]
- Smolker, R.A.; Richard, A.F.; Connor, R.C.; Pepper, J.W. Sex differences in patterns of association among Indian Ocean bottlenose dolphins. Behaviour 1992, 123, 38–69. [Google Scholar] [CrossRef]
- Frère, C.H.; Krützen, M.; Mann, J.; Connor, R.C.; Bejder, L.; Sherwin, W.B. Social and genetic interactions drive fitness variation in a free-living dolphin population. Proc. Natl. Acad. Sci. USA 2010, 107, 19949–19954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonsdorf, E.V.; Anderson, K.E.; Stanton, M.A.; Shender, M.; Heintz, M.R.; Goodall, J.; Murray, C.M. Boys will be boys: Sex differences in wild infant chimpanzee social interactions. Anim. Behav. 2014, 88, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Maccoby, E.E.; Jaklin, C.N. Gender segregation in childhood. In Advances in Child Development and Behaviour; Reese, H.W., Ed.; Academic Press: New York, NY, USA, 1987; pp. 239–287. [Google Scholar]
- Fabes, R.A.; Martin, C.L.; Hamish, L.D. Young children’s play qualities in same-, other- and mixed-sex peer groups. Child Dev. 2003, 74, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Shuldiner, E.; Koch, J.I.; Kartzinel, R.Y.; Hogan, A.; Brubaker, L.; Wanser, S.; Stahler, D.; Wynne, C.D.L.; Ostrander, E.A.; Sinsheimer, J.S.; et al. Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs. Sci. Adv. 2017, 3, e1700398. [Google Scholar] [CrossRef] [PubMed]
- Dykens, E.M.; Rosner, B.A. Refining behavioral phenotypes: Personality-motivation in Williams and Prader-Willi syndromes. Am. J. Ment. Retard. 1999, 104, 158–169. [Google Scholar] [CrossRef]
- Lore, R.K.; Eisenberg, F.B. Avoidance reactions of domestic dogs to unfamiliar male and female humans in a kennel setting. Appl. Anim. Behav. Sci. 1986, 15, 261–266. [Google Scholar] [CrossRef]
- Topál, J.; Miklósi, Á.; Csányi, V. Dog-human relationship affects problem solving behavior in the dog. Anthrozoös 1997, 10, 214–224. [Google Scholar] [CrossRef]
- D’Aniello, B.; Scandurra, A. Impossible task paradigm. In Encyclopedia of Animal Cognition and Behavior; Vonk, J., Shackelford, T., Eds.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Persson, M.E.; Roth, L.S.V.; Johnsson, M.; Wright, D.; Jensen, P. Human-directed social behaviour in dogs shows significant heritability. Genes Brain Behav. 2015, 14, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Aniello, B.; Scandurra, A.; (University of Naples “Federico II”, Naples, Italy). Personal communication, 2018.
- Jones, A.C.; Gosling, S.D. Temperament and personality in dogs (Canis familiaris): A review and evaluation of past research. Appl. Anim. Behav. Sci. 2005, 95, 1–53. [Google Scholar] [CrossRef]
- Golledge, R.G. Spatial cognition. In Encyclopedia of Applied Psychology; Spielberger, C., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2004; pp. 443–452. ISBN 978-0-12-657410-4. [Google Scholar]
- Montello, D.R. Behavioral methods for spatial cognition research. In Research Methods for Environmental Psychology; Gifford, R., Ed.; 2015; pp. 161–181. ISBN 9781118795330. [Google Scholar]
- Brodbeck, D.R.; Tanninen, S.E. Place learning and spatial navigation. In Encyclopedia of the Sciences of Learning; Springer Science & Business Media: New York, NY, USA, 2012; pp. 2639–2641. ISBN 1441914277. [Google Scholar]
- Astur, R.S.; Tropp, J.; Sava, S.; Constable, R.T.; Markus, E.J. Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behav. Brain Res. 2004, 151, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.S.; Prados, J.; Gamble, J.; De Lillo, C.; Gibson, C.L. Sex differences in spatial memory using serial and search tasks. Behav. Brain Res. 2013, 257, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Ghosh, B.; Roy, S. Dispersal behaviour of free-ranging dogs (Canis familiaris) in relation to age, sex, season and dispersal distance. Appl. Anim. Behav. Sci. 1998, 61, 123–132. [Google Scholar] [CrossRef]
- Ecuyer-Dab, I.; Robert, M. Spatial ability and home-range size: Examining the relationship in Western men and women (Homo sapiens). J. Comp. Psychol. 2004, 118, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Herman, R.A.; Wallen, K. Cognitive performance in rhesus monkeys varies by sex and prenatal androgen exposure. Horm. Behav. 2007, 51, 496–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawley, W.R.; Grissom, E.M.; Barratt, H.E.; Conrad, T.S.; Dohanich, G.P. The effects of biological sex and gonadal hormones on learning strategy in adult rats. Physiol. Behav. 2012, 105, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Jonasson, Z.; Cahill, J.F.; Tobey, R.E.; Baxter, M.G. Sexually dimorphic effects of hippocampal cholinergic deafferentation in rats. Eur. J. Neurosci. 2004, 20, 3041–3053. [Google Scholar] [CrossRef] [PubMed]
- Waller, D.E.; Nadel, L.E. Handbook of Spatial Cognition; American Psychological Association: Washington, DC, USA, 2013; ISBN 978-1-4338-1204-0. [Google Scholar]
- Chapuis, N.; Thinus-Blanc, C.; Poucet, B. Dissociation of mechanisms involved in dogs’ oriented displacements. Q. J. Exp. Psychol. B 1983, 35, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Cattet, J.; Etienne, A.S. Blindfolded dogs relocate a target through path integration. Anim. Behav. 2004, 68, 203–212. [Google Scholar] [CrossRef]
- Fugazza, C.; Mongillo, P.; Marinelli, L. Sex differences in dogs’ social learning of spatial information. Anim. Cogn. 2017, 20, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Topál, J.; Byrne, R.W.; Miklósi, A.; Csányi, V. Reproducing human actions and action sequences: “Do as I Do!” in a dog. Anim. Cogn. 2006, 9, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Mongillo, P.; Scandurra, A.; D’Aniello, B.; Marinelli, L. Effect of sex and gonadectomy on dogs’ spatial performance. Appl. Anim. Behav. Sci. 2017, 191, 84–89. [Google Scholar] [CrossRef]
- Scandurra, A.; Marinelli, L.; Lõoke, M.; D’Aniello, B.; Mongillo, P. The effect of age, sex and gonadectomy on dogs’ use of spatial navigation strategies. Appl. Anim. Behav. Sci. 2018. [Google Scholar] [CrossRef]
- Coren, S.; Porac, C. Fifty centuries of right-handedness: The historical record. Science 1977, 198, 631–632. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.J. Laterality of function in the infant: Historical and contemporary trends in theory and research. In Manual Specialization and the Developing Brain; Young, G., Ed.; Academic Press: New York, NY, USA, 1983; pp. 177–247. ISBN 978-0-12-773140-7. [Google Scholar]
- Springer, S.P.; Deutsch, G. Left Brain, Right Brain: Perspectives from Cognitive Neuroscience; Freeman: New York, NY, USA, 1989; ISBN 978-0716731115. [Google Scholar]
- Batt, L.; Batt, M.; Baguley, J.; McGreevy, P. Stability of motor lateralisation in maturing dogs. Laterality 2008, 13, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J. Relevance of brain and behavioural lateralization to animal welfare. Appl. Anim. Behav. Sci. 2010, 127, 1–11. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J. Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behav. Brain. Sci. 2005, 28, 575–633. [Google Scholar] [CrossRef] [PubMed]
- Ariyomo, T.O.; Watt, P.J. Aggression and sex differences in lateralization in the zebrafish. Anim. Behav. 2013, 86, 617–622. [Google Scholar] [CrossRef]
- Austin, N.P.; Rogers, L.J. Lateralization of agonistic and vigilance responses in Przewalski horses (Equus przewalskii). Appl. Anim. Behav. Sci. 2014, 151, 43–50. [Google Scholar] [CrossRef]
- Guo, K.; Meints, K.; Hall, C.; Hall, S.; Mills, D. Left gaze bias in humans, rhesus monkeys and domestic dogs. Anim. Cogn. 2009, 12, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racca, A.; Guo, K.; Meints, K.; Mills, D.S. Reading faces: Differential lateral gaze bias in processing canine and human facial expressions in dogs and 4-year-old children. PLoS ONE 2012, 7, e36076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaranta, A.; Siniscalchi, M.; Frate, A.; Iacoviello, R.; Buonavoglia, C.; Vallortigara, G. Lateralised behaviour and immune response in dogs: Relations between paw preference and interferon-γ, interleukin-10 and IgG antibodies production. Behav. Brain Res. 2006, 166, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Siniscalchi, M.; Quaranta, A.; Rogers, L.J. Hemispheric specialization in dogs for processing different acoustic stimuli. PLoS ONE 2008, 3, e3349. [Google Scholar] [CrossRef] [PubMed]
- Tan, U.; Yaprak, M.; Kutlu, N. Paw preference in cats: Distribution and sex differences. Int. J. Neurosci. 1990, 50, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Yetkin, Y. Physical properties of the cerebral hemispheres and paw preferences in mongrel cats: Sex-related differences. Int. J. Neurosci. 2002, 112, 239–262. [Google Scholar] [CrossRef] [PubMed]
- Wells, D.L.; Millsopp, S. Lateralized behaviour in the domestic cat, Felis silvestris catus. Anim. Behav. 2009, 78, 537–541. [Google Scholar] [CrossRef]
- Hopkins, W.D.; Leavens, D.A. Hand use and gestural communication in chimpanzees (Pan troglodytes). J. Comp. Psychol. 1998, 112, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.; Sutherland, A.; Arkins, S. Idiosyncratic motor laterality in the horse. Appl. Anim. Behav. Sci. 2005, 91, 297–310. [Google Scholar] [CrossRef]
- Sommer, I.E.; Aleman, A.; Somers, M.; Boks, M.P.; Kahn, R.S. Sex differences in handedness, asymmetry of the Planum Temporale and functional language lateralization. Brain Res. 2008, 1206, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Corballis, M.C. Human Handedness. In Human Laterality; Corballis, M.C., Ed.; Academic Press: New York, NY, USA, 1983; pp. 11–27. ISBN 978-0-12-188180-1. [Google Scholar]
- Tan, U. Paw preferences in dogs. Intern. J. Neurosci. 1987, 32, 825–829. [Google Scholar] [CrossRef]
- Wells, D.L. Lateralised behaviour in the domestic dog, Canis familiaris. Behav. Process. 2003, 61, 27–35. [Google Scholar] [CrossRef]
- Quaranta, A.; Siniscalchi, M.; Frate, A.; Vallortigara, G. Paw preference in dogs: Relations between lateralised behaviour and immunity. Behav. Brain Res. 2004, 153, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Wells, D.L.; Hepper, P.G.; Milligan, A.D.; Barnard, S. Comparing lateral bias in dogs and humans using the Kong™ ball test. Appl. Anim. Behav. Sci. 2016, 176, 70–76. [Google Scholar] [CrossRef]
- Bagesteiro, L.B.; Sainburg, R.L. Handedness: Dominant arm advantages in control of limb dynamics. J. Neurophysiol. 2002, 88, 2408–2421. [Google Scholar] [CrossRef] [PubMed]
- Branson, N.J.; Rogers, L.J. Relationship between paw preference strength and noise phobia in Canis familiaris. J. Comp. Psychol. 2006, 120, 176. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.A.; Delfabbro, P.H.; Burns, N.R. Temperament and lateralization in the domestic dog (Canis familiaris). J. Vet. Behav. Clin. Appl. Res. 2013, 8, 124–134. [Google Scholar] [CrossRef]
- Poyser, F.; Caldwell, C.; Cobb, M. Dog paw preference shows lability and sex differences. Behav. Process. 2006, 73, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, L.M.; Thomson, P.C.; McGreevy, P.D. First-stepping Test as a measure of motor laterality in dogs (Canis familiaris). J. Vet. Behav. Clin. Appl. Res. 2010, 5, 247–255. [Google Scholar] [CrossRef]
- Corp, N.; Byrne, R.W. Sex difference in chimpanzee handedness. Am. J. Phys. Anthropol. 2004, 123, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Trouillard, E.; Blois-Heulin, C. Manual laterality and task complexity in De Brazza’s monkey (Cercopithecus neglectus). Laterality 2005, 10, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Miyahira, A.; Morita, K.; Yamaguchi, H.; Nonaka, K.; Maeda, H. Gender differences of exploratory eye movements. A life span study. Life Sci. 2000, 68, 569–577. [Google Scholar] [CrossRef]
- Giambla, L.M.; Quilter, R.E. Sex differences in sustained attention across the adult life span. J. Appl. Psychol. 1989, 74, 91–99. [Google Scholar] [CrossRef]
- Cowlishaw, G.U.Y. Trade-offs between foraging and predation risk determine habitat use in a desert baboon population. Anim. Behav. 1997, 53, 667–686. [Google Scholar] [CrossRef]
- Cameron, E.Z.; du Toit, J.T. Social influences on vigilance behaviour in giraffes, Giraffa camelopardalis. Anim. Behav. 2005, 69, 1337–1344. [Google Scholar] [CrossRef]
- Duranton, C.; Bedossa, T.; Gaunet, F. When facing an unfamiliar person, pet dogs present social referencing based on their owners’ direction of movement alone. Anim. Behav. 2016, 113, 147–156. [Google Scholar] [CrossRef]
- Mongillo, P.; Pitteri, E.; Candaten, M.; Marinelli, L. Can attention be taught? Interspecific attention by dogs (Canis familiaris) performing obedience tasks. Appl. Anim. Behav. Sci. 2016, 182, 30–37. [Google Scholar] [CrossRef]
- Nagasawa, M.; Mitsui, S.; En, S.; Ohtani, N.; Ohta, M.; Sakuma, Y.; Tatsushi, O.; Mogi, K.; Kikusui, T. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 2015, 348, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Kovács, K.; Kis, A.; Kanizsár, O.; Hernádi, A.; Gácsi, M.; Topál, J. The effect of oxytocin on biological motion perception in dogs (Canis familiaris). Anim. Cogn. 2016, 19, 513–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kis, A.; Hernádi, A.; Kanizsár, O.; Gácsi, M.; Topál, J. Oxytocin induces positive expectations about ambivalent stimuli (cognitive bias) in dogs. Horm. Behav. 2015, 69, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, C.A.; Mayer, C.; Dörrenberg, S.; Huber, L.; Range, F. Female but not male dogs respond to a size constancy violation. Biol. Lett. 2011, 7, 689–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooijakkers, E.F.; Kaminski, J.; Call, J. Comparing dogs and great apes in their ability to visually track object transpositions. Anim. Cogn. 2009, 12, 789–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang-Martinez, Z. The mechanisms of kin discrimination and the evolution of kin recognition in vertebrates: A critical re-evaluation. Behav. Process. 2001, 53, 21–40. [Google Scholar] [CrossRef]
- Charlesworth, B.; Charlesworth, D. The genetic basis of inbreeding depression. Genet. Res. 1999, 74, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Keller, L.F.; Waller, D.M. Inbreeding effects in wild populations. Trends Ecol. Evol. 2002, 17, 230–241. [Google Scholar] [CrossRef]
- Szulkin, M.; Stopher, K.V.; Pemberton, J.M.; Reid, J.M. Inbreeding avoidance, tolerance, or preference in animals? Trends Ecol. Evol. 2013, 28, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Hepper, P.G. Long-term retention of kinship recognition established during infancy in the domestic dog. Behav. Process. 1994, 33, 3–14. [Google Scholar] [CrossRef]
- Hamilton, J.; Vonk, J. Do dogs (Canis lupus familiaris) prefer family? Behav. Process. 2015, 119, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Siniscalchi, M.; Sasso, R.; Pepe, A.M.; Dimatteo, S.; Vallortigara, G.; Quaranta, A. Sniffing with the right nostril: Lateralization of response to odour stimuli by dogs. Anim. Behav. 2011, 82, 399–404. [Google Scholar] [CrossRef]
- Duffy, D.L.; Hsu, Y.; Serpell, J.A. Breed differences in canine aggression. Appl. Anim. Behav. Sci. 2008, 114, 441–460. [Google Scholar] [CrossRef]
- Maccoby, E.E. Gender as a social category. Dev. Psychol. 1988, 24, 755–765. [Google Scholar] [CrossRef]
- Meredith, S.L. Identifying proximate and ultimate causation in the development of primate sex-typed social behavior. In Building Babies: Primate Development in Proximate and Ultimate Perspective; Clancy, K.B.H., Hinde, K., Rutherford, J.N., Eds.; Springer: New York, NY, USA, 2013; pp. 411–433. ISBN 978-1-4614-4059-8. [Google Scholar]
- Gold, E.B.; Bromberger, J.; Crawford, S.; Samuels, S.; Greendale, G.A.; Harlow, S.D.; Skurnick, J. Factors associated with age at natural menopause in a multiethnic sample of midlife women. Am. J. Epidemiol. 2001, 153, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Korol, D.L.; Manning, C.A. Effects of estrogen on cognition: Implications for menopause. In Animal Research and Human Health: Advancing Human Welfare through Behavioral Science; Carroll, M.E., Overmier, J.B., Eds.; American Psychological Association: Washington, DC, USA, 2001; pp. 305–322. [Google Scholar]
- Korol, D.L.; Kolo, L.L. Estrogen-induced changes in place and response learning in young adult female rats. Behav. Neurosci. 2002, 116, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.; Healy, S.D. Differences in cue use and spatial memory in men and women. Proc. Biol. Sci. 2006, 273, 2241–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlgren, J. Females choose vigilant males: An experiment with the monogamous grey partridge, Perdix perdix. Anim. Behav. 1990, 39, 646–651. [Google Scholar] [CrossRef]
- Ridley, M.; Hill, D. Social organization in the pheasant (Phasianus colchicus): Harem formation, mate selection and the role of mate guarding. J. Zool. 1987, 211, 619–630. [Google Scholar] [CrossRef]
- Miklósi, Á.; Pongrácz, P.; Lakatos, G.; Topál, J.; Csányi, V. A comparative study of the use of visual communicative signals in interactions between dogs (Canis familiaris) and humans and cats (Felis catus) and humans. J. Comp. Psychol. 2005, 119, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Thalmann, O.; Shapiro, B.; Cui, P.; Schuenemann, V.J.; Sawyer, S.K.; Greenfield, D.L.; Germonpré, M.B.; Sablin, M.V.; López-Giráldez, F.; Domingo-Roura, X.; Napierala, H.; et al. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 2013, 342, 871. [Google Scholar] [CrossRef] [PubMed]
- Brand, G.; Millot, J.L. Sex differences in human olfaction: Between evidence and enigma. Q. J. Exp. Psychol. B 2001, 54, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Carlson, N.R. Physiology of Behavior, 13th ed.; Allyn & Bacon: Needham Heights, MA, USA, 1994; ISBN 9780205239399. [Google Scholar]
- Duranton, C.; Rödel, H.G.; Bedossa, T.; Belkhir, S. Inverse sex effects on performance of domestic dogs (Canis familiaris) in a repeated problem-solving task. J. Comp. Psychol. 2015, 129, 84. [Google Scholar] [CrossRef] [PubMed]
Authors | Year | Methods | Primary Outcomes | Advantaged Sex | |
---|---|---|---|---|---|
Aggressiveness | Borchelt | 1983 [59] | Interview with family members | Eight major types of aggression were identified in different pure and mixed breeds: fear-elicited aggression, dominance, possessiveness, protectiveness, predation, punishment, pain and intraspecific aggression. Intraspecific and dominance aggressions as the major drivers were influenced by sex. Fear-elicited and possessive aggressions were less influenced by sex. | Males |
Hart and Hart | 1985 [60] | A systematic survey of canine authorities | Males of different pure breeds showed more aggression toward other dogs. | Males | |
Wright and Nesselrote | 1987 [66] | Interview with family members | Males of different pure and mixed breeds showed more behavioral problems such as aggression toward dogs and humans. | Males | |
Cameron | 1997 [61] | Interview with the owners | Males of different pure and mixed breeds showed more dominance-associated aggression. | Males | |
Guy et al. | 2001 [76] | Interview with the owners | Females of different pure and mixed breeds showed more aggressive behavior toward humans. | Females | |
Rooney and Bradshaw | 2004 [69] | Interview with the owners and the trainers | English Springer spaniel, Labrador Retrievers, cross-breeds and Border collie males showed more aggression toward other dogs. | Males | |
Pérez-Guisado et al. | 2006 [62] | Experimental observation using Campbell’s test | English cocker spaniel males showed more dominance-associated aggression. | Males | |
Pérez-Guisado et al. | 2008a [63] | Experimental observation using Campbell’s test | Males of different pure and mixed breeds showed more dominance-associated aggression. | Males | |
Pérez-Guisado et al. | 2008b [64] | Interview with the owners | Males of different pure and mixed breeds showed more dominance-associated aggression. | Males | |
Pérez-Guisado and Serrano | 2009 [65] | Interview with the owners | Males of different pure and mixed breeds showed more dominance-associated aggression. | Males | |
Foyer et al. | 2013 [67] | Experimental observation | German shepherd males showed more aggressive behavior. | Males | |
Lofgren et al. | 2014 [68] | Interview with the owners | Labrador Retriever males showed higher owner aggression; stranger and dog-directed aggressions were not influenced by sex. | Males | |
Asp et al. | 2015 [70] | Interview with the owners | Males of different pure breeds showed higher stranger and dog-directed aggression. | Males | |
Boldness and Courage | Reuterwall and Ryman | 1973 [122] | Interview with the trainers | German shepherd males were less impressionable by gunfire. The courage and the response to a sudden disturbance, in general, were not influenced by sex. | Males |
Goddard and Beilharz | 1982 [123] | Interview with the trainers | Labrador and Golden Retriever males showed fewer fearfulness problems. | Males | |
Goddard and Beilharz | 1983 [124] | Interview with the trainers | Labrador and Golden Retriever males showed fewer fearfulness problems. | Males | |
Goddard and Beilharz | 1984 [126] | Experimental observation | Labrador Retriever, German shepherd, Boxer, Kelpie, and F1 crosses males showed less olfactory exploration associated with neophobia. | Males | |
Wilsson and Sundgren | 1997 [127] | Experimental observation | Labrador Retriever and German shepherd males scored higher in courage. | Males | |
Svartberg | 2002 [94] | Experimental observation | Belgian Tervuren and German shepherd males scored higher in boldness. | Males | |
Strandberg et al. | 2005 [128] | Experimental observation | Belgian Tervuren and German shepherd males scored higher in boldness. | Males | |
Kubinyi et al. | 2009 [130] | Interview with the owners | Males of different pure and mixed breeds scored higher in boldness. | Males | |
Asp et al. | 2015 [70] | Interview with the owners | Male of different pure breeds showed less dog and stranger- directed fear. | Males | |
Sociability | Lore and Eisenberg | 1986 [146] | Experimental observation | Females of different pure and mixed breeds were more likely to approach and make physical contact with a human stranger. Males of different pure and mixed breeds were less likely to approach and make physical contact with a human male stranger. | Females |
Wilsson and Sundgren | 1997 [127] | Experimental observation | Affability was not influenced by sex. | None | |
Strandberg et al. | 2005 [128] | Experimental observation | German shepherd males were more likely to social play. | Males | |
Kubinyi et al. | 2009 [130] | Interview with the owners | Females of different pure and mixed breeds scored higher in sociability. | Females | |
Foyer et al. | 2013 [67] | Experimental observation | German shepherd females scored higher in sociability. | Females | |
Asp et al. | 2015 [70] | Interview with the owners | Males of different pure breeds showed more human-directed play. | Males | |
Persson et al. | 2015 [149] | Experimental observation | Beagle females scored higher in sociability, making more physical contact with a human. | Females | |
D’Aniello et al. | Pers. Comm. [150] | Experimental observation | Labrador and Golden Retriever females made more physical contact with a stranger human. | Females | |
Spatial Cognition | Fugazza et al. | 2017 [165] | Experimental observation | Males of different pure and mixed breeds showed more flexibility in changing the navigation strategy from allocentric to egocentric. | Males |
Mongillo et al. | 2017 [167] | Experimental observation | Females of different pure and mixed breeds learned faster and made fewer errors in learning a task in the T-maze. | Females | |
Scandurra et al. | 2018b [168] | Experimental observation | No effect of sex was identified on strategy preference in the plus-maze; however, an effect of gonadectomy was identified in females with a preference for the egocentric strategy in gonadectomized females. The probability of success in changing the navigation strategy increased in females and decreased in males, with increasing age. | None | |
Lateralization | Wells | 2003 [189] | Experimental observation | Females of mixed breeds preferred to use the right paw, whereas males of mixed breeds were more inclined to use their left paw. | Females right pawed Males left pawed |
Quaranta et al. | 2004 [190] | Experimental observation | Female of different pure and mixed breeds preferred to use the right paw, while males of different pure and mixed breeds were more inclined to adopt their left paw. | Females right pawed Males left pawed | |
Branson and Rogers | 2006 [193] | Experimental observation | Use of the preferred paw was not influenced by sex. | None | |
Schneider et al. | 2013 [194] | Experimental observation | Use of the preferred paw was not influenced by sex. | None | |
Poyser et al. | 2006 [195] | Experimental observation | Males of different pure and mixed breeds used the left paw more frequently; they tended to use the left paw in the first trials. | Males left pawed | |
Wells et al. | 2016 [191] | Experimental observation | Females of different pure and mixed breeds preferred to use the left paw, whereas males of different pure and mixed breeds were more inclined to use their right paw. | Females left pawed Males right pawed | |
Visual Focusing | Rooijakkers et al. | 2009 [209] | Experimental observation | Females tended to look at the changing target longer. | None |
Müller et al. | 2011 [208] | Experimental observation | Females of different pure and mixed breeds responded to a size constancy violation, looking at the changing target longer. | Females | |
Nagasawa et al. | 2015 [205] | Experimental observation | Females of different pure and mixed breeds showed increased gazing behavior toward the owner with intranasal oxytocin. | Females | |
Kis et al. | 2015 [207] | Experimental observation | Dogs of both sexes were not affected by the intranasal oxytocin. | None | |
D’Aniello et al. | 2016 [26] | Experimental observation | Labrador and Golden Retriever females relied more on visual signals, such as human gestural commands. | Females | |
Duranton et al. | 2016 [203] | Experimental observation | Females of shepherds and molossoids dogs displayed more referential gazing behavior toward the owners. | Females | |
Kovács et al. | 2016 [206] | Experimental observation | Females of different pure and mixed breeds increased the gazing behavior toward the owners with the intranasal oxytocin. | Females | |
Mongillo et al. | 2016 [204] | Experimental observation | Females of different pure and mixed breeds displayed more gazing behavior toward the owners. | Females | |
Olfactory Skills | Siniscalchi et al. | 2011 [216] | Experimental observation | Males of mixed breeds tended to sniff vaginal secretion odor more frequently; females of mixed breeds investigated the food odor for a longer time. | Depending on motivation |
Hamilton and Vonk | 2015 [215] | Experimental observation | Labrador, Golden Retriever and F1 crosses males were able to recognize kin. | Males |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scandurra, A.; Alterisio, A.; Di Cosmo, A.; D’Aniello, B. Behavioral and Perceptual Differences between Sexes in Dogs: An Overview. Animals 2018, 8, 151. https://doi.org/10.3390/ani8090151
Scandurra A, Alterisio A, Di Cosmo A, D’Aniello B. Behavioral and Perceptual Differences between Sexes in Dogs: An Overview. Animals. 2018; 8(9):151. https://doi.org/10.3390/ani8090151
Chicago/Turabian StyleScandurra, Anna, Alessandra Alterisio, Anna Di Cosmo, and Biagio D’Aniello. 2018. "Behavioral and Perceptual Differences between Sexes in Dogs: An Overview" Animals 8, no. 9: 151. https://doi.org/10.3390/ani8090151