Physiologic Measures of Animal Stress during Transitional States of Consciousness
Abstract
:Simple Summary
Abstract
1. Introduction
2. Literature Review
2.1. Movement, Vocalization, and Reflex Activity
2.2. Heart Rate and Electrocardiography
- Sympathetic stimulation (e.g., “too light” or pain if awake)
- Hypotension
- Hypovolemia
- Hypoxemia (early) or anemia
- Hypercarbia
- Hyperthermia
- Drugs (e.g., ketamine, propofol, thiobarbiturates, antimuscarinics)
- Excessive sympathetic depression (e.g., “too deep”)
- Increased vagal tone (due to laryngeal sensory stimulation, surgical activity, or autonomic imbalance)
- Hypothermia
- Hyperkalemia
- Elevated intracranial pressure
- Hypoxemia
- Hypercarbia
- Drugs (e.g., opioids, alpha-2 agonists, acetylcholine)
2.3. Electroencephalography, Blood Oxygen Level Dependent MRI, Positron Emission Tomography
2.4. Plasma and Neuronal Stress Response Markers
2.4.1. Plasma Stress Response Markers
2.4.2. C-Fos
3. Conclusions
Conflicts of Interest
References and Notes
- Carter, H.E. Historical cases. J. Small Anim. Pract. 1984, 25, 31–35. [Google Scholar] [CrossRef]
- Breazile, J.E.; Kitchell, R.L. Euthanasia for laboratory animals. Fed. Proc. 1969, 28, 1577–1579. [Google Scholar] [PubMed]
- McMillan, F.D. Comfort as the primary goal in veterinary medical practice. J. Am. Vet. Med. Assoc. 1998, 212, 1370–1374. [Google Scholar] [PubMed]
- Valentine, H.; Williams, W.O.; Maurer, K.J. Sedation or inhalant anesthesia before euthanasia with CO2 does not reduce behavioral or physiologic signs of pain and stress in mice. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 50–57. [Google Scholar] [PubMed]
- Sharp, J.; Azar, T.; Lawson, D. Comparison of carbon dioxide, argon, and nitrogen for inducing unconsciousness or euthanasia of rats. J. Am. Assoc. Lab. Anim. Sci. 2006, 45, 21–25. [Google Scholar] [PubMed]
- Christensen, L.; Barton Gade, P. Transportation and pre-stun handling: CO2 systems. In Proceedings of Veterinary Congress, Helsinki, Finland, 27 November–29 November 2002; Available online: www.butina.eu/fileadmin/user_upload/images/articles/transport.pdf (accessed on 3 June 2015).
- Burkholder, T.H.; Niel, L.; Weed, J.L.; Brinster, L.R.; Bacher, J.D.; Foltz, C.J. Comparison of carbon dioxide and argon euthanasia: effects on behavior, heart rate, and respiratory lesions in rats. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 448–453. [Google Scholar] [PubMed]
- Pain Terms. International Association for the Study of Pain. Available online: http://www.iasp-pain.org/Taxonomy?navItemNumber=576#Pain (accessed on 3 June 2015).
- Hendrickx, J.F.; Eger, E.I., II; Sonner, J.M.; Shafer, S.L. Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth. Analg. 2008, 107, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Antognini, J.F.; Barter, L.; Carstens, E. Overview: movement as an index of anesthetic depth in humans and experimental animals. Comp. Med. 2005, 55, 413–418. [Google Scholar] [PubMed]
- Zeller, W.; Mettler, D.; Schatzmann, U. Untersuchungen zur Betäubung des Schlachtgeflügels mit Kohlendioxid. Fleischwirtschaft 1988, 68, 1308–1312. [Google Scholar]
- Alkire, M.T. General Anesthesia. In Encyclopedia of Consciousness; Banks, W.P., Ed.; Elsevier/Academic Press: Oxford, UK, 2009; pp. 296–313. [Google Scholar]
- Alkire, M.T.; Hudetz, A.G.; Tononi, G. Consciousness and anesthesia. Science 2008, 322, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Långsjö, J.W.; Alkire, M.T.; Kaskinoro, K.; Hayama, H.; Maksimow, A.; Kaisti, K.K.; Aalto, S.; Aantaa, R.; Jääskeläinen, S.K.; Revonsuo, A.; Scheinin, H. Returning from oblivion: Imaging the neural core of consciousness. J. Neurosci. 2012, 32, 4935–4943. [Google Scholar] [CrossRef] [PubMed]
- Finnie, J.W. Neuropathologic changes produced by non-penetrating percussive captive bolt stunning of cattle. N. Z. Vet. J. 1995, 43, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Blackmore, D.K.; Newhook, J.C. The assessment of insensibility in sheep, calves and pigs during slaughter. In Stunning of Animals for Slaughter; Eikelenboom, G., Ed.; Martinus Nijhoff Publishers: Boston, MA, USA, 1983; pp. 13–25. [Google Scholar]
- Gregory, N.G. Animal welfare at markets and during transport and slaughter. Meat Sci. 2008, 80, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Vogel, K.D.; Badtram, G.; Claus, J.R.; Grandin, T.; Turpin, S.; Weyker, R.E.; Voogd, E. Head-only followed by cardiac arrest electrical stunning is an effective alternative to head-only electrical stunning in pigs. J. Anim. Sci. 2011, 89, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Gregory, N.G.; Lee, J.L.; Widdicombe, J.P. Depth of concussion in cattle shot by penetrating captive bolt. Meat Sci. 2007, 77, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, A.E.; Shah, S.; Eddy, C.M.; Williams, A.; Rickards, H. Consciousness: A neurological perspective. Behav. Neurol. 2011, 24, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Antunes, L. Electroencephalogram-based anaesthetic depth monitoring in laboratory animals. Lab. Anim. 2012, 46, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Muir, W.W. Considerations for general anesthesia. In Lumb and Jones’ Veterinary Anesthesia and Analgesia, 4th ed.; Tranquilli, W.J., Thurmon, J.C., Grimm, K.A., Eds.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 7–30. [Google Scholar]
- Erhardt, W.; Ring, C.; Kraft, H.; Schmid, A.; Weinmann, H.M.; Ebert, R.; Schläger, B.; Schindele, M.; Heinze, R.; Lomholt, N.; et al. CO2 stunning of swine for slaughter from the anesthesiological viewpoint. Dtsch Tierarztl. Wochenschr. 1989, 96, 92–99. [Google Scholar] [PubMed]
- Dawson, M.D.; Lombardi, M.W.; Benson, E.R.; Alphin, R.L.; Malone, G.W. Using Accelerometers to Determine the Cessation of Activity of Broilers. J. Appl. Poult. Res. 2007, 16, 583–591. [Google Scholar] [CrossRef]
- Dawson, M.D.; Johnson, K.J.; Benson, E.R.; Alphin, R.L.; Malone, G.W. Determining cessation of brain activity during depopulation or euthanasia of broilers using accelerometers. J. Appl. Poult. Res. 2009, 18, 135–142. [Google Scholar] [CrossRef]
- Erasmus, M.A.; Turner, P.V.; Widowski, T.M. Measures of insensibility used to determine effective stunning and killing of poultry. J. Appl. Poult. Res. 2010, 19, 288–298. [Google Scholar] [CrossRef]
- Tilley, L.P. Essentials of Canine and Feline Electrocardiography: Interpretation and Treatment, 2nd ed.; Lea & Febiger: Philadelphia, PA, USA, 1985; pp. 1–53. [Google Scholar]
- Herman, J.P.; Cullinan, W.E. Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997, 20, 78–84. [Google Scholar] [CrossRef]
- Brainard, B.M.; Boller, M.; Fletcher, D.J. RECOVER Monitoring Domain Worksheet Authors. RECOVER evidence and knowledge gap analysis on veterinary CPR. Part 5: Monitoring. J. Vet. Emerg. Crit. Care 2012, 22 (Suppl. 1), S65–S84. [Google Scholar] [CrossRef] [PubMed]
- McKeegan, D.E.F.; Sparks, N.H.C.; Sandilands, V.; Demmers, T.G.; Boulcott, P.; Wathes, C.M. Physiological responses of laying hens during whole-house killing with carbon dioxide. Br. Poult. Sci. 2011, 52, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Benson, E.R.; Alphin, R.L.; Rankin, M.K.; Caputo, M.P.; Kinney, C.A.; Johnson, A.L. Evaluation of EEG based determination of unconsciousness vs. loss of posture in broilers. Res. Vet. Sci. 2012, 93, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, D.A.; Auckburally, A.; Flaherty, D.; Sandilands, V.; McKeegan, D.E. Avian reflex and electroencephalogram responses in different states of consciousness. Physiol. Behav. 2014, 133, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Mashour, G.A.; Orser, B.A.; Avidan, M.S. Intraoperative awareness—From neurobiology to clinical practice. Anesthesiology 2011, 114, 1218–1233. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.; Playle, L.; Golledge, H.; Leach, M.; Banzett, R.; Coenen, A.; Cooper, J.; Danneman, P.; Flecknell, P.; Kirkden, R.; Niel, L.; Raj, M. Newcastle consensus meeting on carbon dioxide euthanasia of laboratory animals. National Centre for the Replacement, Refinement and Reduction of Animals in Science: London, UK, 2006. Available online: https://www.nc3rs.org.uk/First%20Newcastle%20consensus%20meeting%20report.pdf (accessed on 3 June 2015).
- MacIver, M.B.; Bland, B.H. Chaos analysis of EEG during isoflurane-induced loss of righting in rats. Front. Syst. Neurosci. 2014, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Kaskinoro, K.; Maksimow, A.; Georgiadis, S.; Långsjö, J.; Scheinin, H.; Karjalainen, P.; Jääskeläinen, S.K. Electroencephalogram reactivity to verbal command after dexmedetomidine, propofol and sevoflurane-induced unresponsiveness. Anaesthesia 2015, 70, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Crosby, G.; Culley, D. Processed Electroencephalogram and Depth of Anesthesia: Window to Nowhere or into the Brain? Anesthesiology 2012, 116, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Hudetz, A.G.; Vizuete, J.A.; Imas, O.A. Desflurane selectively suppresses long-latency cortical neuronal response to flash in the rat. Anesthesiology 2009, 111, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Imas, O.A.; Ropella, K.M.; Ward, B.D.; Wood, J.D.; Hudetz, A.G. Volatile anesthetics enhance flash-induced gamma oscillations in rat visual cortex. Anesthesiology 2005, 102, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Barr, G.; Anderson, R.E.; Jakobsson, J.G. A study of bispectral analysis and auditory evoked potential indices during propofol-induced hypnosis in volunteers: The effect of an episode of wakefulness on explicit and implicit memory. Anaesthesia 2001, 56, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Baudelet, C.; Gallez, B. Effect of anesthesia on the signal intensity in tumors using BOLD-MRI: comparison with flow measurements by Laser Doppler flowmetry and oxygen measurements by luminescence-based probes. Magn. Reson. Imaging 2004, 22, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Steward, C.A.; Marsden, C.A.; Prior, M.J.; Morris, P.G.; Shah, Y.B. Methodological considerations in rat brain BOLD contrast pharmacological MRI. Psychopharmacology 2005, 180, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Cartner, S.C.; Barlow, S.C.; Ness, T.J. Loss of cortical function in mice after decapitation, cervical dislocation, potassium chloride injection, and CO2 inhalation. Comp. Med. 2007, 57, 570–573. [Google Scholar] [PubMed]
- Close, B.; Banister, K.; Baumans, V.; Bernoth, E.M.; Bromage, N.; Bunyan, J.; Erhardt, W.; Flecknell, P.; Gregory, N.; Hackbarth, H.; Morton, D.; Warwick, C. Recommendations for euthanasia of experimental animals: Part 2. DGXT of the European Commission. Lab. Anim. 1997, 31, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Close, B.; Banister, K.; Baumans, V.; Bernoth, E.M.; Bromage, N.; Bunyan, J.; Erhardt, W.; Flecknell, P.; Gregory, N.; Hackbarth, H.; Morton, D.; Warwick, C. Recommendations for euthanasia of experimental animals: Part 1. DGXI of the European Commission. Lab. Anim. 1996, 30, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Gregory, N.G.; Wotton, S.B. Effect of slaughter on the spontaneous and evoked activity of the brain. Br. Poult. Sci. 1986, 27, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Bates, G. Humane issues surrounding decapitation reconsidered. J. Am. Vet. Med. Assoc. 2010, 237, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Holson, R.R. Euthanasia by decapitation: evidence that this technique produces prompt, painless unconsciousness in laboratory rodents. Neurotoxicol. Teratol. 1992, 14, 253–257. [Google Scholar] [CrossRef]
- Derr, R.F. Pain perception in decapitated rat brain. Life Sci. 1991, 49, 1399–1402. [Google Scholar] [CrossRef]
- Vanderwolf, C.H.; Buzsaki, G.; Cain, D.P.; Cooley, R.K.; Robertson, B. Neocortical and hippocampal electrical activity following decapitation in the rat. Brain Res. 1988, 451, 340–344. [Google Scholar] [CrossRef]
- Mikeska, J.A.; Klemm, W.R. EEG evaluation of humaneness of asphyxia and decapitation euthanasia of the laboratory rat. Lab. Anim. Sci. 1975, 25, 175–179. [Google Scholar] [PubMed]
- van Rijn, C.M.; Krijnen, H.; Menting-Hermeling, S.; Coenen, A.M. Decapitation in rats: Latency to unconsciousness and the ‘wave of death’. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Minton, J.E. Function of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system in models of acute stress in domestic farm animals. J. Anim. Sci. 1994, 72, 1891–1898. [Google Scholar] [PubMed]
- Shaw, F.D.; Tume, R.K. The assessment of pre-slaughter and slaughter treatment of livestock by measurement of plasma constituents—A review of recent work. Meat Sci. 1992, 32, 311–329. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Barnett, J.L.; Hofmeyr, C.; Coleman, G. J.; Dowling, S.; Boyce, J. The effects of fear of humans and pre-slaughter handling on the meat quality of pigs. Aust. J. Agric. Res. 2002, 53, 493–501. [Google Scholar] [CrossRef]
- Hamilton, D.N.; Ellis, M.; Bertol, T.M.; Miller, K.D. Effects of handling intensity and live weight on blood acid-base balance in finishing pigs. J. Anim. Sci. 2004, 82, 2405–2409. [Google Scholar] [PubMed]
- Salajpal, K.; Dikic, M.; Karolyi, D.; Sinjeri, Z.; Liker, B.; Kostelic, A.; Juric, I. Blood serum metabolites and meat quality in crossbred pigs experiencing different lairage times. Ital. J. Anim. Sci. 2005, 4 (Suppl. 3), 119–121. [Google Scholar] [CrossRef]
- Hembrecht, E.; Eissen, J.J.; Nooijen, R.I.; Ducro, B.J.; Smits, C.H.; den Hartog, L.A.; Verstegen, M.W. Pre-slaughter stress and muscle energy largely determine pork quality at two commercial processing plants. J. Anim. Sci. 2004, 82, 1401–1409. [Google Scholar]
- Forslid, A.; Augustinsson, O. Acidosis, hypoxia and stress hormone release in response to one minute inhalation of 80% CO2 in swine. Acta. Physiol. Scand. 1988, 132, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Bornez, R.M.; Linares, B.; Vergara, H. Systems of stunning with CO2 gas on Manchego light lambs: Physiologic responses and stunning effectiveness. Meat Sci. 2009, 82, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Barklin, A.; Larsson, A.; Vestergaard, C.; Koefoed-Nielsen, J.; Bach, A.; Nyboe, R.; Wogensen, L.; Tønnesen, E. Does brain death induce a pro-inflammatory response at the organ level in a porcine model? Acta. Anaesthesiol. Scand. 2008, 52, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Chiari, P.; Hadour, G.; Michel, P.; Piriou, V.; Rodriguez, C.; Budat, C.; Ovize, M.; Jegaden, O.; Lehot, J.J.; Ferrera, R. Biphasic response after brain death induction: Prominent part of catecholamines release in this phenomenon. J. Heart Lung Transplant. 2000, 19, 675–682. [Google Scholar] [CrossRef]
- Licker, M.; Schweizer, A.; Hohn, L.; Morel, D.R. Haemodynamic and metabolic changes induced by repeated episodes of hypoxia in pigs. Acta. Anaesthesiol. Scand. 1998, 42, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Borovsky, V.; Herman, M.; Dunphy, G.; Caplea, A.; Ely, D. CO2 asphyxia increases plasma norepinephrine in rats via sympathetic nerves. Am. J. Physiol. 1998, 274, R19–R22. [Google Scholar] [PubMed]
- Reed, B.; Varon, J.; Chait, B.T.; Kreek, M.J. Carbon dioxide-induced anesthesia result in a rapid increase in plasma levels of vasopressin. Endocrinology 2009, 150, 2934–2939. [Google Scholar] [CrossRef] [PubMed]
- Kc, P.; Haxhiu, M.A.; Trouth, C.O.; Balanb, K.V.; Andersonb, W.A.; Mack, S.O. CO2-induced c-Fos expression in hypothalamic vasopressin containing neurons. Resp. Physiol. 2002, 129, 289–296. [Google Scholar] [CrossRef]
- Meyer, R.E.; Whitley, J.T.; Morrow, W.E.M.; Stikeleather, L.F.; Baird, C.L.; Rice, J.M.; Halbert, B.V.; Styles, D.K.; Whisnant, C.S. Effect of physical and inhaled euthanasia methods on hormonal measures of stress in pigs. J. Swine Health Prod. 2013, 21, 261–269. [Google Scholar]
- Kick, A.R.; Tompkins, M.B.; Flowers, W.L.; Whisnant, C.S.; Almond, G.W. Effects of stress associated with weaning on the adaptive immune system in pigs. J. Anim. Sci. 2012, 90, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, S.J.; Ruis, M.; Dekkers, R.; van Diepen, H.; Korte, M.; Mroz, Z. Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs. Physiol. Behav. 2005, 21, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Das, D.K.; Maulik, N.; Moraru, I.I. Gene expression in acute myocardial stress: induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J. Mol. Cell Cardiol. 1995, 27, 181–193. [Google Scholar] [CrossRef]
- Morgan, J.I.; Curran, T. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci. 1989, 12, 459–462. [Google Scholar] [CrossRef]
- MacIver, M.B.; Roth, S.H. Inhalation anaesthetics exhibit pathway-specific and differential actions on hippocampal synaptic responses in vitro. Br. J. Anaesth. 1988, 60, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Shingu, K.; Shibata, M.; Osawa, M.; Mori, K. The divergent actions of volatile anaesthetics on background neuronal activity and reactive capability in the central nervous system in cats. Can. J. Anaesth. 1992, 39, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.L.; Fitz, S.D.; Hollis, J.H.; Moratalla, R.; Lightman, S.L.; Shekhar, A.; Lowry, C.A. Induction of c-Fos in ‘panic/defence’-related brain circuits following brief hypercarbic gas exposure. J. Psychopharmacol. 2011, 25, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Hamaya, Y.; Takeda, T.; Dohi, S.; Nakashima, S.; Nozawa, Y. The effects of pentobarbital, isoflurane, and propofol on immediate-early gene expression in the vital organs of the rat. Anesth. Analg. 2000, 90, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Wikipedia Contributors. Blind Men and an Elephant. Available online: http://en.wikipedia.org/w/index.php?title=Blind_men_and_an_elephant&oldid=649833664 (accessed on 3 June 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, R.E. Physiologic Measures of Animal Stress during Transitional States of Consciousness. Animals 2015, 5, 702-716. https://doi.org/10.3390/ani5030380
Meyer RE. Physiologic Measures of Animal Stress during Transitional States of Consciousness. Animals. 2015; 5(3):702-716. https://doi.org/10.3390/ani5030380
Chicago/Turabian StyleMeyer, Robert E. 2015. "Physiologic Measures of Animal Stress during Transitional States of Consciousness" Animals 5, no. 3: 702-716. https://doi.org/10.3390/ani5030380
APA StyleMeyer, R. E. (2015). Physiologic Measures of Animal Stress during Transitional States of Consciousness. Animals, 5(3), 702-716. https://doi.org/10.3390/ani5030380