Effects of Aquatic Plants on Water Quality, Microbial Community, and Fish Behaviors in Newly Established Betta Aquaria
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Materials and Culture Conditions
2.3. Experimental Design
2.4. Behavioral Observation
2.5. Water Quality Measurement and Microbial Community Sample Collection
2.6. DNA Extraction
2.7. 16S rRNA Gene Amplification by PCR
2.8. 16S Gene Library Construction, Quantification, and Sequencing
2.9. Sequence Processing, OTU Clustering, Representative Tags Alignment, and Biological Classification
2.10. Statistical Analysis
3. Results
3.1. Effects of Aquatic Plants on Water Quality in Newly Established Betta Aquaria
3.2. Effects of Different Aquatic Plants on Betta Fish Behavior
3.3. Temporal Changes in Plant Biomass and Growth
3.4. Effects of Different Aquatic Plants on Microbial Community Structure
3.4.1. Sequencing Data Quality Assessment
3.4.2. Microbial Alpha Diversity
3.4.3. Analysis of Microbial Beta Diversity
3.4.4. Composition of Aquatic Microbial Community
3.4.5. Relationship Between Microbial Community Structure and Environmental Factors
4. Discussion
4.1. Effects of Aquatic Plants on Water Quality in Betta Aquaria
4.1.1. DO
4.1.2. pH
4.1.3. NH3-N
4.2. Effects of Aquatic Plants on Fish Behavior
4.3. Effects of Aquatic Plants on Microbial Community Structure and Diversity
4.4. Differences in Dominant Genera Among Groups Within the Pseudomonadota Phylum
4.4.1. Genera Related to the Nitrogen Cycle
4.4.2. Genera Related to Organic Matter Degradation and Water Purification
4.4.3. Genus Indicating Potential Risk
4.4.4. Correlation Between Pseudomonadophyta and Environmental Factors
4.5. Differences in Dominant Genera Among Groups Within the Bacteroidota Phylum
4.6. The Function of Dominant Genus in the Verrucomicrobiota Phylum
4.7. The Function of Dominant Genus in the Actinomycetota Phylum
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DO | Dissolved Oxygen |
| NH3-N | Ammonia Nitrogen |
| pH | Potential of Hydrogen |
References
- Sermwatanakul, A. Capacitating the local farmers to enhance global marketing of Thailand’s national aquatic animal, the Siamese fighting fish. Fish People 2021, 17, 42–48. [Google Scholar]
- Guo, H.; Dixon, B. Understanding acute stress-mediated immunity in teleost fish. Fish Shellfish Immunol. Rep. 2021, 2, 100010. [Google Scholar] [CrossRef]
- Bolasina, S.N. Stress response of juvenile flounder (Paralichthys orbignyanus, Valenciennes 1839), to acute and chronic stressors. Aquaculture 2011, 313, 140–143. [Google Scholar] [CrossRef]
- Barton, B.A. Stress in Fishes: A Diversity of Responses with Particular Reference to Changes in Circulating Corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef]
- Portz, D.E.; Woodley, C.M.; Cech, J.J. Stress-associated impacts of short-term holding on fishes. Rev. Fish Biol. Fish. 2006, 16, 125–170. [Google Scholar] [CrossRef]
- Vatsos, I.N.; Angelidis, P. Water quality and fish diseases. J. Hell. Vet. Med. Soc. 2017, 61, 40–48. [Google Scholar] [CrossRef]
- Welker, T.L.; Overturf, K.; Abernathy, J. Effect of Water Source and Trout Strain on Expression of Stress-Affected Genes in a Commercial Setting. N. Am. J. Aquac. 2018, 80, 249–262. [Google Scholar] [CrossRef]
- Amal, M.N.A.; Saad, M.Z.; Zahrah, A.S.; Zulkafli, A.R. Water quality influences the presence ofStreptococcus agalactiaein cage cultured red hybrid tilapia, Oreochromis niloticus × Oreochromis mossambicus. Aquac. Res. 2015, 46, 313–323. [Google Scholar] [CrossRef]
- Brandão, M.L.; Dorigão-Guimarães, F.; Bolognesi, M.C.; Gauy, A.C.D.S.; Pereira, A.V.S.; Vian, L.; Carvalho, T.B.; Gonçalves-de-Freitas, E. Understanding behaviour to improve the welfare of an ornamental fish. J. Fish Biol. 2021, 99, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Kirchman, D.L. Community structure of microbes in natural environments. Process. Microb. Ecol. 2018, 2, 53–72. [Google Scholar] [CrossRef]
- Song, L.; Hu, C.; Zhang, X.; Liu, Y.; Song, G.; Wu, J.; Wang, Z.; Sun, M. Effects of feeding on microbial community structure and pathogen abundance in marine aquaculture ponds. Mar. Environ. Res. 2025, 210, 107319. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Liu, Y.; Zhou, S.; Meegaskumbura, M.; Chaston, J.M. Microbiome and climate: Skin microbial diversity and community functions of Polypedates megacephalus (Anura: Rhacophoridae) associated with bioclimate. Microbiol. Spectr. 2025, 13, e0235824. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, X.; Tian, X.; Jiang, W.; Dong, X.; Li, L. Influence of ammonia nitrogen management strategies on microbial communities in biofloc-based aquaculture systems. Sci. Total Environ. 2023, 903, 166159. [Google Scholar] [CrossRef]
- Testerman, T.; Beka, L.; Reichley, S.R.; King, S.; Welch, T.J.; Wiens, G.D.; Graf, J. A large-scale, multi-year microbial community survey of a freshwater trout aquaculture facility. FEMS Microbiol. Ecol. 2022, 98, fiac101. [Google Scholar] [CrossRef]
- Zhao, D.; Gao, P.; Xu, L.; Qu, L.Y.; Han, Y.J.; Zheng, L.W.; Gong, X.Z. Disproportionate responses between free-living and particle-attached bacteria during the transition to oxygen-deficient zones in the Bohai Seawater. Sci. Total Environ. 2021, 791, 148097. [Google Scholar] [CrossRef]
- Li, J.Q.; Xie, N.D.; Liu, X.P.; Bai, M.; Hunt, D.E.; Wang, G.Y. Oxygen levels differentially attenuate the structure and diversity of microbial communities in the oceanic oxygen minimal zones. Sci. Total Environ. 2024, 948, 174934. [Google Scholar] [CrossRef]
- Xu, C.; Xu, Z.X.; Chu, W.H.; Wu, S.S.; Xiao, R.; Su, L. Identification of high oxygen-consuming substances in stormwater drainage systems illicitly connected with sewage system. J. Environ. Sci. 2024, 138, 132–140. [Google Scholar] [CrossRef]
- Park, J.J.; Byun, I.G.; Yu, J.C.; Park, S.R.; Ju, D.J.; Hur, S.H.; Park, T.J. Analysis of nitrifying bacterial communities in aerobic biofilm reactors with different DO conditions using molecular techniques. Water Sci. Technol. 2008, 57, 1889–1899. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, G.; Sun, Z.; Liang, Y.; Liu, F.; Shi, J. Water quality and microecosystem of water tanks in karst mountainous area, Southwest China. Environ. Sci. Pollut. Res. 2024, 31, 12948–12965. [Google Scholar] [CrossRef]
- Xiao, G.; Cheng, X.; Zhu, D.; Li, Z.; Feng, L.; Peng, X.; Lu, Z.; Xie, J. Exploring the mechanism of a novel recirculating aquaculture system based on water quality parameters and bacterial communities. Environ. Sci. Pollut. Res. 2022, 30, 34760–34774. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, D.; Suzuki, S.; Asakura, T.; Kikuchi, J. Microbiome and Metabolome Analyses in Different Closed-Circulation Aquarium Systems and Their Network Visualization. ACS Omega 2022, 7, 30399–30404. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhang, P.; Xue, M.; Xiao, Z.; Zhang, M.; Meng, Y.; Fan, Y.; Qiu, J.; Zhang, Q.; Zhou, Y. Variations in the Intestinal Microbiota of the Chinese Soft-Shelled Turtle (Trionyx sinensis) between Greenhouse and Pond Aquaculture. Animals 2023, 13, 2971. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Y.; Tang, S.; Li, J.; Fan, L.; He, W. Effects of Bacillus licheniformis on the water quality, growth performance and bacterial community in Penaeus vannamei aquaculture system. Front. Microbiol. 2025, 16, 1595680. [Google Scholar] [CrossRef]
- Hossain, M.M.; Rahman, M.H.; Tina, F.W.; Shahjahan, M. Present scenario and prospects of the use of aquatic plants in aquaculture: A review. Aquac. Int. 2024, 32, 6791–6825. [Google Scholar] [CrossRef]
- Khan, K.F.; Sankar, G.; Ramamoorth, K.; Sugesh, S. Antibacterial Activities of Salt Marsh Plants Against Marine Ornamental Fish Pathogens. Am. J. Drug Discov. Dev. 2013, 3, 149–157. [Google Scholar] [CrossRef]
- Csontos, D.; Bartal, Z.P.; Bakacsy, L. Removal of nitrate and phosphate by aquatic plants during aquarium-based ornamental fish production. N. Am. J. Aquac. 2024, 86, 413–423. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhang, Q.; Zhang, Z.Y.; Zhou, Z.G.; Lu, T.; Sun, L.W.; Qian, H.F. Evaluation of phoxim toxicity on aquatic and zebrafish intestinal microbiota by metagenomics and 16S rRNA gene sequencing analysis. Environ. Sci. Pollut. Res. 2022, 29, 63017–63027. [Google Scholar] [CrossRef] [PubMed]
- Varg, J.E.; Brealey, J.C.; Benhaïm, D.; Losada-Germain, R.; Boughman, J.W. Interplay between antipredator behavior, parasitism, and gut microbiome in wild stickleback populations. npj Biofilms Microbiomes 2025, 11, 138. [Google Scholar] [CrossRef]
- Baladrón, A.; Costa, M.J.; Bejarano, M.D.; Pinheiro, A.; Boavida, I. Can vegetation provide shelter to cyprinid species under hydropeaking? Sci. Total Environ. 2021, 769, 145339. [Google Scholar] [CrossRef]
- Oldfield, R.G.; Murphy, E.K. Life in a fishbowl: Space and environmental enrichment affect behaviour of Betta splendens. Anim. Welf. 2024, 33, e1. [Google Scholar] [CrossRef] [PubMed]
- Clark-Shen, N.; Tariel-Adam, J.; Gajanur, A.; Brown, C. Life beyond a jar: Effects of tank size and furnishings on the behaviour and welfare of Siamese fighting fish (Betta splendens). Anim. Welf. 2024, 33, e62. [Google Scholar] [CrossRef]
- Csanyi, V.; Toth, P.; Altbacker, V.; Doka, A.; Gervai, J. Behavioral Elements of the Paradise Fish (Macropodus opercularis) I. Regularities of Defensive Behavior. Acta Biol. Hung. 1985, 36, 93–114. [Google Scholar]
- Song, H.; Li, Z.; Du, B.; Wang, G.; Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 2012, 112, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Pu, D.; Zheng, J.; Li, P.; Lü, H.; Wei, X.; Li, M.; Li, D.; Gao, L. Hypoxia-induced physiological responses in fish: From organism to tissue to molecular levels. Ecotoxicol. Environ. Saf. 2023, 267, 115609. [Google Scholar] [CrossRef]
- Boyd, C.E.; Torrans, E.L.; Tucker, C.S. Dissolved Oxygen and Aeration in Ictalurid Catfish Aquaculture. J. World Aquac. Soc. 2017, 49, 7–70. [Google Scholar] [CrossRef]
- Heffernan, J.B.; Fisher, S.G. Plant–microbe interactions and nitrogen dynamics during wetland establishment in a desert stream. Biogeochemistry 2010, 107, 379–391. [Google Scholar] [CrossRef]
- Anna, Z.; Muhua, F.; Wenzhao, L.; Jizheng, P.; Fan, K. Effect of photosynthesis oxygen evolution of submerged macrophyte Elodea nuttallii on nitrogen transformation in water. Ecol. Environ. Sci. 2010, 19, 757–761. [Google Scholar] [CrossRef]
- Yang, Q.; Xue, R.; Liu, G.; Jiang, Y.; Shi, W.; Guan, W. Bacterial Community Composition in Water and Soil in Ring Groove in Rice-crab Fields. Acta Agric. Boreali-Occident. Sin. 2025, 34, 1312–1323. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Li, Y. Effects of Algae on Pond Water Environment and Purification of Pond Water by Aquatic Plants and Silver Carp and Bighead Carp. J. Jilin Agric. Univ. 2016, 38, 111–116. [Google Scholar] [CrossRef]
- Koga, H.; Ikematsu, S.; Kimura, S. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments. Annu. Rev. Plant Biol. 2024, 75, 579–604. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z. The Impact of pH in Aquaculture Water on Aquatic Organisms. Rural. Sci. Technol. 2024, 15, 93–95. (In Chinese) [Google Scholar] [CrossRef]
- Yin, Y.; Wu, Z.; Liu, M.; He, J.; Yu, Z. Dynamic Distributions of Dissolved Oxygen in Lake Qiandaohu and Its Environmental Influence Factors. Environ. Sci. 2014, 35, 2539–2546. [Google Scholar] [CrossRef]
- Chi, Y.; Fu, Y.; He, S.; Li, T.; Zhang, J.; Ji, W.; Lou, Z. Purification effects of 10 wetland plants on simulated contaminated water of different degrees. South China For. Sci. 2021, 49, 37–41+69. (In Chinese) [Google Scholar] [CrossRef]
- Zhi, W.; Zhiyong, Z.; Junqian, Z.; Xuezheng, W.; Yan, W.; Haiqin, L.; Shaohua, Y. Water quality effects of two aquatic macrophytes on eutrophic water from Lake Dianchi Caohai. China Environ. Sci. 2013, 33, 328–335. [Google Scholar] [CrossRef]
- Iamchaturapatr, J.; Yi, S.W.; Rhee, J.S. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland. Ecol. Eng. 2007, 29, 287–293. [Google Scholar] [CrossRef]
- Liu, S.; Yan, B.; Wang, L. The effect of two wetland plants on nitrogen and phosphorus removal from the simulated paddy field runoff in two small-scale Subsurface Flow Constructed Wetlands. Acta Ecol. Sin. 2011, 31, 1538–1546. [Google Scholar] [CrossRef]
- Prasanna Kumar, D.J.; Mishra, R.K.; Chinnam, S.; Binnal, P.; Dwivedi, N. A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends. Biotechnol. Notes 2024, 5, 33–49. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Wang, L.; Zhang, X.; Shi, Y.; Jiang, Y. Dynamic and explainable fish mortality prediction under low-concentration ammonia nitrogen stress. Biosyst. Eng. 2023, 228, 178–192. [Google Scholar] [CrossRef]
- Haitao, D.; Wentao, H.; Chengxun, D.; Jun, C.; Jie, J. Purification effects of aquatic macrophytes on eutrophic water. J. Jiamusi Univ. Nat. Sci. Ed. 2020, 38, 112–116. (In Chinese) [Google Scholar] [CrossRef]
- Bielmyer-Fraser, G.; Llazar, K.; Ward, A.; Trent, T.; Goldberg, N. Metal analysis of submerged aquatic vegetation in the lower St. Johns River, Florida. Environ. Monit. Assess. 2022, 194, 492. [Google Scholar] [CrossRef]
- Chen, S.; Ye, B.; Sun, R.; Zhang, Y.; Hu, S. Study on the Degradation of Total Nitrogen in Different Sediment Samples from Erhai Lake by Three Emergent Plants. Green Living 2014, 6, 146–147+149. (In Chinese) [Google Scholar]
- Yu, L.; Luo, Z.; Tang, P.; Li, T.; Peng, Z. Research on the purification of carbon, nitrogen and phosphorus micro-polluted water by combination of aquatic plants with different life habits. Environ. Pollut. Control. 2023, 45, 917–922. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Zhao, C. Comparative Study on the Pollution Purification Effects of Different Aquatic Plants in Fish Ponds. Jiangxi Fish. Sci. Technol. 2011, 1, 13–16. (In Chinese) [Google Scholar] [CrossRef]
- Martins, C.I.M.; Galhardo, L.; Noble, C.; Damsgård, B.; Spedicato, M.T.; Zupa, W.; Beauchaud, M.; Kulczykowska, E.; Massabuau, J.-C.; Carter, T.; et al. Behavioural indicators of welfare in farmed fish. Fish Physiol. Biochem. 2011, 38, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Florindo, L.H.; Armelin, V.A.; McKenzie, D.J.; Rantin, F.T. Control of air-breathing in fishes: Central and peripheral receptors. Acta Histochem. 2018, 120, 642–653. [Google Scholar] [CrossRef]
- Miller, L.; Vicino, G.; Sheftel, J.; Lauderdale, L. Behavioral Diversity as a Potential Indicator of Positive Animal Welfare. Animals 2020, 10, 1211. [Google Scholar] [CrossRef]
- Rácz, A.; Adorján, G.; Fodor, E.; Sellyei, B.; Tolba, M.; Miklósi, Á.; Varga, M. Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus opercularis). Animals 2021, 11, 786. [Google Scholar] [CrossRef]
- Chari, T.J. A Study on Fish Diseases in Freshwater Aquaculture at Siddipet (D) Telangana State, India. Int. J. Oceanogr. Aquac. 2024, 8, 000293. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Zhang, Y.; Liu, J.; Tu, W.; Yu, H. DDEYOLOv9: Network for Detecting and Counting Abnormal Fish Behaviors in Complex Water Environments. Fishes 2024, 9, 242. [Google Scholar] [CrossRef]
- Bushmann, P.J.; Ailstock, M.S. Antibacterial compounds in estuarine submersed aquatic plants. J. Exp. Mar. Biol. Ecol. 2006, 331, 41–50. [Google Scholar] [CrossRef]
- Wirman, R.P.; Dewata, I.; Heldi; Isnaini, V.A. Potential Uses of Submerged Aquatic Plants and Bacteria in the Development of Water Treatment Equipment. Water Conserv. Manag. 2023, 8, 31–36. [Google Scholar] [CrossRef]
- Pleeging, C.C.F.; Moons, C.P.H. Potential welfare issues of the Siamese fighting fish (Betta splendens) at the retailer and in the hobbyist aquarium. Vlaams Diergeneeskd. Tijdschr. 2017, 86, 213–223. [Google Scholar] [CrossRef]
- Maia, C.M.; Alves, N.P.C.; Tatemoto, P. Juvenile Nile Tilapia Fish Avoid Red Shelters. J. Appl. Anim. Welf. Sci. 2021, 24, 98–106. [Google Scholar] [CrossRef]
- Li, Z.Y.; Chen, X.W.J.; Huang, J.Z.; An, D.; Zhou, Y.E. Behavior analysis of juvenile steelhead trout under blue and red light color conditions based on multiple object tracking. Front. Mar. Sci. 2024, 11, 1377494. [Google Scholar] [CrossRef]
- Ruchin, A.B. Influence of Colored Light on Growth rate of Juveniles of Fish. Fish Physiol. Biochem. 2005, 30, 175–178. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tamaki, H.; Matsuzawa, H.; Nigaya, M.; Mori, K.; Kamagata, Y. Microbial Community Analysis in the Roots of Aquatic Plants and Isolation of Novel Microbes Including an Organism of the Candidate Phylum OP10. Microbes Environ. 2012, 27, 149–157. [Google Scholar] [CrossRef]
- Ma, B.; Wang, H.; Dsouza, M.; Lou, J.; He, Y.; Dai, Z.; Brookes, P.C.; Xu, J.; Gilbert, J.A. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016, 10, 1891–1901. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 2013, 37, 112–129. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Ren, L.; Wu, Q. Epiphytic bacterial communities on two common submerged macrophytes in Taihu Lake: Diversity and host-specificity. Chin. J. Oceanol. Limnol. 2012, 30, 237–247. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Steele, J.A.; Caporaso, J.G.; Steinbrück, L.; Reeder, J.; Temperton, B.; Huse, S.; McHardy, A.C.; Knight, R.; Joint, I.; et al. Defining seasonal marine microbial community dynamics. ISME J. 2012, 6, 298–308. [Google Scholar] [CrossRef]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z. Antibiotics, Antibiotic Resistance Genes, and Bacterial Community Composition in Fresh Water Aquaculture Environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef]
- Qiao, L.; Bao, J.J.; Li, T.J.; Sun, X.M.; Ze, W.G.; Li, J. Microbial Community Structure and Its Driving Factors in the Whiteleg Shrimp (Litopenaeus Vannamei) Aquaculture System. Appl. Ecol. Environ. Res. 2025, 23, 671–686. [Google Scholar] [CrossRef]
- Du, C.; Cui, C.-W.; Qiu, S.; Shi, S.-N.; Li, A.; Ma, F. Nitrogen removal and microbial community shift in an aerobic denitrification reactor bioaugmented with a Pseudomonas strain for coal-based ethylene glycol industry wastewater treatment. Environ. Sci. Pollut. Res. 2017, 24, 11435–11445. [Google Scholar] [CrossRef]
- Wei, Q.; Song, Z.; Chen, Y.; Yang, H.; Chen, Y.; Liu, Z.; Yu, Y.; Tu, Q.; Du, J.; Li, H. Metagenomic Sequencing Elucidated the Microbial Diversity of Rearing Water Environments for Sichuan Taimen (Hucho bleekeri). Genes 2024, 15, 1314. [Google Scholar] [CrossRef]
- Abril, A.G.; Calo-Mata, P.; Böhme, K.; Villa, T.G.; Barros-Velázquez, J.; Sánchez-Pérez, Á.; Pazos, M.; Carrera, M. Shotgun proteomic analyses of Pseudomonas species isolated from fish products. Food Chem. 2024, 450, 139342. [Google Scholar] [CrossRef]
- Möller, K.; Tillmann, U.; Pöchhacker, M.; Varga, E.; Krock, B.; Porreca, F.; Koch, F.; Harris, T.M.; Meunier, C.L. Toxic effects of the emerging Alexandrium pseudogonyaulax (Dinophyceae) on multiple trophic levels of the pelagic food web. Harmful Algae 2024, 138, 102705. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Yu, E.; Zhang, K.; Yu, D.; Gong, W.; Xie, J. Artificial substrata increase pond farming density of grass carp (Ctenopharyngodon idella) by increasing the bacteria that participate in nitrogen and phosphorus cycles in pond water. PeerJ 2019, 7, e7906. [Google Scholar] [CrossRef] [PubMed]
- de-Bashan, L.E.; Bashan, Y. Joint Immobilization of Plant Growth-Promoting Bacteria and Green Microalgae in Alginate Beads as an Experimental Model for Studying Plant-Bacterium Interactions. Appl. Environ. Microbiol. 2008, 74, 6797–6802. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Sharma, R.S.; Mishra, V. Deciphering the ecological impact of azo dye pollution through microbial community analysis in water–sediment microcosms. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Le, V.V.; Ko, S.-R.; Kang, M.; Jeong, S.; Oh, H.-M.; Ahn, C.-Y. Comparative Genome analysis of the Genus Curvibacter and the Description of Curvibacter microcysteis sp. nov. and Curvibacter cyanobacteriorum sp. nov., Isolated from Fresh Water during the Cyanobacterial Bloom Period. J. Microbiol. Biotechnol. 2023, 33, 1428–1436. [Google Scholar] [CrossRef]
- Yuan, J.; Lai, Q.; Zheng, T.; Shao, Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int. J. Syst. Evol. Microbiol. 2009, 59, 2084–2088. [Google Scholar] [CrossRef]
- Krishnan, R.; Menon, R.R.; Likhitha; Busse, H.-J.; Tanaka, N.; Krishnamurthi, S.; Rameshkumar, N. Novosphingobium pokkalii sp nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res. Microbiol. 2017, 168, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ai, D.; Liu, K.; Sun, S.; Li, Y.; Huang, D.; Zhang, J. Microbial succession and enrichment of antibiotic resistance genes during algal-bacterial biofilm purification of aquaculture wastewater. J. Water Process Eng. 2024, 64, 105642. [Google Scholar] [CrossRef]
- Ishizawa, H.; Kuroda, M.; Inoue, K.; Inoue, D.; Morikawa, M.; Ike, M. Colonization and Competition Dynamics of Plant Growth-Promoting/Inhibiting Bacteria in the Phytosphere of the Duckweed Lemna minor. Microb. Ecol. 2019, 77, 440–450. [Google Scholar] [CrossRef]
- Mudarris, M.S.A. Studies on the Microflora of Turbot (Scophthalmus maximus L.), with Emphasis on Bacterial Gill Disease. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 1989. [Google Scholar]
- Ma, Q.; Qu, Y.; Shen, W.; Zhang, Z.; Wang, J.; Liu, Z.; Li, D.; Li, H.; Zhou, J. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour. Technol. 2015, 179, 436–443. [Google Scholar] [CrossRef]
- Danghui, Y.; Xiuhua, W.; Yuzhe, Z.; Heying, W.; Qin, Z. Effect of Environmental Conditions on Denitrification of Pseudomonas sp\. Prog. Fish. Sci. 2020, 41, 144–150. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, J.; Liu, Y.; Dong, J.; Xu, N.; Yang, Q.; Zhou, S.; Ai, X. Safety evaluation for the use of Bacillus amyloliquefaciens in freshwater fish cultures. Aquac. Rep. 2021, 21, 100822. [Google Scholar] [CrossRef]
- Jin, Y.; Meng, S.; Xu, H.; Song, C.; Fan, L.; Qiu, L.; Li, D. Characteristics of Water Environment and Intestinal Microbial Community of Largemouth Bass (Micropterus salmoides) Cultured Under Biofloc Model. Microorganisms 2024, 12, 2158. [Google Scholar] [CrossRef] [PubMed]
- Linfang, Z.; Qi, Z.; Jun, W.; Su, W.; Hao, L.; Xiaodan, H.; Guokai, F.; Zhi, Z.; Junxiang, Z. Enhanced nitrogen and phosphorus removal efficacy from micro-polluted water by periphyton biofilm and its microbial community characterization. Chin. J. Environ. Eng. 2025, 19, 684–696. [Google Scholar] [CrossRef]
- O’Sullivan, L.A.; Rinna, J.; Humphreys, G.; Weightman, A.J.; Fry, J.C. Fluviicola taffensis gen. nov., sp. nov., a novel freshwater bacterium of the family Cryomorphaceae in the phylum ‘Bacteroidetes’. Int. J. Syst. Evol. Microbiol. 2005, 55, 2189–2194. [Google Scholar] [CrossRef]
- Seo, H.; Kim, J.H.; Lee, S.-M.; Lee, S.-W. The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health. Plant Pathol. J. 2024, 40, 251–260. [Google Scholar] [CrossRef]
- Zhang, M.; Xiong, J.; Jiang, X.; Cheng, Y.; Wu, X. Comparative insights into digestive, antioxidant, and immune traits and microbial composition between wild-caught and pond-reared megalopa populations of Chinese mitten crab (Eriocheir sinensis). Aquac. Int. 2025, 33, 382. [Google Scholar] [CrossRef]
- Xu, M.; Xu, R.; Shen, X.; Gao, P.; Xue, Z.; Huang, D.; Jin, G.; Li, C.; Cao, J. The response of sediment microbial communities to temporal and site-specific variations of pollution in interconnected aquaculture pond and ditch systems. Sci. Total Environ. 2022, 806, 150498. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Fu, B.; Mu, X. Improvement of aquaculture water quality by mixed Bacillus and its effects on microbial community structure. Environ. Sci. Pollut. Res. 2022, 29, 69731–69742. [Google Scholar] [CrossRef] [PubMed]
- Nixon, S.L.; Daly, R.A.; Borton, M.A.; Solden, L.M.; Welch, S.A.; Cole, D.R.; Mouser, P.J.; Wilkins, M.J.; Wrighton, K.C.; Suen, G. Genome-Resolved Metagenomics Extends the Environmental Distribution of the Verrucomicrobia Phylum to the Deep Terrestrial Subsurface. mSphere 2019, 4, 00613-19. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.Q.; Cheng, C.H.; Feng, J.; Liu, S.L.; Ma, H.L.; Chen, X.L.; Chen, H.X.; Guo, Z.X. Rapid environmental change shapes pond water microbial community structure and function, affecting mud crab (Scylla paramamosain) survivability. Appl. Microbiol. Biotechnol. 2020, 104, 2229–2241. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Liang, J.; Chen, W.; Wang, J.; Ji, B.; Luo, S. Bacterial Community Analysis of Two Neighboring Freshwater Lakes Originating from One Lake. Pol. J. Environ. Stud. 2020, 30, 111–117. [Google Scholar] [CrossRef]
- Mang, Q.; Gao, J.; Li, Q.; Sun, Y.; Xu, G.; Xu, P. Metagenomic Insight into the Effect of Probiotics on Nitrogen Cycle in the Coilia nasus Aquaculture Pond Water. Microorganisms 2024, 12, 627. [Google Scholar] [CrossRef]
- Abakari, G.; Luo, G.; Shao, L.; Abdullateef, Y.; Cobbina, S.J. Effects of biochar on microbial community in bioflocs and gut of Oreochromis niloticus reared in a biofloc system. Aquac. Int. 2021, 29, 1295–1315. [Google Scholar] [CrossRef]
- Costa-Gutierrez, S.B.; Saez, J.M.; Aparicio, J.D.; Raimondo, E.E.; Benimeli, C.S.; Polti, M.A. Glycerol as a substrate for actinobacteria of biotechnological interest: Advantages and perspectives in circular economy systems. Chemosphere 2021, 279, 130505. [Google Scholar] [CrossRef]
- Peng, X.; Zhou, Q.; Wu, C.; Zhao, J.; Tan, Q.; He, Y.; Hu, L.; Fang, Z.; Lin, Y.; Xu, S.; et al. Effects of dietary supplementation with essential oils and protease on growth performance, antioxidation, inflammation and intestinal function of weaned pigs. Anim. Nutr. 2022, 9, 39–48. [Google Scholar] [CrossRef]
- Chen, P.; Li, J.; Li, Q.X.; Wang, Y.; Li, S.; Ren, T.; Wang, L. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresour. Technol. 2012, 116, 266–270. [Google Scholar] [CrossRef]
- Wirth, R.; Pap, B.; Dudits, D.; Kakuk, B.; Bagi, Z.; Shetty, P.; Kovács, K.L.; Maróti, G. Genome-centric investigation of anaerobic digestion using sustainable second and third generation substrates. J. Biotechnol. 2021, 339, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Vasagar, B.; Jain, V.; Germinario, A.; Watson, H.J.; Ouzts, M.; Presutti, R.J.; Alvarez, S. Approach to Aquatic Skin Infections. Prim. Care 2018, 45, 555–666. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.; Rhodes, M.; Sturgis, B.; Wood, B. Influence of Environmental Gradients on the Abundance and Distribution of Mycobacterium spp. in a Coastal Lagoon Estuary. Appl. Environ. Microbiol. 2009, 75, 7378–7384. [Google Scholar] [CrossRef] [PubMed]










| Behavioral Categories | Behaviors | Description |
|---|---|---|
| Positive (considered a good welfare state) | Swimming | Variable movement patterns with diverse swimming paths and changing speeds. |
| Negative (considered a negative welfare state) | Breathing on the water | Surface breathing of atmospheric air. |
| Hovering | Stationary floating in mid-water without substrate contact, often with maintained pectoral fin movement. | |
| Stereotypical swimming | Repetitive locomotion at consistent frequency and velocity within a confined area, exemplified by back-and-forth swimming; three consecutive cycles of such movement were recorded as one stereotypic swimming event. | |
| Resting | Complete immobility of all body parts, including fins, while maintaining physical contact with aquarium surfaces or plants. |
| Parameters | CG | S.su | A.re | W.gl |
|---|---|---|---|---|
| DO (mg·L−1) | 6.16 ± 0.07 c | 5.98 ± 0.09 c | 5.00 ± 0.05 b | 3.88 ± 0.08 a |
| pH | 7.03 ± 0.02 c | 7.01 ± 0.01 c | 6.82 ± 0.01 b | 6.44 ± 0.02 a |
| NH3-N(mg·L−1) | 1.00 ± 0.08 d | 0.14 ± 0.02 a | 0.69 ± 0.06 c | 0.39 ± 0.03 b |
| Group | Swimming (s) | Resting (s) | Breathing on the Surface (Times) | Hovering (s) | Stereotypical Swimming (s) |
|---|---|---|---|---|---|
| CG | 170.11 ± 12.88 | 0.00 ± 0.00 a | 1.39 ± 0.25 b | 98.44 ± 11.06 | 31.44 ± 5.99 |
| S.su | 215.36 ± 10.01 | 0.14 ± 0.14 a | 0.36 ± 0.11 a | 46.50 ± 8.60 | 37.75 ± 7.50 |
| A.re | 146.86 ± 13.71 | 48.31 ± 12.20 b | 0.5 ± 0.16 a | 92.06 ± 13.76 | 13.19 ± 4.30 |
| W.gl | 206.81 ± 10.17 | 0.00 ± 0.00 a | 0.94 ± 0.27 ab | 74.53 ± 10.01 | 15.89 ± 4.21 |
| S.su | A.re | W.gl | |
|---|---|---|---|
| Weight (g) | 9.57 ± 0.32 c | 8.10 ± 0.40 b | 5.63 ± 0.12 a |
| Growth rate (%) | 19.67 ± 4.18 c | 1.33 ± 5.24 b | −30.00 ± 1.53 a |
| Groups | Ace | Chao1 | Shannon | Simpson |
|---|---|---|---|---|
| CG | 507.74 ± 63.77 a | 489.02 ± 66.55 a | 2.53 ± 0.17 a | 0.17 ± 0.01 ab |
| A.re | 545.08 ± 78.05 ab | 532.13 ± 77.95 a | 2.47 ± 0.25 a | 0.22 ± 0.04 b |
| S.su | 644.66 ± 32.97 ab | 628.36 ± 33.84 ab | 2.68 ± 0.21 a | 0.19 ± 0.03 ab |
| W.gl | 800.78 ± 22.88 b | 790.94 ± 23.92 b | 3.64 ± 0.15 b | 0.10 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, Y.; Li, L.; Chen, Y.; Zhang, Y.; Niu, T.; Huang, P.; Chai, L. Effects of Aquatic Plants on Water Quality, Microbial Community, and Fish Behaviors in Newly Established Betta Aquaria. Animals 2026, 16, 247. https://doi.org/10.3390/ani16020247
Xu Y, Li L, Chen Y, Zhang Y, Niu T, Huang P, Chai L. Effects of Aquatic Plants on Water Quality, Microbial Community, and Fish Behaviors in Newly Established Betta Aquaria. Animals. 2026; 16(2):247. https://doi.org/10.3390/ani16020247
Chicago/Turabian StyleXu, Yidan, Lixia Li, Yuting Chen, Yue Zhang, Tianyu Niu, Puyi Huang, and Longhui Chai. 2026. "Effects of Aquatic Plants on Water Quality, Microbial Community, and Fish Behaviors in Newly Established Betta Aquaria" Animals 16, no. 2: 247. https://doi.org/10.3390/ani16020247
APA StyleXu, Y., Li, L., Chen, Y., Zhang, Y., Niu, T., Huang, P., & Chai, L. (2026). Effects of Aquatic Plants on Water Quality, Microbial Community, and Fish Behaviors in Newly Established Betta Aquaria. Animals, 16(2), 247. https://doi.org/10.3390/ani16020247

