Psychedelics as Novel Therapeutics for Chronic Pain in Veterinary Medicine: A Hypothesis-Driven Protocol Using Low-Dose 1-Cyclopropionyl-D-lysergic Acid Diethylamide (1cp-LSD) in Canine Osteoarthritis
Simple Summary
Abstract
1. Background
1.1. Pharmacological Treatment
| Drug Class | Mechanism of Action | Common Examples | Main Adverse Effects | Limitations/Remarks |
|---|---|---|---|---|
| NSAIDs 1 | Inhibition of COX-1/COX-2 and reduction in prostaglandin synthesis | Meloxicam, carprofen, firocoxib | Gastrointestinal upset, renal toxicity | First-line therapy; efficacy proven but chronic use limited by adverse effects |
| EP4 antagonists 2 | Blockade of prostaglandin E2 receptor EP4 | Grapiprant | Vomiting, diarrhea, hyporexia (usually mild) | Effective for mild–moderate pain; limited experience in severe OA |
| Anti-NGF monoclonal antibodies 3 | Neutralization of nerve growth factor to reduce nociceptor sensitization | Bedinvetmab | Rare and mild; costly | Promising novel approach but limited veterinary evidence |
| Opioids 4 | μ-opioid receptor agonism | Buprenorphine | Sedation, gastrointestinal signs, tolerance | Control of acute pain |
| Corticosteroids 5 | Anti-inflammatory gene modulation | Prednisolone, dexamethasone | Cartilage damage, endocrine effects | Long-term use discouraged; intra-articular use debated |
| Analgesic adjuvant 6 | Various (neuromodulation, cannabinoid, NMDA antagonism, inhibition of serotonin and noradrenaline reuptake, etc.) | Gabapentin, pregabalin, amantadine, CBD, amitriptyline, tramadol | Limited data available | Promising but experimental in dogs |
1.2. The Anti-Inflammatory Dimension of Psychedelics
1.3. Psychedelics as Pain Modulators
1.4. Human Subjectivity in the Assessment of Canine Pain
2. Objectives
3. Experimental Design
3.1. Study Design
3.2. Study Population and Proposed Sample Size
3.3. Assessment Instruments
3.3.1. Assessment of Chronic Pain in Dogs
3.3.2. Assessment of Caregiver Treatment Expectations
3.4. Treatment Protocol
3.5. Contingency Plan and Rescue Analgesia
3.6. Data Collection and Statistical Analysis
3.7. Ethical Considerations
4. Expected Outcomes and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulz, K.S.; Hayashi, K.; Fossum, T.W. Diseases of the joints. In Small Animal Surgery, 5th ed.; Fossum, T.W., Ed.; Elsevier: Philadelphia, PA, USA, 2019; pp. 1134–1279. [Google Scholar]
- Johnson, J.A.; Austin, C.; Breur, G.J. Incidence of Canine Appendicular Musculoskeletal Disorders in 16 Veterinary Teaching Hospitals from 1980 through 1989. Vet. Comp. Orthop. Traumatol. 1994, 7, 56–69. [Google Scholar] [CrossRef]
- Lappalainen, A.K.; Mölsä, S.; Liman, A.; Snellman, M.; Laitinen-Vapaavuori, O. Evaluation of accuracy of the Finnish elbow dysplasia screening protocol in Labrador retrievers. J. Small Anim. Pract. 2013, 54, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.C.; Santos, A.; Jorge, P.; Lavrador, C.; Carreira, L.M. Clinical and diagnostic imaging findings in police working dogs referred for hip osteoarthritis. BMC Vet. Res. 2020, 16, 425. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, M.; de Castro, N.; Hash, J.; Thomson, A.; Nakanishi-Hester, A.; Perry, E.; Aker, S.; Haupt, E.; Opperman, L.; Roe, S.; et al. Prevalence of radiographic appendicular osteoarthritis and associated clinical signs in young dogs. Sci. Rep. 2024, 14, 2827. [Google Scholar] [CrossRef]
- Wright, A.; Amodie, D.M.; Cernicchiaro, N.; Lascelles, B.D.X.; Pavlock, A.M.; Roberts, C.; Bartram, D.J. Identification of canine osteoarthritis using an owner-reported questionnaire and treatment monitoring using functional mobility tests. J. Small Anim. Pract. 2022, 63, 609–618. [Google Scholar] [CrossRef]
- Belshaw, Z.; Dean, R.; Asher, L. Slower, shorter, sadder: A qualitative study exploring how dog walks change when the canine participant develops osteoarthritis. BMC Vet. Res. 2020, 16, 85. [Google Scholar] [CrossRef]
- Belshaw, Z.; Dean, R.; Asher, L. “You can be blind because of loving them so much”: The impact on owners in the United Kingdom of living with a dog with osteoarthritis. BMC Vet. Res. 2020, 16, 190. [Google Scholar] [CrossRef]
- Akerblom, S.; Sjostrom, L. Evaluation of clinical, radiographical and cytological findings compared to arthroscopic findings in shoulder joint lameness in the dog. Vet. Comp. Orthop. Traumatol. 2007, 20, 136–141. [Google Scholar] [CrossRef]
- Schachner, E.R.; Lopez, M.J. Diagnosis, prevention, and management of canine hip dysplasia: A review. Vet. Med. 2015, 6, 181–192. [Google Scholar] [CrossRef]
- Roitner, M.; Klever, J.; Reese, S.; Meyer-Lindenberg, A. Prevalence of osteoarthritis in the shoulder, elbow, hip and stifle joints of dogs older than 8 years. Vet. J. 2024, 305, 106132. [Google Scholar] [CrossRef]
- Fu, K.; Robbins, S.R.; McDougall, J.J. Osteoarthritis: The genesis of pain. Rheumatology 2018, 57, iv43–iv50. [Google Scholar] [CrossRef] [PubMed]
- Knazovicky, D.; Helgeson, E.S.; Case, B.; Gruen, M.E.; Maixner, W.; Lascelles, B.D.X. Widespread somatosensory sensitivity in naturally occurring canine model of osteoarthritis. Pain 2016, 157, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.R.; Goff, M.; Jenkins, H.; Harris, J.; Knowles, T.G.; Lascelles, B.D.X.; Enomoto, M.; Mendl, M.; Whay, H.R.; Murrell, J.C. Electrophysiological characterisation of central sensitisation in canine spontaneous osteoarthritis. Pain 2018, 159, 2318–2330. [Google Scholar] [CrossRef] [PubMed]
- Lascelles, B.D.; Gaynor, J.S.; Smith, E.S.; Roe, S.C.; Marcellin-Little, D.J.; Davidson, G.; Boland, E.; Carr, J. Amantadine in a multimodal analgesic regimen for alleviation of refractory osteoarthritis pain in dogs. J. Vet. Intern. Med. 2008, 22, 53–59. [Google Scholar] [CrossRef]
- Pye, C.; Bruniges, N.; Peffers, M.; Comerford, E. Advances in the pharmaceutical treatment options for canine osteoarthritis. J. Small Anim. Pract. 2022, 63, 721–738. [Google Scholar] [CrossRef]
- Neagu, D.; Leblond, C.; Biris, A.; Codea, R.; Popovici, C.; Muresan, A. The management of arthritic pain in dogs—A review. Sci. Pap. Ser. Vet. Med. 2023, 66, 138–146. [Google Scholar] [CrossRef]
- KuKanich, B.; Bidgood, T.; Knesl, O. Clinical pharmacology of nonsteroidal anti-inflammatory drugs in dogs. Vet. Anaesth. Analg. 2012, 39, 69–90. [Google Scholar] [CrossRef]
- Lascelles, B.D.X.; Knazovicky, D.; Case, B.; Freire, M.; Innes, J.F.; Drew, A.C.; Gearing, D.P. A canine-specific anti-nerve growth factor antibody alleviates pain and improves mobility and function in dogs with degenerative joint disease-associated pain. BMC Vet. Res. 2015, 11, 101. [Google Scholar] [CrossRef]
- Wong, A.; Martinez-Taboada, F. In dogs with osteoarthritis, how effective is treatment with tramadol in providing analgesia? Vet. Evid. 2021, 6, 1–12. [Google Scholar] [CrossRef]
- Budsberg, S.C.; Torres, B.T.; Kleine, S.A.; Sandberg, G.S.; Berjeski, A.K. Lack of effectiveness of tramadol hydrochloride for the treatment of pain and joint dysfunction in dogs with chronic osteoarthritis. J. Am. Vet. Med. Assoc. 2018, 252, 427–432. [Google Scholar] [CrossRef]
- Hassamal, S.; Miotto, K.; Dale, W.; Danovitch, I. Tramadol: Understanding the Risk of Serotonin Syndrome and Seizures. Am. J. Med. 2018, 131, 1382.e1–1382.e6. [Google Scholar] [CrossRef]
- Joubert, K.E. Anaesthesia and analgesia for dogs and cats in South Africa undergoing sterilisation and with osteoarthritis—An update from 2000. J. S. Afr. Vet. Assoc. 2006, 77, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, Y.; Uchida, K.; Fukushima, K.; Inoue, G.; Takaso, M. Mechanisms of Peripheral and Central Sensitization in Osteoarthritis Pain. Cureus 2023, 15, e35331. [Google Scholar] [CrossRef] [PubMed]
- Schaible, H.G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res. Ther. 2014, 16, 470. [Google Scholar] [CrossRef] [PubMed]
- Arendt-Nielsen, L.; Nie, H.; Laursen, M.B.; Laursen, B.S.; Madeleine, P.; Simonsen, O.H.; Graven-Nielsen, T. Sensitization in patients with painful knee osteoarthritis. Pain 2010, 149, 573–581. [Google Scholar] [CrossRef]
- Li, X.; Jian, X.; Yan, Z.; Liu, H.; Zhang, L. Multiple Intra-Articular Injections of Adipose-Derived Mesenchymal Stem Cells for Canine Osteoarthritis Treatment. Cells 2025, 14, 323. [Google Scholar] [CrossRef]
- Bruns, Y.; Schroers, M.; Steigmeier-Raith, S.; Waselau, A.-C.; Reese, S.; Meyer-Lindenberg, A. Efficacy of a Single Injection of Stromal Vascular Fraction in Dogs with Elbow Osteoarthritis: A Clinical Prospective Study. Animals 2024, 14, 2803. [Google Scholar] [CrossRef]
- Marcellin-Little, D.J.; Hulse, D.A.; Huntingford, J.L.; Grubb, T.; Brunke, M.W.; Markley, A.P.; Frank, B. A proposed framework for practical multimodal management of osteoarthritis in growing dogs. Front. Vet. Sci. 2025, 12, 1565922. [Google Scholar] [CrossRef]
- Aragon, C.L.; Hofmeister, E.F.; Budsberg, S.C.; Budsberg, S.C. Systematic review of clinical trials of treatments for osteoarthritis in dogs. J. Am. Vet. Med. Assoc. 2007, 230, 514–521. [Google Scholar] [CrossRef]
- Sanderson, R.O.; Beata, C.; Flipo, R.M.; Genevois, J.P.; Macias, C.; Tacke, S.; Vezzoni, A.; Innes, J.F. Systematic review of the management of canine osteoarthritis. Vet. Rec. 2009, 164, 418–424. [Google Scholar] [CrossRef]
- Rausch-Derra, L.; Huebner, M.; Wofford, J.; Rhodes, L. A Prospective, Randomized, Masked, Placebo-Controlled Multisite Clinical Study of Grapiprant, an EP4 Prostaglandin Receptor Antagonist (PRA), in Dogs with Osteoarthritis. J. Vet. Intern. Med. 2016, 30, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Corral, M.J.; Moyaert, H.; Fernandes, T.; Escalada, M.; Kira, S.T.J.; Walters, R.R.; Stegemann, M.R. A prospective, randomized, blinded, placebo-controlled multisite clinical study of bedinvetmab, a canine monoclonal antibody targeting nerve growth factor, in dogs with osteoarthritis. Vet. Anaesth. Analg. 2021, 48, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.C.; Santos, A.; Jorge, P.; Lavrador, C.; Carreira, L.M. The intra-articular administration of triamcinolone hexacetonide in the treatment of osteoarthritis. Its effects in a naturally occurring canine osteoarthritis model. PLoS ONE 2021, 16, e0245553. [Google Scholar] [CrossRef]
- McKellar, Q.A.; Pearson, T.; Galbraith, E.A.; Boyle, J.; Bell, G. Pharmacokinetics and clinical efficacy of a cinchophen and prednisolone combination in the dog. J. Small Anim. Pract. 1991, 32, 53–58. [Google Scholar] [CrossRef]
- Verrico, C.D.; Wesson, S.; Konduri, V.; Hofferek, C.J.; Vazquez-Perez, J.; Blair, E.; Dunner, K., Jr.; Salimpour, P.; Decker, W.K.; Halpert, M.M. A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain 2020, 161, 2191–2202. [Google Scholar] [CrossRef]
- Monteiro, B.P.; Lambert, C.; Bianchi, E.; Genevois, J.P.; Soldani, G.; Troncy, E. Safety and efficacy of reduced dosage ketoprofen with or without tramadol for long-term treatment of osteoarthritis in dogs: A randomized clinical trial. BMC Vet. Res. 2019, 15, 213. [Google Scholar] [CrossRef]
- Liechti, M.E.; Holze, F. Dosing Psychedelics and MDMA. Curr. Top. Behav. Neurosci. 2022, 56, 3–21. [Google Scholar] [CrossRef]
- Henriquez-Hernandez, L.A.; Rojas-Hernandez, J.; Quintana-Hernandez, D.J.; Borkel, L.F. Hofmann vs. Paracelsus: Do Psychedelics Defy the Basics of Toxicology?—A Systematic Review of the Main Ergolamines, Simple Tryptamines, and Phenylethylamines. Toxics 2023, 11, 148. [Google Scholar] [CrossRef]
- Petersen, M.; Garg, U.; Ketha, H. Chapter 16—Hallucinogens—Psychedelics and dissociative drugs. In Toxicology Cases for the Clinical and Forensic Laboratory; Ketha, H., Garg, U., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 295–303. [Google Scholar]
- Carhart-Harris, R.L.; Goodwin, G.M. The Therapeutic Potential of Psychedelic Drugs: Past, Present, and Future. Neuropsychopharmacology 2017, 42, 2105–2113. [Google Scholar] [CrossRef]
- Lieberman, J.A. Back to the Future—The Therapeutic Potential of Psychedelic Drugs. N. Engl. J. Med. 2021, 384, 1460–1461. [Google Scholar] [CrossRef]
- Shajib, M.S.; Khan, W.I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015, 213, 561–574. [Google Scholar] [CrossRef]
- Flanagan, T.W.; Sebastian, M.N.; Battaglia, D.M.; Foster, T.P.; Maillet, E.L.; Nichols, C.D. Activation of 5-HT(2) Receptors Reduces Inflammation in Vascular Tissue and Cholesterol Levels in High-Fat Diet-Fed Apolipoprotein E Knockout Mice. Sci. Rep. 2019, 9, 13444. [Google Scholar] [CrossRef] [PubMed]
- Nichols, C.D. Psychedelics as potent anti-inflammatory therapeutics. Neuropharmacology 2022, 219, 109232. [Google Scholar] [CrossRef] [PubMed]
- Nau, F., Jr.; Yu, B.; Martin, D.; Nichols, C.D. Serotonin 5-HT2A receptor activation blocks TNF-alpha mediated inflammation in vivo. PLoS ONE 2013, 8, e75426. [Google Scholar] [CrossRef]
- Yu, B.; Becnel, J.; Zerfaoui, M.; Rohatgi, R.; Boulares, A.H.; Nichols, C.D. Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency. J. Pharmacol. Exp. Ther. 2008, 327, 316–323. [Google Scholar] [CrossRef]
- Castellanos, J.P.; Woolley, C.; Bruno, K.A.; Zeidan, F.; Halberstadt, A.; Furnish, T. Chronic pain and psychedelics: A review and proposed mechanism of action. Reg. Anesth. Pain. Med. 2020, 45, 486–494. [Google Scholar] [CrossRef]
- Greer, G.R.; Tolbert, R. A method of conducting therapeutic sessions with MDMA. J. Psychoact. Drugs 1998, 30, 371–379. [Google Scholar] [CrossRef]
- Kast, E.C.; Collins, V.J. Study of Lysergic Acid Diethylamide as an Analgesic Agent. Anesth. Analg. 1964, 43, 285–291. [Google Scholar]
- Carhart-Harris, R.L.; Leech, R.; Hellyer, P.J.; Shanahan, M.; Feilding, A.; Tagliazucchi, E.; Chialvo, D.R.; Nutt, D. The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 2014, 8, 20. [Google Scholar] [CrossRef]
- Nichols, D.E.; Johnson, M.W.; Nichols, C.D. Psychedelics as Medicines: An Emerging New Paradigm. Clin. Pharmacol. Ther. 2017, 101, 209–219. [Google Scholar] [CrossRef]
- Henriquez-Hernandez, L.A.; Garcia-Serrano, I.; Quintana-Hernandez, D.J.; Rojas-Hernandez, J.; Hernandez-Alvarez, E.; Zumbado, M.; Fernandez-Borkel, T.; Borkel, L.F. Single-dose 1cp-LSD administration for canine anxiety: A pilot study. Vet. Res. Commun. 2024, 48, 4007–4014. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Alvarez, E.; Borkel, L.F.; Rojas-Hernandez, J.; Quintana-Hernandez, D.J.; Garcia-Serrano, I.; Fernandez-Borkel, T.; Zumbado, M.; Henriquez-Hernandez, L.A. Evaluating the Potential of Microdosing 1cp-LSD for the Treatment of Canine Anxiety: A One-Month Case Study. Vet. Med. Sci. 2025, 11, e70486. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Álvarez, E.; Rojas-Hernández, J.; Borkel, L.F.; Quintana-Hernández, D.J.; Fernández-Borkel, T.; Henríquez-Hernández, L.A. Preliminary Findings on Low-Dose 1cp-LSD for Canine Anxiety: Exploring the Role of Owner Neuroticism and Psychopathology. Vet. Sci. 2025, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- WSAVA. Directrices de WSAVA Para el Reconocimiento, Evaluación y Tratamiento del Dolor, 2022. Available online: https://wsava.org/wp-content/uploads/2023/01/Spanish_2022-WSAVA-Manejo-del-Dolor-Espanol.pdf (accessed on 30 April 2025).
- Caddiell, R.M.P.; Cunningham, R.M.; White, P.A.; Lascelles, B.D.X.; Gruen, M.E. Pain sensitivity differs between dog breeds but not in the way veterinarians believe. Front. Pain Res. 2023, 4, 1165340. [Google Scholar] [CrossRef]
- Gruen, M.E.; White, P.; Hare, B. Do dog breeds differ in pain sensitivity? Veterinarians and the public believe they do. PLoS ONE 2020, 15, e0230315. [Google Scholar] [CrossRef]
- Lush, J.; Ijichi, C. A preliminary investigation into personality and pain in dogs. J. Vet. Behav. 2018, 24, 62–68. [Google Scholar] [CrossRef]
- Bateson, P. Assessment of pain in animals. Anim. Behav. 1991, 42, 827–839. [Google Scholar] [CrossRef]
- Ellingsen, K.; Zanella, A.; Bjerkås, E.; Indrebø, A. The Relationship between Empathy, Perception of Pain and Attitudes toward Pets among Norwegian Dog Owners. Anthrozoos 2010, 23, 231–243. [Google Scholar] [CrossRef]
- Turner-Collins, C.; Breitenbecher, K. Does Anthropomorphism of Dogs Affect Pain Perception in Animal-Assisted Interventions? An Exploratory Study. Anthrozoos 2019, 32, 387–398. [Google Scholar] [CrossRef]
- Brandt, S.D.; Kavanagh, P.V.; Westphal, F.; Stratford, A.; Odland, A.U.; Klein, A.K.; Dowling, G.; Dempster, N.M.; Wallach, J.; Passie, T.; et al. Return of the lysergamides. Part VI: Analytical and behavioural characterization of 1-cyclopropanoyl-d-lysergic acid diethylamide (1CP-LSD). Drug Test. Anal. 2020, 12, 812–826. [Google Scholar] [CrossRef]
- Macías, C. Diagnóstico y pronóstico de la osteoartritis. In Guía de Manejo de la Osteoartritis Canina en la Nueva Era (CEDCC); CEDCC, Ed.; Zoetis TM: Quito, Ecuador, 2021; pp. 29–40. [Google Scholar]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Whitehead, A.L.; Julious, S.A.; Cooper, C.L.; Campbell, M.J. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat. Methods Med. Res. 2015, 25, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- PennChart. Canine Brief Pain Inventory (Canine BPI). Available online: https://www.vet.upenn.edu/ryan-hospital/clinical-trials/pennchart/ (accessed on 12 October 2025).
- Brown, D.C.; Boston, R.; Coyne, J.C.; Farrar, J.T. A Novel Approach to the Use of Animals in Studies of Pain: Validation of the Canine Brief Pain Inventory in Canine Bone Cancer. Pain. Med. 2009, 10, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Alberts, J.; Lowe, B.; Glahn, M.A.; Petrie, K.; Laferton, J.; Nestoriuc, Y.; Shedden-Mora, M. Development of the generic, multidimensional Treatment Expectation Questionnaire (TEX-Q) through systematic literature review, expert surveys and qualitative interviews. BMJ Open 2020, 10, e036169. [Google Scholar] [CrossRef]
- Shedden-Mora, M.C.; Alberts, J.; Petrie, K.J.; Laferton, J.A.C.; von Blanckenburg, P.; Kohlmann, S.; Nestoriuc, Y.; Lowe, B. The Treatment Expectation Questionnaire (TEX-Q): Validation of a generic multidimensional scale measuring patients’ treatment expectations. PLoS ONE 2023, 18, e0280472. [Google Scholar] [CrossRef]
- Baldo, B.A. Opioid analgesic drugs and serotonin toxicity (syndrome): Mechanisms, animal models, and links to clinical effects. Arch. Toxicol. 2018, 92, 2457–2473. [Google Scholar] [CrossRef]
- Grant, K.L.; Long, S.N. Extended release huperzine for the treatment of idiopathic epilepsy in dogs—A Case Report. Front. Vet. Sci. 2025, 12, 1518379. [Google Scholar]
- Pargätzi, G.; Bergadano, A.; Spadavecchia, C.; Theurillat, R.; Thormann, W.; Levionnois, O.L. Stereoselective Pharmacokinetics of Ketamine Administered at a Low Dose in Awake Dogs. Animals 2024, 14, 1012. [Google Scholar] [CrossRef]
- Halman, A.; Kong, G.; Sarris, J.; Perkins, D. Drug–drug interactions involving classic psychedelics: A systematic review. J. Psychopharmacol. 2023, 38, 3–18. [Google Scholar] [CrossRef]
- Thomas, K. Toxicology and Pharmacological Interactions of Classic Psychedelics; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–20. [Google Scholar]
- ARRIVE. Animal Research: Reporting of In Vivo Experiments 2.0. Available online: https://arriveguidelines.org/ (accessed on 17 October 2025).
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Henriquez-Hernandez, L.A.; Estevez-Perez, L.; Luzardo, O.P.; Zumbado, M. Perception of Animal Welfare and Animal Abuse among Veterinary Students: Role of Individual and Sociodemographic Factors. J. Vet. Med. Educ. 2025, 52, 409–418. [Google Scholar] [CrossRef]
- Estevez-Perez, L.; Zumbado, M.; Luzardo, O.P.; Henriquez-Hernandez, L.A. Perception of Animal Abuse among Adolescents: Influence of Social and Demographic Factors. Animals 2024, 14, 972. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hernández-Álvarez, E.; Acosta-Dacal, A.; Luzardo, O.P.; Henríquez-Hernández, L.A. Psychedelics as Novel Therapeutics for Chronic Pain in Veterinary Medicine: A Hypothesis-Driven Protocol Using Low-Dose 1-Cyclopropionyl-D-lysergic Acid Diethylamide (1cp-LSD) in Canine Osteoarthritis. Animals 2026, 16, 3. https://doi.org/10.3390/ani16010003
Hernández-Álvarez E, Acosta-Dacal A, Luzardo OP, Henríquez-Hernández LA. Psychedelics as Novel Therapeutics for Chronic Pain in Veterinary Medicine: A Hypothesis-Driven Protocol Using Low-Dose 1-Cyclopropionyl-D-lysergic Acid Diethylamide (1cp-LSD) in Canine Osteoarthritis. Animals. 2026; 16(1):3. https://doi.org/10.3390/ani16010003
Chicago/Turabian StyleHernández-Álvarez, Elisa, Andrea Acosta-Dacal, Octavio P. Luzardo, and Luis Alberto Henríquez-Hernández. 2026. "Psychedelics as Novel Therapeutics for Chronic Pain in Veterinary Medicine: A Hypothesis-Driven Protocol Using Low-Dose 1-Cyclopropionyl-D-lysergic Acid Diethylamide (1cp-LSD) in Canine Osteoarthritis" Animals 16, no. 1: 3. https://doi.org/10.3390/ani16010003
APA StyleHernández-Álvarez, E., Acosta-Dacal, A., Luzardo, O. P., & Henríquez-Hernández, L. A. (2026). Psychedelics as Novel Therapeutics for Chronic Pain in Veterinary Medicine: A Hypothesis-Driven Protocol Using Low-Dose 1-Cyclopropionyl-D-lysergic Acid Diethylamide (1cp-LSD) in Canine Osteoarthritis. Animals, 16(1), 3. https://doi.org/10.3390/ani16010003

