Analysis of Annual Variation in Stable Isotopic Fingerprints of Native Chinese Mitten Crab (Eriocheir sinensis) from Yangcheng Lake
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Pretreatment
2.3. Stable Carbon and Nitrogen Isotope Ratio Analysis
2.4. Stable Hydrogen and Oxygen Isotope Ratio Analysis
2.5. Data Statistics and Analysis
3. Results
3.1. Analysis of Stable Isotopic Composition Differences
3.2. Principal Component Analysis
3.3. Linear Discriminant Analysis
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Herborg, L.M.; Rushton, S.P.; Clare, A.S.; Bentley, M.G. Spread of the Chinese mitten crab (Eriocheir sinensis, H. Milne Edwards) in Continental Europe: Analysis of a historical data set. Hydrobiologia 2003, 503, 21–28. [Google Scholar] [CrossRef]
- Rudnick, D.A.; Hieb, K.; Grimmer, K.F.; Resh, V.H. Patterns and processes of biological invasion: The Chinese mitten crab in San Francisco Bay. Basic Appl. Ecol. 2003, 4, 249–262. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, X.; Yang, X.; Hines, A.H. Current trends in hatchery techniques and stock enhancement for Chinese mitten crab, Eriocheir japonica sinensis. Rev. Fish. Sci. 2008, 16, 377–384. [Google Scholar] [CrossRef]
- Wang, J.; Xu, P.; Zhou, G.; Li, X.; Lu, Q.; Liu, X.; Zhou, J.; Wang, C. Genetic improvement and breeding practices for Chinese mitten crab, Eriocheir sinensis. J. World Aquac. Soc. 2018, 49, 292–301. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Q.; Wu, X.; Liu, Q.; Cheng, Y. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences. Mitochondrial DNA Part A 2018, 29, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yao, C.; Lu, Y.; Huang, D.; Li, Y.; Wu, X.; Song, W.; Rao, Q. Origin traceability of Chinese mitten crab (Eriocheir sinensis) using multi-stable isotopes and explainable machine learning. Foods 2025, 14, 2458. [Google Scholar] [CrossRef]
- Mottola, A.; Piredda, R.; Catanese, G.; Lorusso, L.; Ciccarese, P.A.; Di, G. Species authentication of canned mackerel: Challenges in molecular identification and potential drivers of mislabelling. Food Control 2022, 137, 108880. [Google Scholar] [CrossRef]
- Duarte, B.; Melo, J.; Mamede, R.; Carreiras, J.; Figueiredo, A.; Fonseca, V.F.; Sousa, M.L.; Silva, A.B. In the trail of “Maçã de Alcobaça” protected geographical indication (PGI): Multielement chemometrics as a security and anti-fraud tool to depict clones, cultivars and geographical origins and nutritional value. J. Food Compos. Anal. 2023, 115, 104976. [Google Scholar] [CrossRef]
- Hanner, R.; Becker, S.; Ivanova, N.V.; Steinke, D. FISH-BOL and seafood identification: Geographically dispersed case studies reveal systemic market substitution across Canada. Mitochondrial DNA 2011, 22, 106–122. [Google Scholar] [CrossRef]
- Miller, D.D.; Mariani, S. Smoke, mirrors, and mislabeled cod: Poor transparency in the European seafood industry. Front. Ecol. Environ. 2010, 8, 517–521. [Google Scholar] [CrossRef]
- Lamendin, R.; Miller, K.; Ward, R.D. Labelling accuracy in Tasmanian seafood: An investigation using DNA barcoding. Food Control 2015, 47, 436–443. [Google Scholar] [CrossRef]
- Wallstrom, M.A.; Morris, K.A.; Carlson, L.V.; Marko, P.B. Seafood mislabeling in Honolulu, Hawai’i. Forensic Sci. Int. Rep. 2020, 2, 100154. [Google Scholar] [CrossRef]
- Rapa, M.; Ferrante, M.; Rodushkin, I.; Conti, M.E. Safety and quality of grapes: Elemental, isotopic and chemometric analysis from montepulciano d’ Abruzzo PDO chain. Agriculture 2024, 14, 966. [Google Scholar] [CrossRef]
- Argolo, L.A.; Lopez-Fernandez, H.; Batalha-Filho, H.; de Mello Affonso, P.R.A. Unraveling the systematics and evolution of the ‘Geophagus’ brasiliensis (Cichliformes: Cichlidae) species complex. Mol. Phylogenet. Evol. 2020, 150, 106855. [Google Scholar] [CrossRef] [PubMed]
- Regmi, B.; Douglas, M.R.; Edds, D.R.; Douglas, M.E. Geometric morphometric analyses define riverine and lacustrine species flocks of Himalayan snowtrout (Cyprinidae: Schizothorax) in Nepal. Aquat. Biol. 2021, 30, 19–31. [Google Scholar] [CrossRef]
- Avigliano, E.; Domanico, A.; Sánchez, S.; Volpedo, A.V. Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fish. Res. 2017, 186, 1–10. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Qu, X.; Zhang, W.; Shi, J.; Xu, X. Enhanced food authenticity control using machine learning-assisted elemental analysis. Food Res. Int. 2024, 198, 115330. [Google Scholar] [CrossRef]
- Ji, X. Multielemental analysis using inductively coupled plasma mass spectrometry and optical emission spectroscopy for tracing the geographical origin of food. J. Anal Chem. 2025, 80, 1140–1151. [Google Scholar] [CrossRef]
- Pereira, L.A.; Santos, R.V.; Hauser, M.; Duponchelle, F.; Carvajal, F.; Pecheyran, C.; Bérail, S.; Pouilly, M. Commercial traceability of Arapaima spp. fisheries in the Amazon basin: Can biogeochemical tags be useful? Biogeosciences 2019, 16, 1781–1797. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, J.; Han, D.; Zhao, X.; Chen, X.; Liu, Y. Geographical origin traceability and species identification of three scallops (Patinopecten yessoensis, Chlamys farreri, and Argopecten irradians) using stable isotope analysis. Food Chem. 2019, 299, 125107. [Google Scholar] [CrossRef]
- Yin, H.M.; Huang, F.; Shen, J.; Yu, H.M. Using Sr isotopes to trace the geographic origins of Chinese mitten crabs. Acta Geochim. 2020, 39, 326–336. [Google Scholar] [CrossRef]
- Sim, J.; Mcgoverin, C.; Oey, I.; Frew, R.; Kebede, B. Stable isotope and trace element analyses with non-linear machine-learning data analysis improved coffee origin classification and marker selection. J. Sci. Food Agric. 2023, 103, 4704–4718. [Google Scholar] [CrossRef]
- Han, C.; Li, L.; Dong, X.; Gao, Q.; Dong, S. Current progress in the authentication of fishery and aquatic products using multi-element and stable isotope analyses combined with chemometrics. Rev. Aquac. 2022, 14, 2023–2037. [Google Scholar] [CrossRef]
- Xue, J.; Liu, H.; Jiang, T.; Chen, X.; Yang, J. Shape variation in the carapace of Chinese mitten crabs (Eriocheir sinensis H. Milne Edwards, 1853) in Yangcheng Lake during the year-long culture period. Eur. Zool J. 2022, 89, 217–228. [Google Scholar] [CrossRef]
- Xue, J.; Jiang, T.; Chen, X.; Liu, H.; Yang, J. Multi-mineral element profiles in genuine and “bathing” cultured Chinese mitten crabs (Eriocheir sinensis) in Yangcheng Lake, China. Fishes 2022, 7, 11. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, J.; Liu, H.; Jiang, T.; Chen, X.; Yang, J. Identification of “Bathed” Chinese mitten crabs (Eriocheir sinensis) using geometric morphological analysis of the carapace. Fishes 2023, 9, 6. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, J.; Ma, L.; Yang, J. Carapace morphological characteristics of Chinese mitten crab (Eriocheir sinensis) from emerging origins revealed via geometric morphometrics. Animals 2025, 15, 1300. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, J.; Liu, H.; Jiang, T.; Chen, X.; Yang, J. Elemental and stable isotopic signatures for dynamic traceability of genuine and "bathing" cultured Yangcheng Eriocheir sinensis crabs. J. Food Compos. Anal. 2024, 135, 106697. [Google Scholar] [CrossRef]
- Luo, R.; Jiang, T.; Chen, X.; Zheng, C.; Liu, H.; Yang, J. Determination of geographic origin of Chinese mitten crab (Eriocheir sinensis) using integrated stable isotope and multi-element analyses. Food Chem. 2019, 274, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Brand, W.A.; Coplen, T.B.; Vogl, J.; Rosner, M.; Prohaska, T. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 425–467. [Google Scholar] [CrossRef]
- Fan, Z.; Deng, Y.; Yuan, Q.; Liu, X.; Shi, H.; Feng, C.; Yang, Y.; Xu, L. Effect of total dissolved gas supersaturation on the tolerance of grass carp (Ctenopharyngodon idellus). Environ. Sci. Eur. 2020, 32, 55. [Google Scholar] [CrossRef]
- Molkentin, J.; Lehmann, I.; Ostermeyer, U.; Rehbein, H. Traceability of organic fish–Authenticating the production origin of salmonids by chemical and isotopic analyses. Food Control 2015, 53, 55–66. [Google Scholar] [CrossRef]
- Wang, Y.V.; Wan, A.H.; Lock, E.J.; Andersen, N.; Winter-Schuh, C.; Larsen, T. Know your fish: A novel compound-specific isotope approach for tracing wild and farmed salmon. Food Chem. 2018, 256, 380–389. [Google Scholar] [CrossRef]
- Larsen, T.; Wang, Y.V.; Wan, A.H. Tracing the trophic fate of aquafeed macronutrients with carbon isotope ratios of amino acids. Front. Mar. Sci. 2022, 9, 813961. [Google Scholar] [CrossRef]
- Amundson, R.; Austin, A.T.; Schuur, E.A.; Yoo, K.; Matzek, V.; Kendall, C.; Uebersax, A.; Brenner, D.; Baisden, W.T. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 2003, 17, 311–319. [Google Scholar] [CrossRef]
- Mahindawansha, A.; Jost, M.; Gassmann, M. Spatial and temporal variations of stable isotopes in precipitation in the mountainous region, North Hesse. Water 2022, 14, 3910. [Google Scholar] [CrossRef]
- Camin, F.; Perini, M.; Bontempo, L.; Galeotti, M.; Tibaldi, E.; Piasentier, E. Stable isotope ratios of H, C, O, N and S for the geographical traceability of Italian rainbow trout (Oncorhynchus mykiss). Food Chem. 2018, 267, 288–295. [Google Scholar] [CrossRef]
- Li, L.; Ren, W.; Dong, S.; Feng, J. Investigation of geographic origin, salinity and feed on stable isotope profile of Pacific white shrimp (Litopenaeus vannamei). Aquac. Res. 2018, 49, 1029–1036. [Google Scholar] [CrossRef]
- Nawaz, Z.; Kakar, K.U.; Li, X.B.; Li, S.; Zhang, B.; Shou, H.X.; Shu, Q.Y. Genome-wide association mapping of quantitative trait loci (QTLs) for contents of eight elements in brown rice (Oryza sativa L.). J. Agric. Food Chem. 2015, 63, 8008–8016. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Sun, L.; Song, Q.; Mao, D.; Zhou, J.; Jiang, Y.; Wang, J.; Fan, T.; Zhu, Q.; Huang, D.; et al. Genetic architecture of subspecies divergence in trace mineral accumulation and elemental correlations in the rice grain. Theor. Appl. Genet. 2020, 133, 529–545. [Google Scholar] [CrossRef]
- Xue, J.; Jiang, T.; Chen, X.; Liu, H.; Yang, J. Multi-mineral fingerprinting analysis of the Chinese mitten crab (Eriocheir sinensis) in Yangcheng Lake during the year-round culture period. Food Chem. 2022, 390, 133167. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wu, X.; Li, J.; Huang, Q.; Huang, Z.; Cheng, Y. Comparison of the culture performance and profitability of wild-caught and captive pond-reared Chinese mitten crab (Eriocheir sinensis) juveniles reared in grow-out ponds: Implications for seed selection and genetic selection programs. Aquaculture 2014, 434, 48–56. [Google Scholar] [CrossRef]





| Sample | Weight (g) | Length (mm) | Width (mm) | Height (mm) | Water Contents (%) |
|---|---|---|---|---|---|
| Mar. 2018 (n = 20) | 10.81 ± 3.85 | 25.88 ± 3.10 | 29.26 ± 3.55 | 13.42 ± 1.64 | 53.9 ± 1.4 |
| Apr. 2018 (n = 20) | 13.63 ± 3.05 | 29.36 ± 2.08 | 32.88 ± 2.44 | 15.56 ± 1.56 | 57.4 ± 7.3 |
| May. 2018 (n = 20) | 31.14 ± 5.98 | 38.60 ± 2.18 | 43.19 ± 2.60 | 19.95 ± 1.37 | 66.6 ± 4.7 |
| Jun. 2018 (n = 20) | 50.98 ± 13.78 | 44.73 ± 3.46 | 50.68 ± 3.93 | 23.53 ± 1.69 | 64.1 ± 4.9 |
| Jul. 2018 (n = 20) | 70.46 ± 11.84 | 49.77 ± 2.50 | 56.37 ± 2.83 | 27.03 ± 1.59 | 59.3 ± 1.7 |
| Aug. 2018 (n = 20) | 82.67 ± 20.79 | 52.44 ± 3.73 | 59.29 ± 4.39 | 28.64 ± 2.19 | 61.9 ± 4.3 |
| Sep. 2018 (n = 20) | 101.88 ± 13.57 | 55.58 ± 3.17 | 63.06 ± 3.72 | 30.72 ± 1.94 | 56.9 ± 5.0 |
| Oct. 2018 (n = 20) | 116.92 ± 26.73 | 57.51 ± 3.37 | 63.96 ± 4.13 | 31.34 ± 2.09 | 59.3 ± 3.8 |
| Nov. 2018 (n = 20) | 95.21 ± 20.61 | 54.81 ± 2.63 | 60.68 ± 3.53 | 30.06 ± 1.26 | 58.1 ± 2.4 |
| Dec. 2018 (n = 20) | 118.79 ± 23.36 | 58.91 ± 3.06 | 65.22 ± 3.63 | 32.43 ± 1.65 | 57.0 ± 1.8 |
| Jan. 2019 (n = 20) | 130.77 ± 35.67 | 61.02 ± 4.10 | 68.02 ± 5.24 | 34.04 ± 1.85 | 56.8 ± 3.1 |
| Feb. 2019 (n = 18) | 147.52 ± 49.90 | 63.49 ± 10.35 | 68.78 ± 7.60 | 34.79 ± 3.25 | 59.5 ± 2.0 |
| Sample | δ13C (‰, VPDB) | δ15N (‰, Air N2) | δ2H (‰, VSMOW) | δ18O (‰, VSMOW) |
|---|---|---|---|---|
| Mar. 2018 (n = 20) | −23.49 ± 0.65 | 5.91 ± 0.34 | −88.03 ± 3.93 | 20.20 ± 1.13 |
| Apr. 2018 (n = 20) | −22.75 ± 1.34 | 9.49 ± 1.39 | −95.66 ± 8.01 | 17.18 ± 1.25 |
| May. 2018 (n = 20) | −21.16 ± 0.80 | 10.86 ± 1.11 | −92.56 ± 6.46 | 16.95 ± 1.07 |
| Jun. 2018 (n = 20) | −20.41 ± 0.77 | 12.25 ± 0.48 | −87.89 ± 4.32 | 16.40 ± 0.82 |
| Jul. 2018 (n = 20) | −19.40 ± 0.69 | 11.76 ± 0.30 | −85.32 ± 4.81 | 17.31 ± 0.62 |
| Aug. 2018 (n = 20) | −18.78 ± 2.05 | 11.72 ± 1.05 | −78.80 ± 6.73 | 17.27 ± 1.08 |
| Sep. 2018 (n = 20) | −17.70 ± 0.65 | 11.42 ± 0.58 | −83.64 ± 5.53 | 18.16 ± 1.04 |
| Oct. 2018 (n = 20) | −17.02 ± 1.01 | 10.89 ± 0.54 | −75.31 ± 4.70 | 18.34 ± 1.15 |
| Nov. 2018 (n = 20) | −17.28 ± 0.58 | 10.19 ± 0.31 | −66.08 ± 6.02 | 19.10 ± 0.69 |
| Dec. 2018 (n = 20) | −17.15 ± 0.58 | 10.59 ± 0.34 | −84.13 ± 5.02 | 18.67 ± 0.71 |
| Jan. 2019 (n = 20) | −17.22 ± 0.63 | 11.04 ± 0.23 | −68.60 ± 6.12 | 18.71 ± 0.59 |
| Feb. 2019 (n = 18) | −17.34 ± 0.90 | 10.52 ± 1.42 | −60.53 ± 8.38 | 19.78 ± 0.65 |
| Sample | Mar. 2018 | Apr. 2018 | May. 2018 | Jun. 2018 | Jul. 2018 | Aug. 2018 |
| discriminant accuracy (%) | 100 | 70 | 80 | 85 | 60 | 60 |
| Sample | Sep. 2018 | Oct. 2018 | Nov. 2018 | Dec. 2018 | Jan. 2019 | Feb. 2019 |
| discriminant accuracy (%) | 70 | 50 | 55 | 80 | 50 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xue, J.; Jiang, T.; Chen, X.; Yang, J.; Zhang, W. Analysis of Annual Variation in Stable Isotopic Fingerprints of Native Chinese Mitten Crab (Eriocheir sinensis) from Yangcheng Lake. Animals 2026, 16, 28. https://doi.org/10.3390/ani16010028
Xue J, Jiang T, Chen X, Yang J, Zhang W. Analysis of Annual Variation in Stable Isotopic Fingerprints of Native Chinese Mitten Crab (Eriocheir sinensis) from Yangcheng Lake. Animals. 2026; 16(1):28. https://doi.org/10.3390/ani16010028
Chicago/Turabian StyleXue, Junren, Tao Jiang, Xiubao Chen, Jian Yang, and Wang Zhang. 2026. "Analysis of Annual Variation in Stable Isotopic Fingerprints of Native Chinese Mitten Crab (Eriocheir sinensis) from Yangcheng Lake" Animals 16, no. 1: 28. https://doi.org/10.3390/ani16010028
APA StyleXue, J., Jiang, T., Chen, X., Yang, J., & Zhang, W. (2026). Analysis of Annual Variation in Stable Isotopic Fingerprints of Native Chinese Mitten Crab (Eriocheir sinensis) from Yangcheng Lake. Animals, 16(1), 28. https://doi.org/10.3390/ani16010028

