AI and Data Analytics in the Dairy Farms: A Scoping Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Questions
2.2. Identify Relevant Studies
2.3. Selection Criteria
2.4. Bibliometric Software
3. Results
3.1. Identify Relevant Studies and Selection Criteria
3.2. Chart the Data
3.3. Management Aspects in Dairy Farms Connected with Decision-Making Problems
3.4. Data Analytics
3.5. Coverage of Machine Learning and Statistical Methods by Revised Papers
3.6. Treatment of Uncertainty
3.7. Reported Software for Data Analytics
4. Discussion
4.1. General Overview of the Data
4.2. Management Aspects in Dairy Farms Connected with Decision-Making Problems
4.3. Data Analytics and Treatment of Uncertainty
4.4. Machine Learning and Statistical Methods
4.5. Software for Data Analytics
4.6. Gaps in the Literature and Future Outlook
- There is a need to explore more accurate models, like stochastic models, for predicting milk production. Stochastic models consider the intrinsic randomness that a system can have, and currently, in some fields, they are of greater interest to researchers than deterministic models [21];
- The literature does not provide references to dairy farms about the development and use of prescriptive analysis. While the use of descriptive analytics is rather common, the use of predictive analytics is lower. Lepenioti et al. [26] indicate that prescriptive analytics is currently less developed than descriptive and predictive analytics, considering its development as the next step toward increasing DA maturity;
- The combination of different methods developing synergies is another interesting research line claimed by different authors like von Rueden et al. [25]. They remark on the complementarity of simulation and ML. When reviewing the level of hybridization between AI and simulation tools in dairy farms, we did not find studies dedicated to this combination of methods. To explore ways in which ML tools are combined with simulation methods, we can review possible applications of these tools in other non-livestock species, even in other situations a little more distant from livestock where DSS is presented with the implementation of the two tools, for example, in the case of the development of autonomous vehicles [27]. These approaches are near the development of digital twins and concepts of augmented reality or virtual reality, seeking realistic simulation environments [28];
- Literature reports on studies that use mostly historical data. However, with the greater development of sensors, the use of IoT, cloud computing, fog computing, and big data, real-time data can acquire greater importance in the models used. The increased use of AI tools in DSS can greatly improve the adoption of these systems.
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number | Title | Reference |
A1 | Investigation into the production and conformation traits associated with clinical mastitis using artificial neural networks | [29] |
A2 | Identifying Health Status in Grazing Dairy Cows from Milk Mid-Infrared Spectroscopy by Using Machine Learning Methods | [30] |
A3 | Comparative efficiency of artificial neural networks and multiple linear regression analysis for prediction of first lactation 305-day milk yield in Sahiwal cattle | [15] |
A4 | A computerized mastitis decision aid using farm-based records: An artificial neural network approach | [31] |
A5 | Comparison of modeling techniques for milk-production forecasting | [19] |
A6 | Mastitis detection in dairy cows by application of neural networks | [32] |
A7 | Multiple Country Approach to Improve the Test-Day Prediction of Dairy Cows’ Dry Matter Intake | [33] |
A8 | Artificial insemination for milk production in India: A statistical insight | [18] |
A9 | Classification and prediction of milk yield level for Holstein Friesian cattle using parametric and non-parametric statistical classification models | [34] |
A10 | Improving farm decisions: The application of data engineering techniques to manage data streams from contemporary dairy operations | [35] |
A11 | COMPARISON OF ANALYSIS TECHNIQUES FOR ONLINE DETECTION OF CLINICAL MASTITIS | [36] |
A12 | Detection of difficult calvings in dairy cows using neural classifier | [37] |
A13 | Use of neural networks to detect minor and major pathogens that cause bovine mastitis | [38] |
A14 | Determination of Body Parts in Holstein Friesian Cows Comparing Neural Networks and K-Nearest Neighbour Classification | [39] |
A15 | Opportunistic Wireless Networking for Smart Dairy Farming | [20] |
A16 | Farming smarter with big data: Insights from the case of Australia’s national dairy herd milk recording scheme | [40] |
A17 | Prediction of first lactation 305-day milk yield in Karan Fries dairy cattle using ANN modeling | [41] |
A18 | Individual identification of dairy cows based on convolutional neural networks | [42] |
A19 | Artificial intelligence applied to a robotic dairy farm to model milk productivity and quality based on cow data and daily environmental parameters | [43] |
A20 | Classifying milk yield using deep neural network | [44] |
A21 | Application of a neural network to analyze on-line milking parlor data for the detection of clinical mastitis in dairy cows | [45] |
A22 | A cluster-graph model for herd characterization in dairy farms equipped with an automatic milking system | [46] |
A23 | Disease Diagnosis of Dairy Cow by Deep Learning Based on Knowledge Graph and Transfer Learning | [47] |
A24 | Deep cascaded convolutional models for cattle pose estimation | [48] |
A25 | A computer vision approach based on deep learning for the detection of dairy cows in free stall barn | [49] |
A26 | SmartHerd management: A microservices-based fog computing–assisted IoT platform towards data-driven smart dairy farming | [50] |
A27 | Detection of cows with insemination problems using selected classification models | [51] |
A28 | Improving dairy yield predictions through combined record classifiers and specialized artificial neural networks | [52] |
A29 | SocialCattle: IoT-based Mastitis Detection and Control through Social Cattle Behavior Sensing in Smart Farms | [53] |
A30 | Use of test-day records to predict first lactation 305-day milk yield using artificial neural network in Kenyan Holstein-Friesian dairy cows | [54] |
A31 | Comparison of artificial neural network and multiple linear regression for prediction of first lactation milk yield using early body weights in Sahiwal cattle | [16] |
A32 | Prediction of lifetime milk production using artificial neural network in Sahiwal cattle | [55] |
A33 | Detection of mastitis and its stage of progression by automatic milking systems using artificial neural networks | [56] |
A34 | Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle | [57] |
A35 | The use of artificial neural networks for modeling rumen fill | [58] |
A36 | Biometric physiological responses from dairy cows measured by visible remote sensing are good predictors of milk productivity and quality through artificial intelligence | [59] |
A37 | Effects of data preprocessing on the performance of artificial neural networks for dairy yield prediction and cow culling classification | [60] |
A38 | Neural networks applied to a large biological database to analyze dairy breeding patterns | [61] |
A39 | Prediction of second parity milk yield of Kenyan Holstein-Friesian dairy cows on first parity information using neural network system and multiple linear regression methods | [62] |
A40 | Comparison of artificial neural network and K-means for clustering dairy cattle | [63] |
A41 | Leveraging latent representations for milk yield prediction and interpolation using deep learning | [64] |
A42 | Neural detection of mastitis from dairy herd improvement records | [65] |
A43 | Effects of learning parameters and data presentation on the performance of backpropagation networks for milk yield prediction | [66] |
A44 | Symposium review: Dairy Brain—Informing decisions on dairy farms using data analytics | [67] |
A45 | Prediction of cow performance with a connectionist model | [68] |
A46 | A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records | [69] |
A47 | Application of neural network and adaptive neuro-fuzzy inference system to predict subclinical mastitis in dairy cattle | [70] |
A48 | Predictions of 305-day milk yield in Iranian Dairy cattle using test-day records by artificial neural network | [71] |
A50 | Estimating Heritabilities and Breeding Values for Real and Predicted Milk Production in Holstein Dairy Cows with Artificial Neural Network and Multiple Linear Regression Models | [72] |
A51 | Comparison of methods to predict feed intake and residual feed intake using behavioral and metabolite data in addition to classical performance variables | [73] |
A52 | Dynamic forecasting of individual cow milk yield in automatic milking systems | [74] |
A53 | Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows | [75] |
A54 | Fluctuations in milk yield are heritable and can be used as a resilience indicator to breed healthy cows | [76] |
A55 | Determination of factors affecting dairy cattle: a case study of Ardahan province using data-mining algorithms | [77] |
A56 | A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra | [78] |
A57 | Prediction of 305-day milk yield in Brown Swiss cattle using artificial neural networks | [79] |
A58 | Comparative study of feed-forward neuro-computing with multiple linear regression model for milk yield prediction in dairy cattle | [80] |
A59 | Prediction of second parity milk performance of dairy cows from first parity information using artificial neural network and multiple linear regression methods | [17] |
A60 | Adaptive cow movement detection using evolving spiking neural network models | [81] |
A61 | Ranking of environmental heat stressors for dairy cows using machine learning algorithms | [82] |
A62 | Tracking and analyzing social interactions in dairy cattle with real-time locating system and machine learning | [83] |
A63 | Machine learning-based fog computing assisted data-driven approach for early lameness detection in dairy cattle | [84] |
A64 | Detecting dairy cow behavior using vision technology | [85] |
A65 | Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms | [86] |
A66 | Body condition estimation on cows from depth images using Convolutional Neural Networks | [87] |
A67 | Comparison of forecast models of production of dairy cows combining animal and diet parameters | [88] |
A68 | Development of a recurrent neural networks-based calving prediction model using activity and behavioral data | [89] |
A69 | Using a CNN-LSTM for basic behavior detection of a single dairy cow in a complex environment | [90] |
A70 | An automatic model configuration and optimization system for milk production forecasting | [91] |
A71 | Predicting the milk yield curve of dairy cows in the subsequent lactation period using deep learning | [92] |
A72 | Short communication: Use of genomic and metabolic information as well as milk performance records for prediction of subclinical ketosis risk via artificial neural networks | [93] |
A73 | Prediction of FL 305 DMY from monthly part lactation milk yield records using artificial intelligence in Sahiwal cattle | [94] |
A74 | Lactation milk yield prediction in primiparous cows on a farm using the seasonal auto-regressive integrated moving average model, nonlinear autoregressive exogenous artificial neural networks, and Wood’s model | [95] |
A75 | Predicting bovine tuberculosis status of dairy cows from mid-infrared spectral data of milk using deep learning | [96] |
A76 | Artificial Neural Network versus Multiple Regression Analysis for Prediction of Lifetime Milk Production in Sahiwal Cattle | [97] |
A77 | Symposium review: Challenges and opportunities for evaluating and using the genetic potential of dairy cattle in the new era of sensor data from automation | [98] |
A78 | Milk production estimates using feed-forward artificial neural networks | [99] |
A79 | Prediction of second parity milk yield and fat percentage of dairy cows based on first parity information using neural network system | [100] |
A80 | Development of lifetime milk yield equation using artificial neural network in Holstein Friesian crossbred dairy cattle and comparison with multiple linear regression model | [101] |
A81 | Methods of predicting milk yield in dairy cows-Predictive capabilities of Wood’s lactation curve and artificial neural networks (ANNs) | [102] |
A82 | Predicting first test day milk yield of dairy heifers | [103] |
A83 | Empirical comparisons of feed-forward connectionist and conventional regression models for prediction of first lactation 305-day milk yield in Karan Fries dairy cows | [104] |
A84 | Development of neuro-fuzzifiers for qualitative analyses of milk yield | [105] |
A85 | Predicting mastitis in dairy cows using neural networks and generalized additive models: A comparison | [106] |
A86 | Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture-based dairy farms | [107] |
A87 | Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms | [108] |
A88 | Lameness scoring system for dairy cows using force plates and artificial intelligence | [109] |
A89 | Now you see me: Convolutional neural network-based tracker for dairy cows | [110] |
A90 | An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario | [111] |
A91 | A machine learning-based decision aid for lameness in dairy herds using farm-based records | [112] |
A92 | Exploring machine learning algorithms for early prediction of clinical mastitis | [113] |
A93 | Expert system based on a fuzzy logic model for the analysis of the sustainable livestock production dynamic system | [114] |
A94 | Machine learning approaches for the prediction of lameness in dairy cows | [115] |
A95 | Mastitis detection with recurrent neural networks in farms using automated milking systems | [116] |
A96 | Comprehensive analysis of machine learning models for prediction of sub-clinical mastitis: Deep Learning and Gradient-Boosted Trees outperform other models | [117] |
A97 | Using decision trees to extract patterns for dairy culling management | [118] |
A98 | Decision-tree induction to detect clinical mastitis with automatic milking | [119] |
A99 | Automated prediction of mastitis infection patterns in dairy herds using machine learning | [120] |
A100 | Hierarchical pattern recognition in milking parameters predicts mastitis prevalence | [120] |
A101 | Comparison of data-driven mastitis detection methods | [121] |
A102 | Uncovering Patterns in Dairy Cow Behavior: A Deep Learning Approach with Tri-Axial Accelerometer Data | [122] |
A103 | An efficient multi-task convolutional neural network for dairy farm object detection and segmentation | [123] |
A104 | Risk prediction model of clinical mastitis in lactating dairy cows based on machine learning algorithms | [124] |
A105 | Conceptualizing a holistic smart dairy farming system | [125] |
A106 | Cows’ legs tracking and lameness detection in dairy cattle using video analysis and Siamese neural networks | [126] |
A107 | A stochastic animal life cycle simulation model for a whole dairy farm system model: Assessing the value of combined heifer and lactating dairy cow reproductive management programs | [127] |
A108 | Comparison of imputation methods for missing production data of dairy cattle | [128] |
A109 | The Use of Artificial Neural Networks for Prediction of Milk Productivity of Cows in Ukraine; [Ukrayna’da İneklerin Süt Verimliliğinin Tahmininde Yapay Sinir Ağlarının Kullanımı] | [129] |
A110 | Calf Posture Recognition Using Convolutional Neural Network | [130] |
A111 | Prediction of first lactation 305 days milk yield using artificial neural network in Murrah buffalo | [131] |
A112 | Fusion of RGB, optical flow, and skeleton features for the detection of lameness in dairy cows | [132] |
A113 | The relationship between dry period length and milk production of Holstein dairy cows in tropical climate: a machine learning approach | [133] |
A114 | Use of Machine Learning and IoT for Monitoring and Tracking of Livestock | [134] |
A115 | The Use of Multilayer Perceptron Artificial Neural Networks to Detect Dairy Cows at Risk of Ketosis | [135] |
A116 | Dairy Cow Behavior Recognition Using Computer Vision Techniques and CNN Networks | [136] |
A117 | A Deep Learning-based solution to Cattle Region Extraction for Lameness Detection | [137] |
A118 | Modeling and forecasting of milk production in different breeds in Turkey | [138] |
A119 | Facial Recognition of Dairy Cattle Based on Improved Convolutional Neural Network∗ | [139] |
A120 | Comparison and Selection of Artificial Intelligence Technology in Predicting Milk Yield | [140] |
A121 | A Deep Learning Framework for Improving Lameness Identification in Dairy Cattle | [141] |
A122 | Research on Application Technology of 5G Internet of Things and Big Data in Dairy Farm | [142] |
A123 | Implementing artificial intelligence as a part of precision dairy farming to enable sustainable dairy farming | [143] |
A124 | Comparison of artificial neural networks and multiple linear regression for prediction of dairy cow locomotion score | [144] |
A125 | Can the use of digital technology improve cow milk productivity in large dairy herds? Evidence from China’s Shandong Province | [145] |
A126 | The Early Prediction of Common Disorders in Dairy Cows Monitored by Automatic Systems with Machine Learning Algorithms | [146] |
A127 | Fusion of udder temperature and size features for the automatic detection of dairy cow mastitis using deep learning | [147] |
A128 | Automatic Detection Method of Dairy Cow Feeding Behavior Based on YOLO Improved Model and Edge Computing | [148] |
A129 | Livestock Identification Using Deep Learning for Traceability | [149] |
A130 | Cattle face recognition based on a Two-Branch convolutional neural network | [150] |
A131 | YOLO-BYTE: An efficient multi-object tracking algorithm for automatic monitoring of dairy cows | [151] |
A132 | Early lameness detection in dairy cattle based on wearable gait analysis using semi-supervised LSTM-Autoencoder | [152] |
A133 | Dairy cow lameness detection using a back curvature feature | [153] |
A134 | Effect of body condition change and health status during early lactation on performance and survival of Holstein cows | [154] |
A135 | Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM | [155] |
A136 | ResNet-based dairy daily behavior recognition | [156] |
A137 | Artificial Intelligence and Sensor Technologies in Dairy Livestock Export: Charting a Digital Transformation | [157] |
A138 | A Gradient Boosting model to predict the milk production | [158] |
A139 | Diagnosis of dairy cow diseases by knowledge-driven deep learning based on the text reports of illness state | [159] |
A140 | Using dorsal surface for individual identification of dairy calves through 3D deep learning algorithms | [160] |
A141 | Counterfactual Explanations for Prediction and Diagnosis in XAI | [161] |
A142 | A deep learning algorithm predicts milk yield and production stage of dairy cows utilizing ultrasound echotexture analysis of the mammary gland | [162] |
A143 | Data considerations for developing deep learning models for dairy applications: A simulation study on mastitis detection | [163] |
A144 | A Novel Framework to Perform Efficient Analysis of Animal Sciences Using Big Data | [164] |
A145 | Using Empirical Modal Decomposition to Improve the Daily Milk Yield Prediction of Cows | [165] |
A146 | Precision livestock agriculture and productive efficiency: The case of milk recording in Ireland | [166] |
A147 | Deep learning image recognition of cow behavior and an open data set acquired near an automatic milking robot | [167] |
A148 | Addressing Data Bottlenecks in the Dairy Farm Industry | [168] |
A149 | Data-Driven Surveillance: Effective Collection, Integration, and Interpretation of Data to Support Decision Making | [169] |
A150 | Growth, milk production, reproductive performance, and stayability of dairy heifers born from 2-year-old or mixed-age dams | [170] |
A151 | Lameness Detection in Cows Using Hierarchical Deep Learning and Synchrosqueezed Wavelet Transform | [171] |
A152 | Prediction of Polish Holstein economical index and calving interval using machine learning | [172] |
Appendix B
Number | Title | Reference |
Data mining and decision support systems for efficient dairy production | [24] | |
IoT for Development of Smart Dairy Farming | [4] | |
Over 20 years of machine learning applications on dairy farms: A comprehensive mapping study | [3] | |
Role of information technology in dairy science: a review | [173] | |
ARTIFICIAL NEURAL NETWORKS IN THE DAIRY-INDUSTRY | [174] | |
Invited review: Big Data in precision dairy farming | [14] | |
Review: Application and Prospective Discussion of Machine Learning for the Management of Dairy Farms | [175] | |
Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming | [176] | |
Future of dairy farming from the Dairy Brain perspective: Data integration, analytics, and applications | [177] | |
Applications of artificial neural networks for enhanced livestock productivity: A review | [8] | |
Symposium review: Real-time continuous decision-making using big data on dairy farms | [2] | |
Application of machine learning to improve dairy farm management: A systematic literature review | [9] | |
Intelligent Perception-Based Cattle Lameness Detection and Behavior Recognition: A Review | [6] | |
A Literature Review of Modeling Approaches Applied to Data Collected in Automatic Milking Systems | [178] | |
Worth of Artificial Intelligence in the Epoch of Modern Livestock Farming: A Review | [179] | |
Invited Review: Examples and opportunities for artificial intelligence (AI) in dairy farms | [180] | |
Prospect and scope of artificial neural network in livestock farming: a review | [181] | |
Birth of dairy 4.0: Opportunities and challenges in adoption of fourth industrial revolution technologies in the production of milk and its derivatives | [182] | |
The livestock farming digital transformation: implementation of new and emerging technologies using artificial intelligence | [183] | |
Artificial neural networks in bovine milk production forecasting; [Redes neuronales artificiales en el pronóstico de la producción de leche bovina] | [23] | |
A Systematic Literature Review on the Use of Deep Learning in Precision Livestock Detection and Localization Using Unmanned Aerial Vehicles | [184] | |
A Review of Sensors and Machine Learning in Animal Farming | [185] | |
Artificial Intelligence and Sensor Technologies in Dairy Livestock Export: Charting a Digital Transformation. | [157] | |
Progress of Machine Vision Technologies in Intelligent Dairy Farming | [186] | |
Digital management of technological processes in cattle farms: a review | [187] | |
Affective State Recognition in Livestock-Artificial Intelligence Approaches | [188] | |
Application of infrared thermography and machine learning techniques in cattle health assessments: A review | [189] |
References
- Gkioka, G.; Bothos, T.; Magoutas, B.; Mentzas, G. Data Analytics Methods to Measure Service Quality: A Systematic Review. Intell. Decis. Technol. 2023, 17, 1007–1029. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Barrientos-Blanco, J.A.; Delgado, H.; Fadul-Pacheco, L. Symposium Review: Real-Time Continuous Decision Making Using Big Data on Dairy Farms. J. Dairy Sci. 2020, 103, 3856–3866. [Google Scholar] [CrossRef] [PubMed]
- Shine, P.; Murphy, M.D. Over 20 Years of Machine Learning Applications on Dairy Farms: A Comprehensive Mapping Study. Sensors 2022, 22, 52. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.O.; Shahbaz Khan, M.S.; Ali, M.J.; Hussain, A.; Qaiser, G.; Pasha, M.; Pasha, U.; Missen, M.S.; Akhtar, N. IoT for Development of Smart Dairy Farming. J. Food Qual. 2020, 2020, 4242805. [Google Scholar] [CrossRef]
- Schryen, G.; Sperling, M. Literature Reviews in Operations Research: A New Taxonomy and a Meta Review. Comput. Oper. Res. 2023, 157, 106269. [Google Scholar] [CrossRef]
- Qiao, Y.; Kong, H.; Clark, C.; Lomax, S.; Su, D.; Eiffert, S.; Sukkarieh, S. Intelligent Perception-Based Cattle Lameness Detection and Behaviour Recognition: A Review. Animals 2021, 11, 3033. [Google Scholar] [CrossRef]
- Sadiq, B.O.; Buhari, M.D.; Danjuma, Y.I.; Zakariyya, O.S.; Shuaibu, A.N. High-tech herding: Exploring the use of IoT and UAV networks for improved health surveillance in dairy farm system. Scientific African 2024, 25, e02266. [Google Scholar] [CrossRef]
- Dongre, V.B.; Gandhi, R.S. Applications of Artificial Neural Networks for Enhanced Livestock Productivity: A Review. Indian J. Anim. Sci. 2016, 86, 1232–1237. [Google Scholar] [CrossRef]
- Slob, N.; Catal, C.; Kassahun, A. Application of Machine Learning to Improve Dairy Farm Management: A Systematic Literature Review. Prev. Vet. Med. 2021, 187, 105237. [Google Scholar] [CrossRef]
- Bang, R.N.; Guajardo, M.; Hansen, B.G. Recent Advances in Decision Support for Beef and Dairy Farming: Modeling Approaches and Opportunities. Int. Trans. Oper. Res. 2023, 30, 2807–2839. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Lokhorst, C.; De Mol, R.M.; Kamphuis, C. Invited Review: Big Data in Precision Dairy Farming. Animal 2019, 13, 1519–1528. [Google Scholar] [CrossRef]
- Dongre, V.B.; Gandhi, R.S.; Singh, A.; Ruhil, A.P. Comparative Efficiency of Artificial Neural Networks and Multiple Linear Regression Analysis for Prediction of First Lactation 305-Day Milk Yield in Sahiwal Cattle. Livest. Sci. 2012, 147, 192–197. [Google Scholar] [CrossRef]
- Manoj, M.; Gandhi, R.S.; Raja, T.V.; Ruhil, A.P.; Singh, A.; Gupta, A.K. Comparison of Artificial Neural Network and Multiple Linear Regression for Prediction of First Lactation Milk Yield Using Early Body Weights in Sahiwal Cattle. Indian J. Anim. Sci. 2014, 84, 427–430. [Google Scholar]
- Edriss, M.A.; Hosseinnia, P.; Edrisi, M.; Rahmani, H.R.; Nilforooshan, M.A. Prediction of Second Parity Milk Performance of Dairy Cows from First Parity Information Using Artificial Neural Network and Multiple Linear Regression Methods. Asian J. Anim. Vet. Adv. 2008, 3, 222–229. [Google Scholar] [CrossRef]
- Saha, A.; Bhattacharyya, S. Artificial Insemination for Milk Production in India: A Statistical Insight. Indian J. Anim. Sci. 2020, 90, 1186–1190. [Google Scholar] [CrossRef]
- Murphy, M.D.; O’Mahony, M.J.; Shalloo, L.; French, P.; Upton, J. Comparison of Modelling Techniques for Milk-Production Forecasting. J. Dairy Sci. 2014, 97, 3352–3363. [Google Scholar] [CrossRef]
- Kulatunga, C.; Shalloo, L.; Donnelly, W.; Robson, E.; Ivanov, S. Opportunistic Wireless Networking for Smart Dairy Farming. IT Prof. 2017, 19, 16–23. [Google Scholar] [CrossRef]
- Vidal, G.H. Deterministic and Stochastic Inventory Models in Production Systems: A Review of the Literature. Process Integr. Optim. Sustain. 2023, 7, 29–50. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci. 2019, 7, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Perdigón-Llanes, R.; González-Benítez, N. Artificial neural networks in bovine milk production forecasting; [Redes neuronales artificiales en el pronóstico de la producción de leche bovina]. Rev. Colomb. De. Comput. 2022, 23, 20–33. [Google Scholar] [CrossRef]
- Balhara, S.; Singh, R.P.; Ruhil, A.P. Data Mining and Decision Support Systems for Efficient Dairy Production. Vet. World 2021, 14, 1258–1262. [Google Scholar] [CrossRef]
- von Rueden, L.; Mayer, S.; Sifa, R.; Bauckhage, C.; Garcke, J. Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions. In Proceedings of the 18th International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, 27–29 April 2020; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Berthold, M.R., Feelders, A., Krempl, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12080 LNCS, pp. 548–560. [Google Scholar]
- Lepenioti, K.; Bousdekis, A.; Apostolou, D.; Mentzas, G. Prescriptive Analytics: Literature Review and Research Challenges. Int. J. Inf. Manag. 2020, 50, 57–70. [Google Scholar] [CrossRef]
- Tuncali, C.E.; Fainekos, G.; Ito, H.; Kapinski, J. Simulation-Based Adversarial Test Generation for Autonomous Vehicles with Machine Learning Components. In Proceedings of the IEEE Intelligent Vehicles Symposium, Proceedings, Changshu, China, 26–30 June 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; Volume 2018, pp. 1555–1562. [Google Scholar]
- Plà-Aragonès, L.M. The Evolution of DSS in the Pig Industry and Future Perspectives. In EURO Working Group on DSS: A Tour of the DSS Developments Over the Last 30 Years; Jason, P., Zaraté, P., F. de, S.J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 299–323. ISBN 978-3-030-70377-6. [Google Scholar]
- Yang, X.Z.; Lacroix, R.; Wade, K.M. Investigation into the Production and Conformation Traits Associated with Clinical Mastitis Using Artificial Neural Networks. Can. J. Anim. Sci. 2000, 80, 415–426. [Google Scholar] [CrossRef]
- Hernández, B.C.; Lopez-Villalobos, N.; Vignes, M. Identifying Health Status in Grazing Dairy Cows from Milk Mid-Infrared Spectroscopy by Using Machine Learning Methods. Animals 2021, 11, 2154. [Google Scholar] [CrossRef]
- Heald, C.W.; Kim, T.; Sischo, W.M.; Cooper, J.B.; Wolfgang, D.R. A Computerized Mastitis Decision Aid Using Farm-Based Records: An Artificial Neural Network Approach. J. Dairy Sci. 2000, 83, 711–720. [Google Scholar] [CrossRef]
- Cavero, D.; Tölle, K.-H.; Henze, C.; Buxadé, C.; Krieter, J. Mastitis Detection in Dairy Cows by Application of Neural Networks. Livest. Sci. 2008, 114, 280–286. [Google Scholar] [CrossRef]
- Tedde, A.; Grelet, C.; Ho, P.N.; Pryce, J.E.; Hailemariam, D.; Wang, Z.; Plastow, G.; Gengler, N.; Froidmont, E.; Dehareng, F.; et al. Multiple Country Approach to Improve the Test-Day Prediction of Dairy Cows’ Dry Matter Intake. Animals 2021, 11, 1316. [Google Scholar] [CrossRef]
- Radwan, H.; El Qaliouby, H.; Abo Elfadl, E. Classification and Prediction of Milk Yield Level for Holstein Friesian Cattle Using Parametric and Non-Parametric Statistical Classification Models. J. Adv. Vet. Anim. Res. 2020, 7, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Wangen, S.R.; Zhang, F.; Fadul-Pacheco, L.; da Silva, T.E.; Cabrera, V.E. Improving Farm Decisions: The Application of Data Engineering Techniques to Manage Data Streams from Contemporary Dairy Operations. Livest. Sci. 2021, 250, 104602. [Google Scholar] [CrossRef]
- Nielen, M.; Schukken, Y.H.; Brand, A.; Haring, S.; Ferwerda-Van Zonneveld, R.T. Comparison of Analysis Techniques for On-Line Detection of Clinical Mastitis. J. Dairy Sci. 1995, 78, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Zaborski, D.; Grzesiak, W. Detection of Difficult Calvings in Dairy Cows Using Neural Classifier. Arch. Tierz. 2011, 54, 477–489. [Google Scholar] [CrossRef]
- Hassan, K.J.; Samarasinghe, S.; Lopez-Benavides, M.G. Use of Neural Networks to Detect Minor and Major Pathogens That Cause Bovine Mastitis. J. Dairy Sci. 2009, 92, 1493–1499. [Google Scholar] [CrossRef]
- Salau, J.; Haas, J.H.; Junge, W.; Thaller, G. Determination of Body Parts in Holstein Friesian Cows Comparing Neural Networks and k Nearest Neighbour Classification. Animals 2021, 11, 50. [Google Scholar] [CrossRef]
- Newton, J.E.; Nettle, R.; Pryce, J.E. Farming Smarter with Big Data: Insights from the Case of Australia’s National Dairy Herd Milk Recording Scheme. Agric. Syst. 2020, 181, 102811. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, R.K.; Kasana, H.S. Prediction of First Lactation 305-Day Milk Yield in Karan Fries Dairy Cattle Using ANN Modeling. Appl. Soft Comput. J. 2007, 7, 1112–1120. [Google Scholar] [CrossRef]
- Shen, W.; Hu, H.; Dai, B.; Wei, X.; Sun, J.; Jiang, L.; Sun, Y. Individual Identification of Dairy Cows Based on Convolutional Neural Networks. Multimed. Tools Appl. 2020, 79, 14711–14724. [Google Scholar] [CrossRef]
- Fuentes, S.; Viejo, C.G.; Cullen, B.; Tongson, E.; Chauhan, S.S.; Dunshea, F.R. Artificial Intelligence Applied to a Robotic Dairy Farm to Model Milk Productivity and Quality Based on Cow Data and Daily Environmental Parameters. Sensors 2020, 20, 2975. [Google Scholar] [CrossRef]
- Boğa, M.; Çevik, K.K.; Burgut, A. Classifying Milk Yield Using Deep Neural Network. Pak. J. Zool. 2020, 52, 1319–1325. [Google Scholar] [CrossRef]
- Nielen, M.; Spigt, M.H.; Schukken, Y.H.; Deluyker, H.A.; Maatje, K.; Brand, A. Application of a Neural Network to Analyse On-Line Milking Parlour Data for the Detection of Clinical Mastitis in Dairy Cows. Prev. Vet. Med. 1995, 22, 15–28. [Google Scholar] [CrossRef]
- Bonora, F.; Benni, S.; Barbaresi, A.; Tassinari, P.; Torreggiani, D. A Cluster-Graph Model for Herd Characterisation in Dairy Farms Equipped with an Automatic Milking System. Biosyst. Eng. 2018, 167, 1–7. [Google Scholar] [CrossRef]
- Gao, M.; Wang, H.; Shen, W.; Su, Z.; Liu, H.; Yin, Y.; Zhang, Y.; Zhang, Y. Disease Diagnosis of Dairy Cow by Deep Learning Based on Knowledge Graph and Transfer Learning. Int. J. Bioautom. 2021, 25, 87–100. [Google Scholar] [CrossRef]
- Li, X.; Cai, C.; Zhang, R.; Ju, L.; He, J. Deep Cascaded Convolutional Models for Cattle Pose Estimation. Comput. Electron. Agric. 2019, 164, 104885. [Google Scholar] [CrossRef]
- Tassinari, P.; Bovo, M.; Benni, S.; Franzoni, S.; Poggi, M.; Mammi, L.M.E.; Mattoccia, S.; Di Stefano, L.; Bonora, F.; Barbaresi, A.; et al. A Computer Vision Approach Based on Deep Learning for the Detection of Dairy Cows in Free Stall Barn. Comput. Electron. Agric. 2021, 182, 106030. [Google Scholar] [CrossRef]
- Taneja, M.; Jalodia, N.; Byabazaire, J.; Davy, A.; Olariu, C. SmartHerd Management: A Microservices-Based Fog Computing–Assisted IoT Platform towards Data-Driven Smart Dairy Farming. Softw. Pract. Exp. 2019, 49, 1055–1078. [Google Scholar] [CrossRef]
- Grzesiak, W.; Zaborski, D.; Sablik, P.; Zukiewicz, A.; Dybus, A.; Szatkowska, I. Detection of Cows with Insemination Problems Using Selected Classification Models. Comput. Electron. Agric. 2010, 74, 265–273. [Google Scholar] [CrossRef]
- Salehi, F.; Lacroix, R.; Wade, K.M. Improving Dairy Yield Predictions through Combined Record Classifiers and Specialized Artificial Neural Networks. Comput. Electron. Agric. 1998, 20, 199–213. [Google Scholar] [CrossRef]
- Feng, Y.; Niu, H.; Wang, F.; Ivey, S.J.; Wu, J.J.; Qi, H.; Almeida, R.A.; Eda, S.; Cao, Q. SocialCattle: IoT-Based Mastitis Detection and Control Through Social Cattle Behavior Sensing in Smart Farms. IEEE Internet Things J. 2022, 9, 10130–10138. [Google Scholar] [CrossRef]
- Njubi, D.M.; Wakhungu, J.W.; Badamana, M.S. Use of Test-Day Records to Predict First Lactation 305-Day Milk Yield Using Artificial Neural Network in Kenyan Holstein-Friesian Dairy Cows. Trop. Anim. Health Prod. 2010, 42, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.S.; Raja, T.V.; Ruhil, A.P.; Kumar, A. Prediction of Lifetime Milk Production Using Artificial Neural Network in Sahiwal Cattle. Indian J. Anim. Sci. 2009, 79, 1038–1040. [Google Scholar]
- Sun, Z.; Samarasinghe, S.; Jago, J. Detection of Mastitis and Its Stage of Progression by Automatic Milking Systems Using Artificial Neural Networks. J. Dairy Res. 2010, 77, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-Learning-Based Calving Prediction from Activity, Lying, and Ruminating Behaviors in Dairy Cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef]
- Adebayo, R.A.; Moyo, M.; Kana, E.B.G.; Nsahlai, I.V. The Use of Artificial Neural Networks for Modelling Rumen Fill. Can. J. Anim. Sci. 2021, 101, 427–437. [Google Scholar] [CrossRef]
- Fuentes, S.; Viejo, C.G.; Tongson, E.; Lipovetzky, N.; Dunshea, F.R. Biometric Physiological Responses from Dairy Cows Measured by Visible Remote Sensing Are Good Predictors of Milk Productivity and Quality through Artificial Intelligence. Sensors 2021, 21, 6844. [Google Scholar] [CrossRef]
- Lacroix, R.; Salehi, F.; Yang, X.Z.; Wade, K.M. Effects of Data Preprocessing on the Performance of Artificial Neural Networks for Dairy Yield Prediction and Cow Culling Classification. Trans. Am. Soc. Agric. Eng. 1997, 40, 839–846. [Google Scholar] [CrossRef]
- Finn, G.D.; Lister, R.; Szabo, T.; Simonetta, D.; Mulder, H.; Young, R. Neural Networks Applied to a Large Biological Database to Analyse Dairy Breeding Patterns. Neural Comput. Appl. 1996, 4, 237–253. [Google Scholar] [CrossRef]
- Njubi, D.M.; Wakhungu, J.W.; Badamana, M.S. Prediction of Second Parity Milk Yield of Kenyan Holstein-Friesian Dairy Cows on First Parity Information Using Neural Network System and Multiple Linear Regression Methods. Livest. Res. Rural. Dev. 2011, 23, 222–229. [Google Scholar]
- Atil, H.; Akilli, A. Comparison of Artificial Neural Network and K-Means for Clustering Dairy Cattle. Int. J. Sustain. Agric. Manag. Inform. 2016, 2, 40–52. [Google Scholar] [CrossRef]
- Liseune, A.; Salamone, M.; van den Poel, D.; van Ranst, B.; Hostens, M. Leveraging Latent Representations for Milk Yield Prediction and Interpolation Using Deep Learning. Comput. Electron. Agric. 2020, 175, 105600. [Google Scholar] [CrossRef]
- Yang, X.Z.; Lacroix, R.; Wade, K.M. Neural Detection of Mastitis from Dairy Herd Improvement Records. Trans. Am. Soc. Agric. Eng. 1999, 42, 1063–1071. [Google Scholar] [CrossRef]
- Salehi, F.; Lacroix, R.; Wade, K.M. Effects of Learning Parameters and Data Presentation on the Performance of Backpropagation Networks for Milk Yield Prediction. Trans. Am. Soc. Agric. Eng. 1998, 41, 253–259. [Google Scholar] [CrossRef]
- Ferris, M.C.; Christensen, A.; Wangen, S.R. Symposium Review: Dairy Brain—Informing Decisions on Dairy Farms Using Data Analytics. J. Dairy Sci. 2020, 103, 3874–3881. [Google Scholar] [CrossRef]
- Lacroix, R.; Wade, K.M.; Kok, R.; Hayes, J.F. Prediction of Cow Performance with a Connectionist Model. Trans. Am. Soc. Agric. Eng. 1995, 38, 1573–1579. [Google Scholar] [CrossRef]
- Grzesiak, W.; Lacroix, R.; Wójcik, J.; Błaszczyk, P. A Comparison of Neural Network and Multiple Regression Predictions for 305-Day Lactation Yield Using Partial Lactation Records. Can. J. Anim. Sci. 2003, 83, 307–310. [Google Scholar] [CrossRef]
- Mikail, N.; Keskin, İ. Application of Neural Network and Adaptive Neuro-Fuzzy Inference System to Predict Subclinical Mastitis in Dairy Cattle. Indian J. Anim. Res. 2015, 49, 671–679. [Google Scholar]
- Tahmoorespur, M.; Hosseinnia, P.; Teimurian, M.; Aslaminejad, A.A. Predictions of 305-Day Milk Yield in Iranian Dairy Cattle Using Test-Day Records by Artificial Neural Network. Indian J. Anim. Sci. 2012, 82, 511–516. [Google Scholar]
- Nosrati, M.; Hafezian, S.H.; Gholizadeh, M. Estimating Heritabilities and Breeding Values for Real and Predicted Milk Production in Holstein Dairy Cows with Artificial Neural Network and Multiple Linear Regression Models. Iran. J. Appl. Anim. Sci. 2021, 11, 1–12. [Google Scholar]
- Martin, M.J.; Dórea, J.R.R.; Borchers, M.R.; Wallace, R.L.; Bertics, S.J.; DeNise, S.K.; Weigel, K.A.; White, H.M. Comparison of Methods to Predict Feed Intake and Residual Feed Intake Using Behavioral and Metabolite Data in Addition to Classical Performance Variables. J. Dairy Sci. 2021, 104, 8765–8782. [Google Scholar] [CrossRef]
- Jensen, D.B.; van der Voort, M.; Hogeveen, H. Dynamic Forecasting of Individual Cow Milk Yield in Automatic Milking Systems. J. Dairy Sci. 2018, 101, 10428–10439. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.R.R.; Rosa, G.J.M.; Weld, K.A.; Armentano, L.E. Mining Data from Milk Infrared Spectroscopy to Improve Feed Intake Predictions in Lactating Dairy Cows. J. Dairy Sci. 2018, 101, 5878–5889. [Google Scholar] [CrossRef] [PubMed]
- Elgersma, G.G.; de Jong, G.; van der Linde, R.; Mulder, H.A. Fluctuations in Milk Yield Are Heritable and Can Be Used as a Resilience Indicator to Breed Healthy Cows. J. Dairy Sci. 2018, 101, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Karadas, K.; Birinci, A. Determination of Factors Affecting Dairy Cattle: A Case Study of Ardahan Province Using Data Mining Algorithms. Rev. Bras. De. Zootec. 2019, 48, 1–11. [Google Scholar] [CrossRef]
- Soyeurt, H.; Grelet, C.; McParland, S.; Calmels, M.; Coffey, M.; Tedde, A.; Delhez, P.; Dehareng, F.; Gengler, N. A Comparison of 4 Different Machine Learning Algorithms to Predict Lactoferrin Content in Bovine Milk from Mid-Infrared Spectra. J. Dairy Sci. 2020, 103, 11585–11596. [Google Scholar] [CrossRef]
- Gorgulu, O. Prediction of 305-Day Milk Yield in Brown Swiss Cattle Using Artificial Networks. S. Afr. J. Anim. Sci. 2012, 42, 280–287. [Google Scholar] [CrossRef]
- Bhosale, M.D.; Singh, T.P. Comparative Study of Feed-Forward Neuro-Computing with Multiple Linear Regression Model for Milk Yield Prediction in Dairy Cattle. Curr. Sci. 2015, 108, 2257–2261. [Google Scholar]
- Gao, T.; Kasabov, N. Adaptive Cow Movement Detection Using Evolving Spiking Neural Network Models. Evol. Syst. 2016, 7, 277–285. [Google Scholar] [CrossRef]
- Gorczyca, M.T.; Gebremedhin, K.G. Ranking of Environmental Heat Stressors for Dairy Cows Using Machine Learning Algorithms. Comput. Electron. Agric. 2020, 168, 105124. [Google Scholar] [CrossRef]
- Ren, K.; Bernes, G.; Hetta, M.; Karlsson, J. Tracking and Analysing Social Interactions in Dairy Cattle with Real-Time Locating System and Machine Learning. J. Syst. Archit. 2021, 116, 102139. [Google Scholar] [CrossRef]
- Taneja, M.; Byabazaire, J.; Jalodia, N.; Davy, A.; Olariu, C.; Malone, P. Machine Learning Based Fog Computing Assisted Data-Driven Approach for Early Lameness Detection in Dairy Cattle. Comput. Electron. Agric. 2020, 171, 105286. [Google Scholar] [CrossRef]
- McDonagh, J.; Tzimiropoulos, G.; Slinger, K.R.; Huggett, Z.J.; Bell, M.J.; Down, P.M. Detecting Dairy Cow Behavior Using Vision Technology. Agriculture 2021, 11, 675. [Google Scholar] [CrossRef]
- Shahinfar, S.; Page, D.; Guenther, J.; Cabrera, V.; Fricke, P.; Weigel, K. Prediction of Insemination Outcomes in Holstein Dairy Cattle Using Alternative Machine Learning Algorithms. J. Dairy Sci. 2014, 97, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Alvarez, J.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodríguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Body Condition Estimation on Cows from Depth Images Using Convolutional Neural Networks. Comput. Electron. Agric. 2018, 155, 12–22. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Fouchereau, R.; Frénod, E.; Gerard, C.; Sincholle, V. Comparison of Forecast Models of Production of Dairy Cows Combining Animal and Diet Parameters. Comput. Electron. Agric. 2020, 170, 105258. [Google Scholar] [CrossRef]
- Keceli, A.S.; Catal, C.; Kaya, A.; Tekinerdogan, B. Development of a Recurrent Neural Networks-Based Calving Prediction Model Using Activity and Behavioral Data. Comput. Electron. Agric. 2020, 170, 105285. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Han, M.; Song, L.; Shang, Y.; Zhang, X.; Song, H. Using a CNN-LSTM for Basic Behaviors Detection of a Single Dairy Cow in a Complex Environment. Comput. Electron. Agric. 2021, 182, 106016. [Google Scholar] [CrossRef]
- Zhang, F.; Murphy, M.D.; Shalloo, L.; Ruelle, E.; Upton, J. An Automatic Model Configuration and Optimization System for Milk Production Forecasting. Comput. Electron. Agric. 2016, 128, 100–111. [Google Scholar] [CrossRef]
- Liseune, A.; Salamone, M.; van den Poel, D.; van Ranst, B.; Hostens, M. Predicting the Milk Yield Curve of Dairy Cows in the Subsequent Lactation Period Using Deep Learning. Comput. Electron. Agric. 2021, 180, 105904. [Google Scholar] [CrossRef]
- Ehret, A.; Hochstuhl, D.; Krattenmacher, N.; Tetens, J.; Klein, M.S.; Gronwald, W.; Thaller, G. Short Communication: Use of Genomic and Metabolic Information as Well as Milk Performance Records for Prediction of Subclinical Ketosis Risk via Artificial Neural Networks. J. Dairy Sci. 2015, 98, 322–329. [Google Scholar] [CrossRef]
- Mundhe, U.T.; Gandhi, R.S.; Das, D.N.; Dongre, V.B.; Gupta, A. Prediction of FL 305 DMY from Monthly Part Lactation Milk Yield Records Artificial Intelligence in Sahiwal Cattle. Indian J. Anim. Sci. 2015, 85, 477–479. [Google Scholar] [CrossRef]
- Grzesiak, W.; Zaborski, D.; Szatkowska, I.; Królaczyk, K. Lactation Milk Yield Prediction in Primiparous Cows on a Farm Using the Seasonal Auto-Regressive Integrated Moving Average Model, Nonlinear Autoregressive Exogenous Artificial Neural Networks and Wood’s Model. Anim. Biosci. 2021, 34, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Denholm, S.J.; Brand, W.; Mitchell, A.P.; Wells, A.T.; Krzyzelewski, T.; Smith, S.L.; Wall, E.; Coffey, M.P. Predicting Bovine Tuberculosis Status of Dairy Cows from Mid-Infrared Spectral Data of Milk Using Deep Learning. J. Dairy Sci. 2020, 103, 9355–9367. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.S.; Raja, T.V.; Ruhil, A.P.; Kumar, A. Artificial Neural Network versus Multiple Regression Analysis for Prediction of Lifetime Milk Production in Sahiwal Cattle. J. Appl. Anim. Res. 2010, 38, 233–237. [Google Scholar] [CrossRef]
- Gengler, N. Symposium Review: Challenges and Opportunities for Evaluating and Using the Genetic Potential of Dairy Cattle in the New Era of Sensor Data from Automation. J. Dairy Sci. 2019, 102, 5756–5763. [Google Scholar] [CrossRef]
- Sanzogni, L.; Kerr, D. Milk Production Estimates Using Feed Forward Artificial Neural Networks. Comput. Electron. Agric. 2001, 32, 21–30. [Google Scholar] [CrossRef]
- Hosseinia, P.; Edrisi, M.; Edriss, M.A.; Nilforooshan, M.A. Prediction of Second Parity Milk Yield and Fat Percentage of Dairy Cows Based on First Parity Information Using Neural Network System. J. Appl. Sci. 2007, 7, 3274–3279. [Google Scholar] [CrossRef]
- Bhosale, M.D.; Singh, T.P. Development of Lifetime Milk Yield Equation Using Artificial Neural Network in Holstein Friesian Crossbred Dairy Cattle and Comparison with Multiple Linear Regression Model. Curr. Sci. 2017, 113, 951–955. [Google Scholar] [CrossRef]
- Grzesiak, W.; Błaszczyk, P.; Lacroix, R. Methods of Predicting Milk Yield in Dairy Cows-Predictive Capabilities of Wood’s Lactation Curve and Artificial Neural Networks (ANNs). Comput. Electron. Agric. 2006, 54, 69–83. [Google Scholar] [CrossRef]
- Dallago, G.M.; Figueiredo, D.M.D.; Andrade, P.C.D.R.; Santos, R.A.D.; Lacroix, R.; Santschi, D.E.; Lefebvre, D.M. Predicting First Test Day Milk Yield of Dairy Heifers. Comput. Electron. Agric. 2019, 166, 105032. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, R.K.; Kasana, H.S. Empirical Comparisons of Feed-Forward Connectionist and Conventional Regression Models for Prediction of First Lactation 305-Day Milk Yield in Karan Fries Dairy Cows. Neural Comput. Appl. 2006, 15, 359–365. [Google Scholar] [CrossRef]
- Salehi, F.; Lacroix, R.; Wade, K.M. Development of Neuro-Fuzzifiers for Qualitative Analyses of Milk Yield. Comput. Electron. Agric. 2000, 28, 171–186. [Google Scholar] [CrossRef]
- Ankinakatte, S.; Norberg, E.; Løvendahl, P.; Edwards, D.; Højsgaard, S. Predicting Mastitis in Dairy Cows Using Neural Networks and Generalized Additive Models: A Comparison. Comput. Electron. Agric. 2013, 99, 1–6. [Google Scholar] [CrossRef]
- Shine, P.; Murphy, M.D.; Upton, J.; Scully, T. Machine-Learning Algorithms for Predicting on-Farm Direct Water and Electricity Consumption on Pasture Based Dairy Farms. Comput. Electron. Agric. 2018, 150, 74–87. [Google Scholar] [CrossRef]
- Bezen, R.; Edan, Y.; Halachmi, I. Computer Vision System for Measuring Individual Cow Feed Intake Using RGB-D Camera and Deep Learning Algorithms. Comput. Electron. Agric. 2020, 172, 105345. [Google Scholar] [CrossRef]
- Mokaram Ghotoorlar, S.; Mehdi Ghamsari, S.; Nowrouzian, I.; Shiry Ghidary, S. Lameness Scoring System for Dairy Cows Using Force Plates and Artificial Intelligence. Vet. Rec. 2012, 170, 126. [Google Scholar] [CrossRef]
- Guzhva, O.; Ardö, H.; Nilsson, M.; Herlin, A.; Tufvesson, L. Now You See Me: Convolutional Neural Network Based Tracker for Dairy Cows. Front. Robot. AI 2018, 5, 107. [Google Scholar] [CrossRef]
- Alonso, R.S.; Sittón-Candanedo, I.; García, Ó.; Prieto, J.; Rodríguez-González, S. An Intelligent Edge-IoT Platform for Monitoring Livestock and Crops in a Dairy Farming Scenario. Ad Hoc Netw. 2020, 98, 102047. [Google Scholar] [CrossRef]
- Warner, D.; Vasseur, E.; Lefebvre, D.M.; Lacroix, R. A Machine Learning Based Decision Aid for Lameness in Dairy Herds Using Farm-Based Records. Comput. Electron. Agric. 2020, 169, 105193. [Google Scholar] [CrossRef]
- Fadul-Pacheco, L.; Delgado, H.; Cabrera, V.E. Exploring Machine Learning Algorithms for Early Prediction of Clinical Mastitis. Int. Dairy J. 2021, 119, 105051. [Google Scholar] [CrossRef]
- Vásquez, R.P.; Aguilar-Lasserre, A.A.; López-Segura, M.V.; Rivero, L.C.; Rodríguez-Duran, A.A.; Rojas-Luna, M.A. Expert System Based on a Fuzzy Logic Model for the Analysis of the Sustainable Livestock Production Dynamic System. Comput. Electron. Agric. 2019, 161, 104–120. [Google Scholar] [CrossRef]
- Shahinfar, S.; Khansefid, M.; Haile-Mariam, M.; Pryce, J.E. Machine Learning Approaches for the Prediction of Lameness in Dairy Cows. Animal 2021, 15, 100391. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.A.; King, M.T.M.; Matson, R.D.; DeVries, T.J.; Deardon, R.; Barkema, H.W. Mastitis Detection with Recurrent Neural Networks in Farms Using Automated Milking Systems. Comput. Electron. Agric. 2022, 192, 106618. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Mohammadi-Dehcheshmeh, M.; Ebrahimie, E.; Petrovski, K.R. Comprehensive Analysis of Machine Learning Models for Prediction of Sub-Clinical Mastitis: Deep Learning and Gradient-Boosted Trees Outperform Other Models. Comput. Biol. Med. 2019, 114, 103456. [Google Scholar] [CrossRef]
- Lopez-Suarez, M.; Armengol, E.; Calsamiglia, S.; Castillejos, L. Using Decision Trees to Extract Patterns for Dairy Culling Management. IFIP Adv. Inf. Commun. Technol. 2018, 519, 231–239. [Google Scholar] [CrossRef]
- Kamphuis, C.; Mollenhorst, H.; Feelders, A.; Pietersma, D.; Hogeveen, H. Decision-Tree Induction to Detect Clinical Mastitis with Automatic Milking. Comput. Electron. Agric. 2010, 70, 60–68. [Google Scholar] [CrossRef]
- Hyde, R.M.; Down, P.M.; Bradley, A.J.; Breen, J.E.; Hudson, C.; Leach, K.A.; Green, M.J. Automated Prediction of Mastitis Infection Patterns in Dairy Herds Using Machine Learning. Sci. Rep. 2020, 10, 4289. [Google Scholar] [CrossRef]
- Jensen, D.; Van Der Voort, M.; Kamphuis, C.; Athanasiadis, I.N.; De Vries, A.; Hogeveen, H. Comparison of Data Driven Mastitis Detection Methods. In Proceedings of the Precision Livestock Farming 2019—Papers Presented at the 9th European Conference on Precision Livestock Farming, ECPLF 2019, Cork, Ireland, 26–29 August 2019; pp. 626–632. [Google Scholar]
- Balasso, P.; Taccioli, C.; Serva, L.; Magrin, L.; Andrighetto, I.; Marchesini, G. Uncovering Patterns in Dairy Cow Behaviour: A Deep Learning Approach with Tri-Axial Accelerometer Data. Animals 2023, 13, 1886. [Google Scholar] [CrossRef]
- Tian, F.; Hu, G.; Yu, S.; Wang, R.; Song, Z.; Yan, Y.; Huang, H.; Wang, Q.; Wang, Z.; Yu, Z. An Efficient Multi-Task Convolutional Neural Network for Dairy Farm Object Detection and Segmentation. Comput. Electron. Agric. 2023, 211, 108000. [Google Scholar] [CrossRef]
- Luo, W.; Dong, Q.; Feng, Y. Risk Prediction Model of Clinical Mastitis in Lactating Dairy Cows Based on Machine Learning Algorithms. Prev. Vet. Med. 2023, 221, 106059. [Google Scholar] [CrossRef]
- Gravemeier, L.S.; Dittmer, A.; Jakob, M.; Kümper, D.; Thomas, O. Conceptualizing a Holistic Smart Dairy Farming System. In Proceedings of the Lecture Notes in Informatics (LNI), Proceedings—Series of the Gesellschaft fur Informatik (GI); Gesellschaft für Informatik eV., Bonn, Germany, 2023; Volume P-330; pp. 77–88. [Google Scholar]
- Zheng, Z.; Zhang, X.; Qin, L.; Yue, S.; Zeng, P. Cows’ Legs Tracking and Lameness Detection in Dairy Cattle Using Video Analysis and Siamese Neural Networks. Comput. Electron. Agric. 2023, 205, 107618. [Google Scholar] [CrossRef]
- Li, M.; Reed, K.F.; Lauber, M.R.; Fricke, P.M.; Cabrera, V.E. A Stochastic Animal Life Cycle Simulation Model for a Whole Dairy Farm System Model: Assessing the Value of Combined Heifer and Lactating Dairy Cow Reproductive Management Programs. J. Dairy Sci. 2023, 106, 3246–3267. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Ellis, J.L.; Adams, S.; Sahar, M.; Jacobs, M.; Tulpan, D. Comparison of Imputation Methods for Missing Production Data of Dairy Cattle. Animal 2023, 17, 100921. [Google Scholar] [CrossRef] [PubMed]
- Matvieiev, M.; Romasevych, Y.; Getya, A. The Use of Artificial Neural Networks for Prediction of Milk Productivity of Cows in Ukraine; [Ukrayna’da İneklerin Süt Verimliliğinin Tahmininde Yapay Sinir Ağlarının Kullanımı]. Kafkas Univ. Vet. Fak. Derg. 2023, 29, 289–292. [Google Scholar] [CrossRef]
- Tung, T.C.; Khairuddin, U.; Shapiai, M.I.; Nor, N.M.; Hiew, M.W.H.; Suhaimie, N.A.M. Calf Posture Recognition Using Convolutional Neural Network. Comput. Mater. Contin. 2023, 74, 1493–1508. [Google Scholar] [CrossRef]
- Singh, N.P.; Dutt, T.; Usman, S.M.; Baqir, M.; Tiwari, R.; Kumar, A. Prediction of First Lactation 305 Days Milk Yield Using Artificial Neural Network in Murrah Buffalo. Indian J. Anim. Sci. 2022, 92, 1116–1120. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Lv, S.; Han, M.; Jiang, M.; Song, H. Fusion of RGB, Optical Flow and Skeleton Features for the Detection of Lameness in Dairy Cows. Biosyst. Eng. 2022, 218, 62–77. [Google Scholar] [CrossRef]
- Dallago, G.M.; Pacheco, J.A.S.; Dos Santos, R.A.; De Frias Castro, G.H.; Verardo, L.L.; Guarino, L.R.; Moreira, E.U. The Relationship between Dry Period Length and Milk Production of Holstein Dairy Cows in Tropical Climate: A Machine Learning Approach. J. Dairy Res. 2022, 89, 160–168. [Google Scholar] [CrossRef]
- Aunindita, R.F.; Shiam Misbah, M.; Bin Joy, S.; Rahman, M.A.; Mahabub, S.I.; Noor Mukta, J. Use of Machine Learning and IoT for Monitoring and Tracking of Livestock. In Proceedings of the 2022 25th International Conference on Computer and Information Technology, ICCIT 2022, Cox’s Bazar, Bangladesh, 17–19 December 2022; pp. 815–820. [Google Scholar]
- Bauer, E.A.; Jagusiak, W. The Use of Multilayer Perceptron Artificial Neural Networks to Detect Dairy Cows at Risk of Ketosis. Animals 2022, 12, 332. [Google Scholar] [CrossRef]
- Avanzato, R.; Beritelli, F.; Puglisi, V.F. Dairy Cow Behavior Recognition Using Computer Vision Techniques and CNN Networks. In Proceedings of the 2022 IEEE International Conference on Internet of Things and Intelligence Systems, IoTaIS 2022, Bali, Indonesia, 24–26 November 2022; pp. 122–128. [Google Scholar]
- Noe, S.M.; Zin, T.T.; Tin, P.; Kobayashi, I. A Deep Learning-Based Solution to Cattle Region Extraction for Lameness Detection. In Proceedings of the LifeTech 2022—2022 IEEE 4th Global Conference on Life Sciences and Technologies, Osaka, Japan, 7–9 March 2022; pp. 572–573. [Google Scholar]
- Yonar, H.; Yonar, A.; Mishra, P.; Abotaleb, M.; Al Khatib, A.M.G.; Makarovskikh, T.; Cam, M. Modeling and Forecasting of Milk Production in Different Breeds in Turkey. Indian J. Anim. Sci. 2022, 92, 105–111. [Google Scholar] [CrossRef]
- Weng, Z.; Fan, L.; Zhang, Y.; Zheng, Z.; Gong, C.; Wei, Z. Facial Recognition of Dairy Cattle Based on Improved Convolutional Neural Network∗. IEICE Trans. Inf. Syst. 2022, E105D, 1234–1238. [Google Scholar] [CrossRef]
- Llanes, R.P.; Benítez, N.G. Comparison and Selection of Artificial Intelligence Technology in Predicting Milk Yield. J. Auton. Intell. 2021, 4, 63–71. [Google Scholar] [CrossRef]
- Karoui, Y.; Boatswain Jacques, A.A.; Diallo, A.B.; Shepley, E.; Vasseur, E. A Deep Learning Framework for Improving Lameness Identification in Dairy Cattle. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI 2021, Philadelphia, PE, USA, 25 February–4 March 2021; Volume 18, pp. 15811–15812. [Google Scholar]
- Zhang, J.; Zhang, R.; Yang, Q.; Hu, T.; Guo, K.; Hong, T. Research on Application Technology of 5G Internet of Things and Big Data in Dairy Farm. In Proceedings of the 2021 International Wireless Communications and Mobile Computing, IWCMC 2021, Harbin, China, 28 June—2 July 2021; pp. 138–140. [Google Scholar]
- Radun, V.; Dokic, D.; Gantner, V. Implementing artificial inteligence as a part of precision dairy farming for enabling sustainable dairy farming. Ekon. Poljopr.-Econ. Agric. 2021, 68, 869–880. [Google Scholar] [CrossRef]
- Norouzian, M.A.; Bayatani, H.; Alavijeh, M. V Comparison of Artificial Neural Networks and Multiple Linear Regression for Prediction of Dairy Cow Locomotion Score. Vet. Res. Forum 2021, 12, 33–37. [Google Scholar] [CrossRef]
- Qi, Y.; Han, J.; Shadbolt, N.M.; Zhang, Q. Can the Use of Digital Technology Improve the Cow Milk Productivity in Large Dairy Herds? Evidence from China’s Shandong Province. Front. Sustain. Food Syst. 2022, 6, 1083906. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, C.; Wang, H.; Xu, W.; Zhao, Z.; Chen, M.; Jia, B.; Huang, B. The Early Prediction of Common Disorders in Dairy Cows Monitored by Automatic Systems with Machine Learning Algorithms. Animals 2022, 12, 1251. [Google Scholar] [CrossRef]
- Chu, M.; Li, Q.; Wang, Y.; Zeng, X.; Si, Y.; Liu, G. Fusion of Udder Temperature and Size Features for the Automatic Detection of Dairy Cow Mastitis Using Deep Learning. Comput. Electron. Agric. 2023, 212, 108131. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, Y.; Yu, S.; Wang, R.; Song, Z.; Yan, Y.; Li, F.; Wang, Z.; Tian, F. Automatic Detection Method of Dairy Cow Feeding Behaviour Based on YOLO Improved Model and Edge Computing. Sensors 2022, 22, 3271. [Google Scholar] [CrossRef]
- Dac, H.H.; Gonzalez Viejo, C.; Lipovetzky, N.; Tongson, E.; Dunshea, F.R.; Fuentes, S. Livestock Identification Using Deep Learning for Traceability. Sensors 2022, 22, 18256. [Google Scholar] [CrossRef]
- Weng, Z.; Meng, F.; Liu, S.; Zhang, Y.; Zheng, Z.; Gong, C. Cattle Face Recognition Based on a Two-Branch Convolutional Neural Network. Comput. Electron. Agric. 2022, 196, 106871. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Qin, L. YOLO-BYTE: An Efficient Multi-Object Tracking Algorithm for Automatic Monitoring of Dairy Cows. Comput. Electron. Agric. 2023, 209, 107857. [Google Scholar] [CrossRef]
- Zhang, K.; Han, S.; Wu, J.; Cheng, G.; Wang, Y.; Wu, S.; Liu, J. Early Lameness Detection in Dairy Cattle Based on Wearable Gait Analysis Using Semi-Supervised LSTM-Autoencoder. Comput. Electron. Agric. 2023, 213, 108252. [Google Scholar] [CrossRef]
- Jiang, B.; Song, H.; Wang, H.; Li, C. Dairy Cow Lameness Detection Using a Back Curvature Feature. Comput. Electron. Agric. 2022, 194, 106729. [Google Scholar] [CrossRef]
- Manríquez, D.; Thatcher, W.W.; Santos, J.E.P.; Chebel, R.C.; Galvão, K.N.; Schuenemann, G.M.; Bicalho, R.C.; Gilbert, R.O.; Rodriguez-Zas, S.; Seabury, C.M.; et al. Effect of Body Condition Change and Health Status during Early Lactation on Performance and Survival of Holstein Cows. J. Dairy Sci. 2021, 104, 12785–12799. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, G.; Wang, K.; Si, Y. Cow Identification in Free-Stall Barns Based on an Improved Mask R-CNN and an SVM. Comput. Electron. Agric. 2022, 194, 106738. [Google Scholar] [CrossRef]
- Cheng, L.J.; Jing, C.; Duan, T.H.; Li, F.Z. ResNet-Based Dairy Daily Behavior Recognition. EAI Endorsed Trans. Internet Things 2023, 9, e5. [Google Scholar] [CrossRef]
- Neethirajan, S. Artificial Intelligence and Sensor Technologies in Dairy Livestock Export: Charting a Digital Transformation. Sensors 2023, 23, 7045. [Google Scholar] [CrossRef]
- Streefland, G.-J.; Herrema, F.; Martini, M. A Gradient Boosting Model to Predict the Milk Production. Smart Agric. Technol. 2023, 6, 100302. [Google Scholar] [CrossRef]
- Wang, H.; Shen, W.; Zhang, Y.; Gao, M.; Zhang, Q.; A, X.; Du, H.; Qiu, B. Diagnosis of Dairy Cow Diseases by Knowledge-Driven Deep Learning Based on the Text Reports of Illness State. Comput. Electron. Agric. 2023, 205, 107564. [Google Scholar] [CrossRef]
- Ferreira, R.E.P.; Bresolin, T.; Rosa, G.J.M.; Dórea, J.R.R. Using Dorsal Surface for Individual Identification of Dairy Calves through 3D Deep Learning Algorithms. Comput. Electron. Agric. 2022, 201, 107272. [Google Scholar] [CrossRef]
- Dai, X.; Keane, M.T.; Shalloo, L.; Ruelle, E.; Byrne, R.M.J. Counterfactual Explanations for Prediction and Diagnosis in XAI. In Proceedings of the AIES 2022—Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society; ACM: New York, NY, USA, 2022; pp. 215–226. [Google Scholar]
- Themistokleous, K.S.; Sakellariou, N.; Kiossis, E. A Deep Learning Algorithm Predicts Milk Yield and Production Stage of Dairy Cows Utilizing Ultrasound Echotexture Analysis of the Mammary Gland. Comput. Electron. Agric. 2022, 198, 106992. [Google Scholar] [CrossRef]
- Naqvi, S.A.; King, M.T.M.; DeVries, T.J.; Barkema, H.W.; Deardon, R. Data Considerations for Developing Deep Learning Models for Dairy Applications: A Simulation Study on Mastitis Detection. Comput. Electron. Agric. 2022, 196, 106895. [Google Scholar] [CrossRef]
- Mazhar, S.A.S.; Akila, D. A Novel Framework to Perform Efficient Analysis of Animal Sciences Using Big Data. In Proceedings of the 2022 International Conference on Emerging Smart Computing and Informatics, ESCI 2022, Pune, India, 9–11 March 2022. [Google Scholar]
- Cao, Z.; Cao, Z.; Zhao, H.; Xu, J.; Zhang, G.; Li, Y.; Su, Y.; Lou, L.; Yang, X.; Gu, Z. Using Empirical Modal Decomposition to Improve the Daily Milk Yield Prediction of Cows. Wirel. Commun. Mob. Comput. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Parikoglou, I.; Emvalomatis, G.; Thorne, F. Precision Livestock Agriculture and Productive Efficiency: The Case of Milk Recording in Ireland. Agric. Econ. 2022, 53, 109–120. [Google Scholar] [CrossRef]
- Koskela, O.; Pereira, L.S.B.; Pölönen, I.; Aronen, I.; Kunttu, I. Deep Learning Image Recognition of Cow Behavior and an Open Data Set Acquired near an Automatic Milking Robot. Agric. Food Sci. 2022, 31, 89–103. [Google Scholar] [CrossRef]
- Fadul-Pacheco, L.; Wangen, S.R.; da Silva, T.E.; Cabrera, V.E. Addressing Data Bottlenecks in the Dairy Farm Industry. Animals 2022, 12, 721. [Google Scholar] [CrossRef]
- Dórea, F.C.; Revie, C.W. Corrigendum: Data-Driven Surveillance: Effective Collection, Integration, and Interpretation of Data to Support Decision Making (Front. Vet. Sci., (2021), 8, 633977, 10.3389/Fvets.2021.633977). Front. Vet. Sci. 2021, 8, 789696. [Google Scholar] [CrossRef]
- Handcock, R.C.; Lopez-Villalobos, N.; Back, P.J.; Hickson, R.E.; McNaughton, L.R. Growth, Milk Production, Reproductive Performance, and Stayability of Dairy Heifers Born from 2-Year-Old or Mixed-Age Dams. J. Dairy Sci. 2021, 104, 11738–11746. [Google Scholar] [CrossRef]
- Jarchi, D.; Kaler, J.; Sanei, S. Lameness Detection in Cows Using Hierarchical Deep Learning and Synchrosqueezed Wavelet Transform. IEEE Sens. J. 2021, 21, 9349–9358. [Google Scholar] [CrossRef]
- Wełeszczuk, J.; Kosińska-Selbi, B.; Cholewińska, P. Prediction of Polish Holstein’s Economical Index and Calving Interval Using Machine Learning. Livest. Sci. 2022, 264, 105039. [Google Scholar] [CrossRef]
- Jain, D.K.; Sharma, A.K.; Ruhil, A.P. Role of Information Technology in Dairy Science: A Review. Indian J. Anim. Sci. 2005, 75, 985–991. [Google Scholar]
- Hourigan, J.A. Artificial neural networks in the dairy-industry. Aust. J. Dairy Technol. 1994, 49, 110. [Google Scholar]
- Cockburn, M. Review: Application and Prospective Discussion of Machine Learning for the Management of Dairy Farms. Animals 2020, 10, 1690. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O.; Greenwood, P.L.; Halachmi, I. Advancements in Sensor Technology and Decision Support Intelligent Tools to Assist Smart Livestock Farming. J. Anim. Sci. 2021, 99, skab038. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Fadul-Pacheco, L. Future of Dairy Farming from the Dairy Brain Perspective: Data Integration, Analytics, and Applications. Int. Dairy J. 2021, 121, 105069. [Google Scholar] [CrossRef]
- Ozella, L.; Brotto Rebuli, K.; Forte, C.; Giacobini, M. A Literature Review of Modeling Approaches Applied to Data Collected in Automatic Milking Systems. Animals 2023, 13, 1916. [Google Scholar] [CrossRef]
- Aharwal, B.; Roy, B.; Meshram, S.; Yadav, A. Worth of Artificial Intelligence in the Epoch of Modern Livestock Farming: A Review. Agric. Sci. Dig. 2023, 43, 1–9. [Google Scholar] [CrossRef]
- De Vries, A.; Bliznyuk, N.; Pinedo, P. Invited Review: Examples and Opportunities for Artificial Intelligence (AI) in Dairy Farms*. Appl. Anim. Sci. 2023, 39, 14–22. [Google Scholar] [CrossRef]
- Rahman, M.; Mandal, A.; Gayari, I.; Bidyalaxmi, K.; Sarkar, D.; Allu, T.; Debbarma, A. Prospect and Scope of Artificial Neural Network in Livestock Farming: A Review. Biol. Rhythm. Res. 2023, 54, 249–262. [Google Scholar] [CrossRef]
- Hassoun, A.; Garcia-Garcia, G.; Trollman, H.; Jagtap, S.; Parra-López, C.; Cropotova, J.; Bhat, Z.; Centobelli, P.; Aït-Kaddour, A. Birth of Dairy 4.0: Opportunities and Challenges in Adoption of Fourth Industrial Revolution Technologies in the Production of Milk and Its Derivatives. Curr. Res. Food Sci. 2023, 7, 100535. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Tongson, E.; Dunshea, F.R. The Livestock Farming Digital Transformation: Implementation of New and Emerging Technologies Using Artificial Intelligence. Anim. Health Res. Rev. 2022, 23, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, D.B.M.; Rafie, A.S.M.; Al-Haddad, S.A.R.; Azrad, S. A Systematic Literature Review on the Use of Deep Learning in Precision Livestock Detection and Localization Using Unmanned Aerial Vehicles. IEEE Access 2022, 10, 80071–80091. [Google Scholar] [CrossRef]
- Yaseer, A.; Chen, H. A Review of Sensors and Machine Learning in Animal Farming. In Proceedings of the 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2021, Jiaxing, China, 27–31 July 2021; pp. 747–752. [Google Scholar]
- Zhang, Y.; Zhang, Q.; Zhang, L.; Li, J.; Li, M.; Liu, Y.; Shi, Y. Progress of Machine Vision Technologies in Intelligent Dairy Farming. Appl. Sci. 2023, 13, 7052. [Google Scholar] [CrossRef]
- Markov, N.; Stoycheva, S.; Hristov, M.; Mondeshka, L. Digital Management of Technological Processes in Cattle Farms: A Review. J. Cent. Eur. Agric. 2022, 23, 486–495. [Google Scholar] [CrossRef]
- Neethirajan, S. Affective State Recognition in Livestock—Artificial Intelligence Approaches. Animals 2022, 12, 759. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Chu, M.; Kang, X.; Liu, G. Application of Infrared Thermography and Machine Learning Techniques in Cattle Health Assessments: A Review. Biosyst. Eng. 2023, 230, 361–387. [Google Scholar] [CrossRef]
Decision-Making Level | ||||
Strategic | Tactical | Operative | ||
Scope of decision-making | Milk yield estimation | 13% (A8, A19, A20, A28, A41, A43, A45, A50, A55, A58, A70, A74, A76, A78, A80, A81, A84, A93, A125,A144) | 15% (A3, A5, A9, A30, A31, A39, A46, A48, A57, A59, A73, A79, A82, A83, A109, A111, A113, A118, A120, A138, A145, A150) | 1% (A52, A142) |
Early detection of lameness and other diseases | 2% (A26, A54, A114) | 1% (A124) | 23% (A2, A14, A23, A24, A25, A47, A56, A63, A72, A75, A88, A91, A94, A106, A110, A112, A115, A116, A117, A119, A121, A126, A128, A129, A130, A131, A132, A133, A135, A136, A139, A140, A147, A151) | |
Mastitis detection | 1% (A1) | 1% (A4) | 11% (A6, A11, A13, A21, A29, A33, A42, A85, A92, A95, A96, A98, A99, A100, A101, A104, A127) | |
Reproductive measurements and calving diseases | 1% (A22, A65) | 3% (A12, A17, A27, A152) | 2% (A18, A34, A64) | |
Food intake | 1% (A7) | 3% (A35, A51, A53, A67, A87) | 1% (A103) | |
Not applicable | 4% (A10, A15, A32, A44, A77, A90, A105, A107, A122, A123, A137, A148, A149, A146) | 1% (A108, A141) | 1% (A97, A143) | |
Body weight and physiology | 1% (A61) | 1% (A37, A66) | 1% (A36) |
Type (Percent) | Papers | |
Type of analytics | Predictive (87%) | A1, A2, A3, A4, A5, A6, A7, A8, A9, A11, A12, A13, A14, A17, A18, A19, A20, A21, A22, A23, A24, A25, A27, A28, A29, A30, A31, A33, A34, A35, A36, A37, A38, A39, A40, A41, A42, A43, A45, A46, A47, A48, A50, A51, A52, A53, A54, A55, A56, A57, A58, A59, A61, A64, A65, A66, A67, A68, A69, A70, A71, A72, A73, A74, A75, A76, A78, A79, A80, A81, A82, A83, A84, A85, A86, A87, A88, A89, A91, A92, A93, A94, A95, A96, A97, A98, A99, A100, A101, A102, A103, A104, A106, A107, A108, A109, A110, A111, A112, A113, A114, A115, A116, A117, A118, A119, A121, A123, A124, A125, A126, A127, A128, A129, A130, A131, A132, A133, A135, A136, A138, A139, A140, A143, A144, A145, A146, A147, A150, A151, A152 |
Descriptive (5%) | A120, A134, A141, A142, A148, A149 | |
Prescriptive (3%) | A60, A62, A63 | |
Not applicable (7%) | A10, A15, A16, A26, A32, A44, A77, A90, A105, A122, A137 | |
Input Data types | Real-time (25%) | A15, A16, A18, A22, A23, A25, A26, A29, A60, A61, A62, A63, A64, A69, A87, A89, A102, A103, A110, A112, A116, A117, A119, A121, A127, A128, A129, A130, A131, A132, A133, A135, A136, A140, A147, A151 |
Historical (70%) | A1, A2, A3, A4, A5, A6, A7, A9, A10, A11, A12, A13, A14, A17, A19, A20, A21, A24, A27, A28, A30, A31, A33, A34, A35, A36, A37, A38, A39, A40, A41, A42, A43, A45, A46, A47, A48, A50, A51, A52, A53, A54, A55, A56, A57, A58, A59, A65, A66, A67, A70, A71, A72, A73, A74, A75, A76, A78, A79, A80, A81, A82, A83, A84, A85, A86, A88, A91, A92, A93, A94, A95, A96, A97, A98, A99, A100, A101, A104, A106, A107, A108, A109, A111, A113, A114, A115, A118, A123, A124, A125, A126, A134, A138, A139, A141, A142, A143, A144, A145, A146, A148, A149, A150, A152 | |
Third Party Sources (1%) | A8 | |
Not applicable (6%) | A32, A44, A68, A77, A90, A105, A120, A122, A137 |
Methodology | Percentage | Papers | |
Machine Learning Methodology | Artificial Neural Network | 47% | A1, A2, A3, A4, A6, A7, A9, A11, A12, A13, A14, A17, A19, A20, A21, A27, A28, A30, A31, A33, A34, A35, A36, A37, A38, A39, A40, A42, A43, A45, A46, A47, A48, A50, A53, A56, A57, A58, A59, A60, A64, A66, A67, A68, A72, A73, A74, A76, A78, A79, A80, A81, A82, A83, A84, A85, A88, A94, A104, A109, A111, A113, A115, A118, A120, A124, A132, A142, A143, A145, A152 |
Convolutional neural network | 24% | A2, A18, A23, A24, A25, A41, A51, A69, A71, A75, A87, A89, A96, A102, A103, A106, A110, A112, A116, A117, A119, A121, A127, A128, A129, A130, A131, A133, A135, A136, A139, A140, A142, A147, A151 | |
Not applicable | 13% | A10, A15, A16, A29, A32, A44, A52, A54, A55, A70, A77, A90, A101, A108, A113, A120, A126, A138, A139, A152 | |
Random forest | 12% | A2, A26, A65, A82, A86, A91, A92, A94, A99, A100, A101, A104, A108, A113, A126, A139, A142, A152 | |
Unspecified machine learning methods | 3% | A61, A62, A63, A65,A152 | |
SVM | 7% | A2, A8, A67, A86, A104, A106, A114, A120, A126, A139, A142 | |
Decision trees | 9% | A86, A91, A96, A97, A98, A100, A104, A106, A108, A114, A120, A142, A144, A152 | |
Fuzzy logic | 1% | A47, A93 | |
K-nearest neighbors | 5% | A14, A26, A106, A108, A142, A144, A152 | |
k-means | 1% | A22 | |
Statistical methodology | Linear regression | 50% | A3, A5, A8, A17, A31, A39, A46, A50, A51, A53, A54, A55, A57, A58, A59, A61, A70, A73, A76, A78, A80, A83, A97, A108, A111, A124, A125, A150 |
Simulation | 4% | A29, A107 | |
Linear discriminant analysis | 4% | A4, A9 | |
Logistic regression | 4% | A27, A94 | |
Wood model | 4% | A74, A81 | |
Other | 21% | A2, A7, A12, A30, A38, A40, A52, A61, A85, A108, A118, A146 |
Percent | Paper | ||
Algorithm used in artificial neural networks | Back-propagation | 62% | A1, A3, A4, A5, A6, A11, A12, A14, A19, A21, A23, A27, A28, A30, A31, A36, A37, A39, A40, A41, A42, A43, A44, A46, A47, A48, A50, A56, A57, A58, A59, A67, A72, A73, A74, A76, A79, A80, A81, A84, A86, A88, A104, A111, A115, A145 |
Not mentioned | 38% | A2, A7, A9, A13, A17, A20, A33, A34, A35, A38, A45, A53, A60, A64, A66, A68, A82, A83, A85, A109, A113, A118, A120, A124, A132, A142, A143, A152 | |
Activation function | Hyperbolic tangent | 34% | A1, A3, A5, A6, A9, A37, A39, A43, A48, A50, A51, A53, A58, A59, A72, A73, A76, A79, A80, A83, A84, A86, A109, A113, A115 |
RELU | 1% | A20 | |
Sigmoid logarithm | 4% | A5, A86, A124 | |
Lineal | 5% | A50, A74, A86, A115 | |
Exponential | 1% | A74 | |
Not specified | 57% | A2, A7, A11, A12, A14, A17, A19, A21, A27, A28, A31, A33, A34, A35, A36, A38, A40, A42, A45, A46, A47, A56, A57, A60, A64, A66, A68, A78, A81, A82, A85, A88, A94, A95, A111, A118, A120, A132, A142, A143, A145, A152 |
Percent | Papers | ||
Treatment of variability | Deterministic | 77% | A1, A2, A3, A4, A5, A6, A7, A8, A9, A11, A12, A13, A14, A17, A18, A19, A20, A21, A22, A23, A24, A25, A27, A28, A30, A31, A33, A34, A46, A47, A48, A50, A51, A53, A54, A55, A56, A57, A58, A60, A61, A62, A63, A65, A66, A67, A68, A69, A70, A71, A72, A73, A74, A75, A76, A78, A79, A80, A81, A82, A83, A84, A85, A86, A87, A88, A89, A91, A92, A94, A95, A96, A97, A98, A100, A102, A103, A104, A106, A108, A109, A110, A111, A112, A113, A114, A115, A116, A117, A118, A119, A121, A123, A124, A125, A126, A127, A128, A129, A130, A131, A132, A133, A135, A136, A138, A139, A140, A142, A143, A144, A145, A147, A150, A151, A152 |
Stochastic | 5% | A29, A52, A93, A99, A103, A104, A107, A146 | |
Not applicable | 19% | A10, A15, A16, A26, A32, A35, A36, A37, A38, A39, A40, A41, A42, A43, A44, A45, A59, A64, A77, A90, A101, A105, A120, A122, A134, A137, A141, A148,149 |
Data Analytics and Machine Learning Tools | Percentage | Basic Language | Modeling Language | Papers |
Not mentioned | 44% | A1, A5, A10, A11, A15, A16, A22, A23, A26, A29, A32, A35, A38, A41, A44, A54, A63, A65, A68, A71, A74, A77, A78, A84, A85, A88, A89, A90, A96, A97, A103, A105, A106, A109, A112, A114, A116, A120, A121, A122, A125, A127, A128, A129, A131, A134, A137, A138, A139, A140, A142, A144, A145, A146, A148, A149, A151 | ||
Matlab | 20% | X | A3, A6, A17, A19, A30, A31, A36, A39, A40, A47, A57, A58, A59, A62, A69, A70, A73, A76, A79, A80, A83, A86, A93, A111, A124, A133 | |
R | 15% | X | A2, A7, A8, A34, A50, A51, A52, A53, A56, A61, A67, A72, A82, A91, A92, A94, A99, A118, A126 | |
Python | 19% | X | A18, A20, A24, A25, A64, A66, A75, A87, A95, A102, A104, A107, A108, A110, A117, A119, A130, A132, A135, A136, A143, A147, A152 | |
Statistica | 5% | X | A12, A27, A46, A48, A55, A81 | |
Neuralware | 5% | X | A28, A37, A42, A43, A45, A112 | |
SAS | 5% | X | A34, A39, A81, A92, A123, A150 | |
SPSS | 4% | X | A9, A33, A40, A55, A141 | |
TensorFlow | 3% | X | A14, A20, A24, A95 | |
C++ | 0.8% | X | A72 | |
H2O | 2% | X | A53, A61, A113 | |
MES (Model Evaluation System) | 2% | X | A51, A53 | |
Neural Works Profesional II | 0.8% | X | A21 | |
Weka | 2% | X | A92, A98, A101 | |
Force 2.0 | 0.8% | X | A83 | |
Neucube | 0.8% | X | A60 | |
Neuroshell | 0.8% | X | A4 | |
Java | 0% | X | ||
Viscovery | 0.8% | X | A13 | |
SOMine | 0.8% | X | A13 | |
Aiyude Neurointelligence | 0.8% | A13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, O.; Plà-Aragonés, L.M.; Mac Cawley, A.; Albornoz, V.M. AI and Data Analytics in the Dairy Farms: A Scoping Review. Animals 2025, 15, 1291. https://doi.org/10.3390/ani15091291
Palma O, Plà-Aragonés LM, Mac Cawley A, Albornoz VM. AI and Data Analytics in the Dairy Farms: A Scoping Review. Animals. 2025; 15(9):1291. https://doi.org/10.3390/ani15091291
Chicago/Turabian StylePalma, Osvaldo, Lluis M. Plà-Aragonés, Alejandro Mac Cawley, and Víctor M. Albornoz. 2025. "AI and Data Analytics in the Dairy Farms: A Scoping Review" Animals 15, no. 9: 1291. https://doi.org/10.3390/ani15091291
APA StylePalma, O., Plà-Aragonés, L. M., Mac Cawley, A., & Albornoz, V. M. (2025). AI and Data Analytics in the Dairy Farms: A Scoping Review. Animals, 15(9), 1291. https://doi.org/10.3390/ani15091291