Weaning as Stressor for Calf Welfare
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Blood Analysis
2.2.1. Complete Blood Count (CBC) Analysis
2.2.2. Biochemical Analysis
2.2.3. Serum Protein Electrophoresis
2.2.4. Immunoenzymatic Analysis
- “Bovine Interferon-γ ELISA Kit” (Standard curve range: 1–1000 pg/mL; Sensitivity: 0.5 pg/mL), MABTECH AB, (Nacka Strand, Sweden);
- “Bovine Tumor Necrosis Factor Alpha ELISA Kit” (Standard curve range: 10–3000 ng/L; Sensitivity: 5.56 ng/L), Bioassay Technology Laboratory (Shanghai, China);
- “Bovine Interleukin 8 ELISA Kit” (Standard curve range: 5–1000 ng/L; Sensitivity: 2.39 ng/L), Bioassay Technology Laboratory (Shanghai, China).
2.2.5. Lysozyme Titration
2.2.6. Serum Bactericide
2.2.7. Complement Titration
2.3. Statistical Analysis
3. Results
3.1. CBC Analysis
3.2. Biochemical Analysis
3.3. Serum Protein Electrophoresis
3.4. Immunoenzymatic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Council, F.A.W. Second Report on Priorities for Research and Development in Farm Animal Welfare; DEFRA: London, UK, 1993; pp. 187–205.
- Webster, J. Animal Welfare: Freedoms, Dominions and “A Life Worth Living”. Animals 2016, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Webster, J. Limping Towards Eden; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Mellor, D.; Reid, C.S.W. Concepts of Animal Well-Being and Predicting the Impact of Procedures on Experimental Animals. In Improving the Well-Being of Animals in the Research Environment; WellBeing International: Potomac, MD, USA, 1994. [Google Scholar]
- Mellor, D.J. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.A.; Burdick Sanchez, N.C. Relationship Between Stress and Health in Cattle–Part 2; Technical Bulletin; Prince AgriProducts: Teaneck, NJ, USA, 2013. [Google Scholar]
- Hughes, H.D.; Carroll, J.A.; Burdick Sanchez, N.C.; Richeson, J.T. Natural Variations in the Stress and Acute Phase Responses of Cattle. Innate Immun. 2014, 20, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Baumann, H.; Gauldie, J. The Acute Phase Response. Immunol. Today 1994, 15, 74–80. [Google Scholar] [CrossRef]
- Boumpas, D.T.; Chrousos, G.P.; Wilder, R.L.; Cupps, T.R.; Balow, J.E. Glucocorticoid Therapy for Immune-Mediated Diseases: Basic and Clinical Correlates. Ann. Intern. Med. 1993, 119, 1198–1208. [Google Scholar] [CrossRef]
- Chrousos, G.P. The Hypothalamic-Pituitary-Adrenal Axis and Immune-Mediated Inflammation. N. Engl. J. Med. 1995, 332, 1351–1362. [Google Scholar] [CrossRef]
- Habib, K.E.; Gold, P.W.; Chrousos, G.P. Neuroendocrinology of Stress. Endocrinol. Metab. Clin. N. Am. 2001, 30, 695–728. [Google Scholar] [CrossRef]
- Richards, D.F.; Fernandez, M.; Caulfield, J.; Hawrylowicz, C.M. Glucocorticoids Drive Human CD8(+) T Cell Differentiation towards a Phenotype with High IL-10 and Reduced IL-4, IL-5 and IL-13 Production. Eur. J. Immunol. 2000, 30, 2344–2354. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef]
- Blanco, M.; Casasús, I.; Palacio, J. Effect of Age at Weaning on the Physiological Stress Response and Temperament of Two Beef Cattle Breeds. Animal 2009, 3, 108–117. [Google Scholar] [CrossRef]
- Vogt, A.; Barth, K.; Waiblinger, S.; König von Borstel, U. Can a Gradual Weaning and Separation Process Reduce Weaning Distress in Dam-Reared Dairy Calves? A Comparison with the 2-Step Method. J. Dairy Sci. 2024, 107, 5942–5961. [Google Scholar] [CrossRef] [PubMed]
- Ott, G.C.; Freeman, S.R.; Poore, M.H.; Pickworth, C.L. 11 Impact of Weaning Strategy on Calf Performance, Behavior, and Activity. J. Anim. Sci. 2019, 97, 12–13. [Google Scholar] [CrossRef]
- Neamț, R.I.; Ilie, D.; Enculescu, M.; Săplăcan, S.; Cziszter, T.L. The Weaning Stress Effect on Calf Behaviour and Performances. Res. J. Biotechnol. 2019, 14, 3. [Google Scholar]
- Hulbert, L.E.; Moisá, S.J. Stress, Immunity, and the Management of Calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Novo, A.; Pérez-Garnelo, S.S.; Villagrá, A.; Pérez-Villalobos, N.; Astiz, S. The Effect of Stress on Reproduction and Reproductive Technologies in Beef Cattle-A Review. Animals 2020, 10, 2096. [Google Scholar] [CrossRef] [PubMed]
- Weary, D.M.; Jasper, J.; Hötzel, M.J. Understanding Weaning Distress. Appl. Anim. Behav. Sci. 2008, 110, 24–41. [Google Scholar] [CrossRef]
- Loberg, J.M.; Hernandez, C.E.; Thierfelder, T.; Jensen, M.B.; Berg, C.; Lidfors, L. Weaning and Separation in Two Steps—A Way to Decrease Stress in Dairy Calves Suckled by Foster Cows. Appl. Anim. Behav. Sci. 2008, 111, 222–234. [Google Scholar] [CrossRef]
- Lynch, E.; Earley, B.; McGee, M.; Doyle, S. Effect of Abrupt Weaning at Housing on Leukocyte Distribution, Functional Activity of Neutrophils, and Acute Phase Protein Response of Beef Calves. BMC Vet. Res. 2010, 6, 39. [Google Scholar] [CrossRef]
- Hickey, M.C.; Drennan, M.; Earley, B. The Effect of Abrupt Weaning of Suckler Calves on the Plasma Concentrations of Cortisol, Catecholamines, Leukocytes, Acute-Phase Proteins and in Vitro Interferon-Gamma Production. J. Anim. Sci. 2003, 81, 2847–2855. [Google Scholar] [CrossRef]
- Kim, M.-H.; Yang, J.-Y.; Upadhaya, S.D.; Lee, H.-J.; Yun, C.-H.; Ha, J.K. The Stress of Weaning Influences Serum Levels of Acute-Phase Proteins, Iron-Binding Proteins, Inflammatory Cytokines, Cortisol, and Leukocyte Subsets in Holstein Calves. J. Vet. Sci. 2011, 12, 151. [Google Scholar] [CrossRef]
- O’Loughlin, A.; McGee, M.; Doyle, S.; Earley, B. Biomarker Responses to Weaning Stress in Beef Calves. Res. Vet. Sci. 2014, 97, 458–463. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, A.; McGee, M.; Waters, S.M.; Doyle, S.; Earley, B. Examination of the Bovine Leukocyte Environment Using Immunogenetic Biomarkers to Assess Immunocompetence Following Exposure to Weaning Stress. BMC Vet. Res. 2011, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.J. Clinical Biochemistry of Domestic Animals; Academic Press: Cambridge, MA, USA, 2008; Volume 273. [Google Scholar]
- Osserman, E.F.; Lawlor, D.P. Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. J. Exp. Med. 1966, 5, 921–952. [Google Scholar] [CrossRef] [PubMed]
- Amadori, M.; Archetti, I.L. Titolazione semiquantitativa del complemento emolitico nel siero bovino-la valutazione del benessere nella specie bovina. Fond. Iniziative Zooprofilattiche 2002, 30, 57–60. [Google Scholar]
- Zaitsev, S.Y.; Bogolyubova, N.V.; Zhang, X.; Brenig, B. Biochemical Parameters, Dynamic Tensiometry and Circulating Nucleic Acids for Cattle Blood Analysis: A Review. PeerJ 2020, 8, e8997. [Google Scholar] [CrossRef]
- Yu, K.; Canalias, F.; Solà-Oriol, D.; Arroyo, L.; Pato, R.; Saco, Y.; Terré, M.; Bassols, A. Age-Related Serum Biochemical Reference Intervals Established for Unweaned Calves and Piglets in the Post-Weaning Period. Front. Vet. Sci. 2019, 6, 123. [Google Scholar] [CrossRef]
- Moody, D.E.; Hohenboken, W.D.; Beal, W.E.; Thye, F.W. Concentration of plasma cholesterol in beef cows and calves, milk production and calf gain. J. Anim. Sci. 1992, 70, 1464–1470. [Google Scholar] [CrossRef]
- Ferronato, G.; Cattaneo, L.; Trevisi, E.; Liotta, L.; Minuti, A.; Arfuso, F.; Lopreiato, V. Effects of Weaning Age on Plasma Biomarkers and Growth Performance in Simmental Calves. Animals 2022, 12, 1168. [Google Scholar] [CrossRef]
- Mohri, M.; Sharifi, K.; Eidi, S. Hematology and serum biochemistry of Holstein dairy calves: Age related changes and comparison with blood composition in adults. Res. Vet. Sci. 2007, 83, 30–39. [Google Scholar] [CrossRef]
- Marcato, F.; van den Brand, H.; Kemp, B.; van Reenen, K. Evaluating Potential Biomarkers of Health and Performance in Veal Calves. Front. Vet. Sci. 2018, 5, 133. [Google Scholar] [CrossRef]
- Russell, K.E.; Roussel, A.J. Evaluation of the Ruminant Serum Chemistry Profile. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 403–426. [Google Scholar] [CrossRef] [PubMed]
- Kazana, P.; Siachos, N.; Panousis, N.; Kalaitzakis, E.; Arsenos, G.; Valergakis, G.E. Effect of Weaning on Serum Biochemistry and Establishment of Reference Intervals for Peri-Weaning Period of Holstein Calves. Livest. Sci. 2021, 250, 104550. [Google Scholar] [CrossRef]
- Nagy, O.; Tóthová, C.; Kováč, G. Age-Related Changes in the Concentrations of Serum Proteins in Calves. J. Appl. Anim. Res. 2014, 42, 451–458. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The Crucial Roles of Inflammatory Mediators in Inflammation: A Review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Abraha, R. Review on the Role and Biology of Cytokines in Adaptive and Innate Immune System. Arch. Vet. Anim. Sci. 2020, 2, 2. [Google Scholar]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-Gamma (IFN-γ): Exploring Its Implications in Infectious Diseases. Biomol. Concepts 2018, 9, 64–79. [Google Scholar] [CrossRef]
- Grün, E. The Physiological and Diagnostic Importance of Lysozyme in Cow’s Milk. Allerg. Immunol. 1985, 31, 3–15. [Google Scholar]
- Charles A Janeway, J.; Travers, P.; Walport, M.; Shlomchik, M.J. The Complement System and Innate Immunity. In Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. [Google Scholar]
Parameter | Reference Values | T0 | T1 | T2 | T3 |
---|---|---|---|---|---|
BA | / | 0.416 ± 0.033 | 0.509 ± 0.033 | 0.409 ± 0.032 | 0.455 ± 0.036 |
EO (%) | 2–20% | 0.360 ± 0.143 | 0.357 ± 0.089 | 0.273 ± 0.046 | 0.542 ± 0.150 |
WBCs | 4–12 m/mm3 | 11.96 ± 0.70 | 10.63 ± 0.38 | 11.62 ± 0.46 | 11.34 ± 0.46 |
RBCs | 6–11 m/mm3 | 9.10 ± 0.14 | 9.22 ± 0.12 | 9.42 ± 0.12 | 9.22 ± 0.14 |
HB | 8–15 g/dL | 11.50 ± 0.19 | 11.60 ± 0.16 | 11.89 ± 0.15 | 11.55 ± 0.17 |
HCT | 25–50% | 28.89 ± 0.51 | 29.45 ± 0.40 | 30.13 ± 0.44 | 29.54 ± 0.50 |
LINF | 45–75% | 52.60 ± 1.21 | 47.58 ± 1.21 | 48.26 ± 1.15 | 50.96 ± 1.07 |
MCH | 11–17 pg | 12.60 ± 0.108 | 12.54 ± 0.103 | 12.60 ± 0.097 | 12.50 ± 0.097 |
MCHC | 30–40 g/dL | 39.89 ± 0.28 | 39.35 ± 0.24 | 39.54 ± 0.28 | 39.43 ± 0.27 |
MCV | 40–60 fl | 31.80 ± 0.30 | 32.05± 0.29 | 32.06 ± 0.29 | 31.95 ± 0.27 |
MON | 1–5% | 5.84 ± 0.15 | 6.61 ± 0.16 | 6.26 ± 0.17 | 5.47 ± 0.15 |
MPV | 3–8 fl | 9.87 ± 0.10 | 9.82 ± 0.09 | 9.90 ± 0.09 | 9.77 ± 0.09 |
NEU | 15–47% | 40.77 ± 1.18 | 44.93 ± 1.21 | 44.77 ± 1.13 | 42.58 ± 1.09 |
PCT | / | 0.537 ± 0.04 | 0.538 ± 0.037 | 0.554 ± 0.032 | 0.508 ± 0.030 |
PDW | 6–10 fl | 9.05 ± 0.24 | 9.26 ± 0.21 | 9.21 ± 0.20 | 9.41 ± 0.16 |
PLT | 100–800 m/mm3 | 543.98 ± 36.67 | 556.55 ± 35.35 | 552.68 ± 29.03 | 528.40 ± 29.16 |
RDW | 8–12% | 17.20 ± 0.25 | 17.19 ± 0.26 | 16.98 ± 0.24 | 16.93 ± 0.19 |
RRg | / | 1.07 ± 0.50 | 1.16 ± 0.51 | 0.91 ± 0.38 | 1.42 ± 0.64 |
Parameter | Reference Values | T0 | T1 | T2 | T3 |
---|---|---|---|---|---|
ALP | 0–488 U/L | 204.65 ± 10.33 | * 192.49 ± 9.4 | * 155.81 ± 6.49 | * 167.88 ± 7.33 |
ALT | 11–40 U/L | 15.01 ± 0.50 | *** 18.44 ± 0.70 | *** 16.80 ± 0.63 | *** 21.09 ± 0.65 |
AST | 78–132 U/L | 64.36 ± 1.99 | ** 73.19 ± 2.43 | ** 61.60 ± 1.66 | ** 72.14 ± 1.72 |
CA | 9.7–12.4 mg/dL | 8.62 ± 0.055 | *** 8.74 ± 0.11 | *** 7.84 ± 0.10 | *** 8.81 ± 0.057 |
CHOL | 80–120 mg/dL | 79.78 ± 2.08 | * 81.88 ± 2.21 | * 73.08 ± 2.32 | * 80.44 ± 1.63 |
CL | 97–111 mmol/L | 91.42 ± 0.50 | ** 95.49 ± 0.72 | ** 92.08 ± 0.50 | ** 93.54 ± 0.59 |
CREA | 1–2 mg/dL | 0.88 ± 0.023 | *** 0.95 ± 0.023 | *** 0.83 ± 0.022 | *** 1.14 ± 0.029 |
FE | 57–162 ug/dL | 110. 85 ± 5.81 | *** 88.80 ± 5.94 | *** 111.80 ± 4.17 | *** 127.47 ± 5.53 |
GGT | 6.1–17.4 U/L | 19.75 ± 0.78 | 19.86 ± 0.71 | 18.21 ± 0.76 | 19.54 ± 0.90 |
MG | 1.8–2.3 mg/dL | 2.09 ± 0.026 | *** 2.38 ± 0.039 | *** 2.03 ± 0.034 | *** 2.27 ± 0.026 |
PHOS | 5.6–6.5 mg/dL | 9.32 ± 0.15 | * 8.86 ± 0.16 | * 8.83 ± 0.13 | * 9.06 ± 0.13 |
TP | 6.74–7.46 g/dL | 6.27 ± 0.077 | *** 6.48 ± 0.068 | *** 5.98 ± 0.089 | *** 6.85 ± 0.070 |
TRIG | 0–14 mg/dL | 14.09 ± 0.95 | ** 14.29 ± 0.92 | ** 17.40 ± 0.83 | ** 18.27 ± 1.01 |
UREA | 20–30 mg/dL | 21.04 ± 0.63 | * 20.39 ± 0.58 | * 23.04 ± 1.10 | * 23.49 ± 0.77 |
Parameter | Reference Values | T0 | T1 | T2 | T3 |
---|---|---|---|---|---|
ALB | 3.03–3.55 g/dL | 2.63 ± 0.037 | * 2.89 ± 0.025 | * 2.46 ± 0.058 | * 3.01 ± 0.037 |
α-G | 0.75–0.88 g/dL | 1.29 ± 0.021 | * 1.26 ± 0.019 | * 1.22 ± 0.022 | * 1.43 ± 0.034 |
β-G | 0.8–1.12 g/dL | 1.21 ± 0.025 | 1.22 ± 0.034 | 1.14 ± 0.023 | 1.09 ± 0.042 |
γ-G | 1.69–2.25 g/dL | 1.13 ± 0.048 | * 1.10 ± 0.033 | * 1.15 ± 0.036 | * 1.29 ± 0.041 |
Parameter | Reference Values | T0 | T1 | T2 | T3 |
---|---|---|---|---|---|
INF-γ | 13.85 ± 1.59 | 11.61 ± 0.87 | 15.09 ± 0.96 | 15.17 ± 1.33 | |
BA | >90% | 91.04 ± 0.29 | 91.53 ± 0.22 | 91.85 ± 0.29 | 92.08 ± 0.37 |
LIZ | 1–3 μg/mL | 1.47 ± 0.055 | 1.63 ± 0.064 | 1.63 ± 0.060 | 1.66 ± 0.068 |
TC | >30 CH50/150 µL | 47.31 ± 1.52 | 48.54 ± 1.55 | 48.41 ± 1.65 | 47.41 ± 1.44 |
TNF-α | 229.80 ± 15.66 | 220.40 ± 20.16 | 299.92 ± 20.53 | 335.27 ± 22.80 | |
IL-8 | 148.46 ± 5.38 | 141.79 ± 10.22 | 124.78 ± 7.13 | 148.32 ± 10.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guasco, C.; Moriconi, M.; Vitale, N.; Fusi, F.; Schleicherová, D.; Razzuoli, E.; Vevey, M.; Bergagna, S. Weaning as Stressor for Calf Welfare. Animals 2025, 15, 1272. https://doi.org/10.3390/ani15091272
Guasco C, Moriconi M, Vitale N, Fusi F, Schleicherová D, Razzuoli E, Vevey M, Bergagna S. Weaning as Stressor for Calf Welfare. Animals. 2025; 15(9):1272. https://doi.org/10.3390/ani15091272
Chicago/Turabian StyleGuasco, Cecilia, Martina Moriconi, Nicoletta Vitale, Francesca Fusi, Dáša Schleicherová, Elisabetta Razzuoli, Mario Vevey, and Stefania Bergagna. 2025. "Weaning as Stressor for Calf Welfare" Animals 15, no. 9: 1272. https://doi.org/10.3390/ani15091272
APA StyleGuasco, C., Moriconi, M., Vitale, N., Fusi, F., Schleicherová, D., Razzuoli, E., Vevey, M., & Bergagna, S. (2025). Weaning as Stressor for Calf Welfare. Animals, 15(9), 1272. https://doi.org/10.3390/ani15091272